L95: Natural Language Syntax and Parsing 2) PCFGs and CKY parsing

Paula Buttery

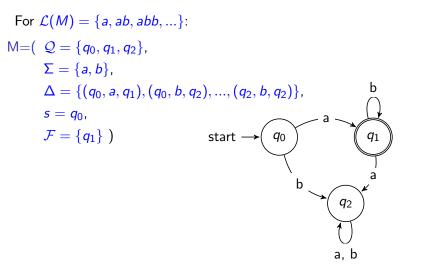
Dept of Computer Science & Technology, University of Cambridge

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recall that a language is regular if it is equal to the set of strings accepted by some deterministic finite-state automaton (DFA). A DFA is defined as $M = (Q, \Sigma, \Delta, s, F)$ where:

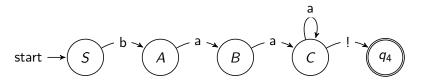
- $\mathcal{Q} = \{q_0, q_1, q_2...\}$ is a finite set of states.
- Σ is the alphabet: a finite set of transition symbols.
- $\Delta \subseteq Q \times \Sigma \times Q$ is a function $Q \times \Sigma \to Q$ which we write as δ . Given $q \in Q$ and $i \in \Sigma$ then $\delta(q, i)$ returns a new state $q' \in Q$
- s is a starting state
- \mathcal{F} is the set of all end states

Reminder: regular languages are accepted by DFAs



< ロト < 同ト < ヨト < ヨト

Simple relationship between a DFA and production rules



$$Q = \{S, A, B, C, q_4\}$$

$$\Sigma = \{b, a, !\}$$

$$q_0 = S$$

$$F = \{q_4\}$$

$$S \rightarrow bA$$

$$A \rightarrow aB$$

$$B \rightarrow aC$$

$$C \rightarrow aC$$

$$C \rightarrow !$$

э

Regular grammars generate regular languages

Given a DFA $M = (Q, \Sigma, \Delta, s, \mathcal{F})$ the language, $\mathcal{L}(M)$, of strings accepted by M can be generated by the regular grammar $G_{reg} = (\mathcal{N}, \Sigma, S, \mathcal{P})$ where:

- $\mathcal{N} = \mathcal{Q}$ the non-terminals are the states of M
- $\Sigma = \Sigma$ the terminals are the set of transition symbols of *M*
- S = s the starting symbol is the starting state of M
- $\mathcal{P} = q_i \rightarrow aq_j$ when $\delta(q_i, a) = q_j \in \Delta$ or $q_i \rightarrow \epsilon$ when $q \in \mathcal{F}$ (i.e. when q is an end state)

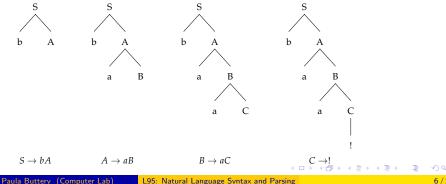
- ロ ト - (周 ト - (日 ト - (日 ト -)日

Strings are **derived** from production rules

In order to derive a string from a grammar

- start with the designated starting symbol
- then non-terminal symbols are repeatedly expanded using the rewrite rules until there is nothing further left to expand.

The rewrite rules derive the members of a language from their internal structure (or **phrase structure**)



For every regular grammar the rewrite rules of the grammar can all be expressed in the form:

$$egin{array}{ccc} X & o & a Y \ X & o & a \end{array}$$

or alternatively, they can all be expressed as:

$$egin{array}{ccc} X &
ightarrow & Ya \ X &
ightarrow & a \end{array}$$

The two grammars are **weakly-equivalent** since they generate the same strings.

But not **strongly-equivalent** because they do not generate the same structure to strings

< 日 > < 同 > < 三 > < 三 > <

For every regular grammar the rewrite rules of the grammar can all be expressed in the form:

$$egin{array}{ccc} X & o & a Y \ X & o & a \end{array}$$

or alternatively, they can all be expressed as:

$$egin{array}{ccc} X &
ightarrow & Ya \ X &
ightarrow & a \end{array}$$

The two grammars are **weakly-equivalent** since they generate the same strings.

But not **strongly-equivalent** because they do not generate the same structure to strings

For every regular grammar the rewrite rules of the grammar can all be expressed in the form:

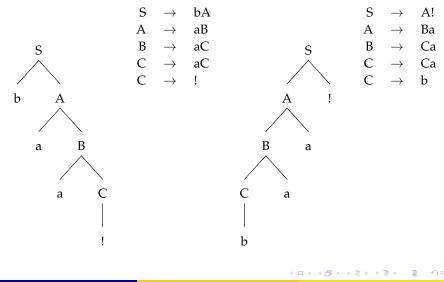
$$egin{array}{ccc} X & o & a Y \ X & o & a \end{array}$$

or alternatively, they can all be expressed as:

$$egin{array}{ccc} X &
ightarrow & Ya \ X &
ightarrow & a \end{array}$$

The two grammars are **weakly-equivalent** since they generate the same strings.

But not **strongly-equivalent** because they do not generate the same structure to strings



A regular grammar is a phrase structure grammar

A phrase structure grammar over an alphabet Σ is defined by a tuple $G = (\mathcal{N}, \Sigma, S, \mathcal{P})$. The language generated by grammar G is $\mathcal{L}(G)$:

- Non-terminal symbols (often uppercase letters) may be **rewritten** using the rules of the grammar.
- TERMINALS Σ : Terminal symbols (often lowercase letters) are elements of Σ and cannot be rewritten. Note $\mathcal{N} \cap \Sigma = \emptyset$.
- START SYMBOL S: A distinguished non-terminal symbol $S \in \mathcal{N}$. This non-terminal provides the starting point for derivations.

PHRASE STRUCTURE RULES \mathcal{P} : Phrase structure rules are pairs of the form (w, v) usually written:

 $w \to v$, where $w \in (\Sigma \cup \mathcal{N})^* \mathcal{N}(\Sigma \cup \mathcal{N})^*$ and $v \in (\Sigma \cup \mathcal{N})^*$

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition of a phrase structure grammar derivation

Given $G = (\mathcal{N}, \Sigma, S, \mathcal{P})$ and $w, v \in (\mathcal{N} \cup \Sigma)^*$ a **derivation step** is possible to transform w into v if:

 $u_1, u_2 \in (\mathcal{N} \cup \Sigma)^*$ exist such that $w = u_1 \alpha u_2$, and $v = u_1 \beta u_2$ and $\alpha \to \beta \in \mathcal{P}$

This is written $w \Rightarrow V$

A string in the language $\mathcal{L}(G)$ is a member of Σ^* that can be derived in a **finite number of derivation steps** from the starting symbol *S*.

We use \Longrightarrow_{G^*} to denote the reflexive, transitive closure of derivation steps, consequently $\mathcal{L}(G) = \{ w \in \Sigma^* | S \Longrightarrow_{G^*} w \}.$

PSGs may be grouped by production rule properties

Chomsky suggested that phrase structure grammars may be grouped together by the properties of their production rules.

NAMEFORM OF RULESregular $(A \to Aa \text{ or } A \to aA) \text{ and } A \to a \mid A \in \mathcal{N} \text{ and } a \in \Sigma$ context-free $A \to \alpha \mid A \in \mathcal{N} \text{ and } \alpha \in (\mathcal{N} \cup \Sigma)^*$ context-sensitive $\alpha A\beta \to \alpha\gamma\beta \mid A \in \mathcal{N} \text{ and } \alpha, \beta, \gamma \in (\mathcal{N} \cup \Sigma)^* \text{ and } \gamma \neq \epsilon$ recursively enum $\alpha \to \beta \mid \alpha, \beta \in (\mathcal{N} \cup \Sigma)^* \text{ and } \alpha \neq \epsilon$

A **class** of languages (e.g. the class of regular languages) is all the languages that can be generated by a particular TYPE of grammar.

The term **power** is used to describe the **expressivity** of each type of grammar in the hierarchy (measured in terms of the number of subsets of Σ^* that the type can generate)

・ロト ・ 同ト ・ ヨト ・ ヨト

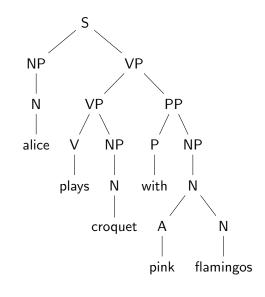
We can define the complexity of language classes

The **complexity** of a language class is defined in terms of the **recognition problem**.

Type	LANGUAGE CLASS	Complexity
3	regular	<i>O</i> (<i>n</i>)
2	context-free	$O(n^c)$
1	context-sensitive	$O(c^n)$
0	recursively enumerable	undecidable

< □ > < □ > < □ > < □ > < □ > < □ >

Context-free grammars capture constituency



$$G = (\mathcal{N}, \Sigma, S, \mathcal{P}) \text{ where}$$

$$\mathcal{P} = \{A \to \alpha \mid A \in \mathcal{N}, \alpha \in (\mathcal{N} \cup \Sigma)^*\}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

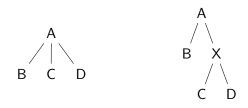
э

CFGs can be written in Chomsky Normal Form

Chomsky normal form: every production rule has the form, $A \rightarrow BC$, or, $A \rightarrow a$ where $A, B, C \in \mathcal{N}$, and, $a \in \Sigma$.

Conversion to Chomsky Normal Form

For every CFG there is a weakly equivalent CNF alternative. $A \rightarrow BCD$ may be rewritten as the two rules, $A \rightarrow BX$, and, $X \rightarrow CD$.



A (1) > A (2) > A (2)

CFGs can be written in Chomsky Normal Form

For $A, B, C, D, X, Y \in \mathcal{N}$ and $\gamma, \beta \subseteq \mathcal{N} *$ and $a \in \Sigma$.

Conversion to Chomsky Normal Form

- Keep all existing conforming rules
- replace $A \rightarrow \gamma a \beta$ with $D \rightarrow \gamma A \beta$ and $A \rightarrow a$
- repeatedly replace $A \rightarrow \gamma BC$ with $A \rightarrow \gamma X$ and $X \rightarrow BC$
- if A ⇒ B is a chain of one or more unit productions, and B → a then replace all the unit productions with A → a (where a unit production is any rule of the form X → Y)

CNF is a requirement for the CKY parsing algorithm but it causes some problems:

- Grammar is no longer linguistically intuitive
- Direct correspondence with compositional semantics may be lost

CFGs can be written in Chomsky Normal Form

For $A, B, C, D, X, Y \in \mathcal{N}$ and $\gamma, \beta \subseteq \mathcal{N} *$ and $a \in \Sigma$.

Conversion to Chomsky Normal Form

- Keep all existing conforming rules
- replace $A \rightarrow \gamma a \beta$ with $D \rightarrow \gamma A \beta$ and $A \rightarrow a$
- repeatedly replace $A \rightarrow \gamma BC$ with $A \rightarrow \gamma X$ and $X \rightarrow BC$
- if $A \Rightarrow B$ is a chain of one or more unit productions, and $B \rightarrow a$ then replace all the unit productions with $A \rightarrow a$ (where a unit production is any rule of the form $X \rightarrow Y$)

CNF is a requirement for the CKY parsing algorithm but it causes some problems:

- Grammar is no longer linguistically intuitive
- Direct correspondence with compositional semantics may be lost

ヘロト 人間ト ヘヨト ヘヨト

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
- However, natural language parsing can be achieved deterministically by selecting parsing actions using a machine learning classifier (more on this in later lectures).
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using **dynamic programming algorithms**.

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
- However, natural language parsing can be achieved deterministically by selecting parsing actions using a machine learning classifier (more on this in later lectures).
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using **dynamic programming algorithms**.

Deterministic context-free languages:

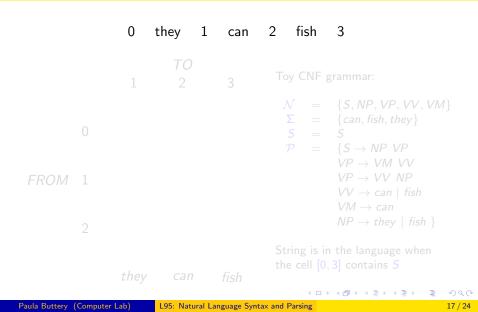
- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
- However, natural language parsing can be achieved deterministically by selecting parsing actions using a machine learning classifier (more on this in later lectures).
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using **dynamic programming algorithms**.

Deterministic context-free languages:

- are a proper subset of the context-free languages
- can be modelled by an unambiguous grammar
- can be parsed in linear time
- parser can be automatically generated from the grammar

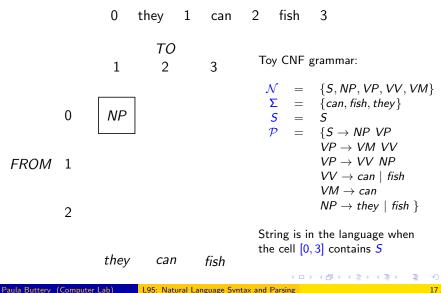
- Natural languages (with all their inherent ambiguity) are not well suited to algorithms which operate deterministically recognising a single derivation without backtracking
- However, natural language parsing can be achieved deterministically by selecting parsing actions using a machine learning classifier (more on this in later lectures).
- All CFLs (including those exhibiting ambiguity) can be recognised in polynomial time using **dynamic programming algorithms**.

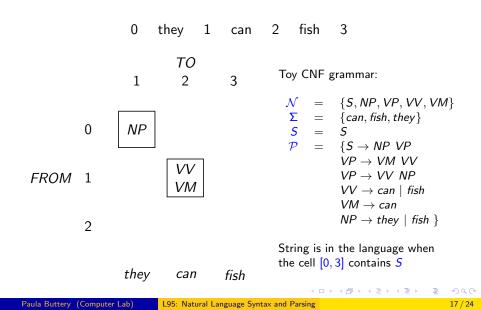


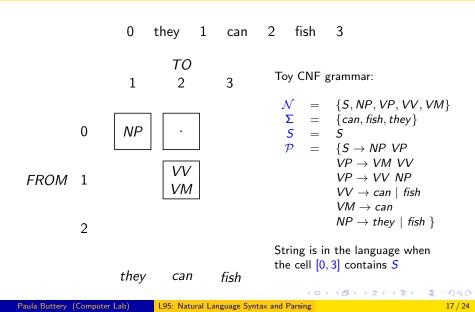
The CKY algorithm recognises strings in a CFL

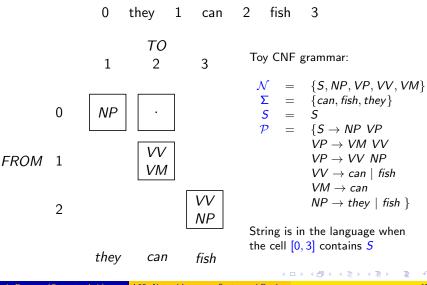
		0	they	1	can	2	fish	3	
		1	ТО 2		3	То	y CNF ۽	grammar:	
	0					2	Σ = S =	$ \begin{array}{l} \{S, NP, VP, VV, VM \\ \{can, fish, they\} \\ S \\ \{S \rightarrow NP \ VP \end{array} $	}
FROM	1					,	~ _	$VP \rightarrow VM VV$ $VP \rightarrow VV NP$ $VV \rightarrow can \mid fish$	
	2							$VM ightarrow can NP ightarrow they \mid fish \}$	
		they	can		fish		-	the language when 3] contains S	S.
Paula Buttery	(Computer I	Lab)	L95: Nati	ıral Lar	nguage Synt	ax and I	Parsing		17 /

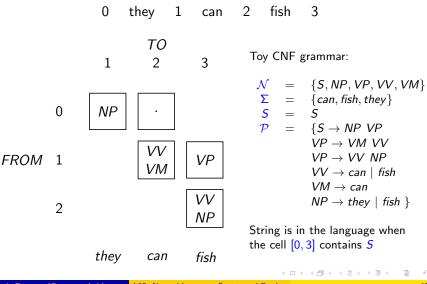
24

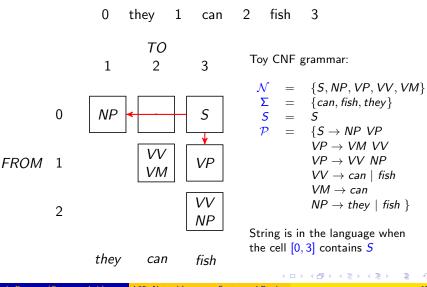


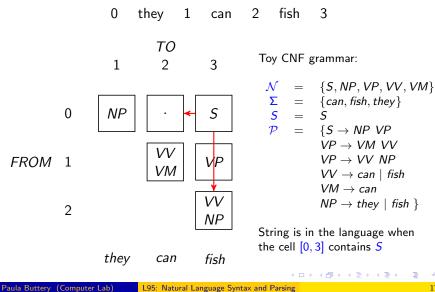












The CKY algorithm recognises strings in a CFL

In the general case for $A, B, C \in \mathcal{N}$ and $a \in \Sigma$:

- If $a \in \Sigma$ exists between indexes m and m + 1, and $A \rightarrow a$ then cell [m, m + 1] contains A
- if cell [i, k] contains B and cell [k, j] contains C and $A \to BC$ then cell [i, j] contains A
- String of length n is in the language when the cell [0, n] contains S

The CKY algorithm only recognises a string, in order to obtain the **parse tree** we need to:

- pair each non-terminal in a cell with a 2-tuple of the cells that derived it
- allow the same non-terminal to exist more than once in any particular cell (or allow it to be paired with a list of 2-tuples)

(日)

The CKY algorithm recognises strings in a CFL

In the general case for $A, B, C \in \mathcal{N}$ and $a \in \Sigma$:

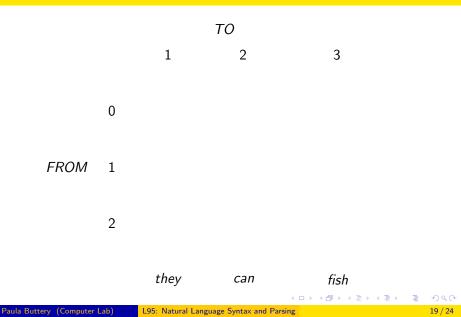
- If $a \in \Sigma$ exists between indexes m and m + 1, and $A \rightarrow a$ then cell [m, m + 1] contains A
- if cell [i, k] contains B and cell [k, j] contains C and $A \to BC$ then cell [i, j] contains A
- String of length n is in the language when the cell [0, n] contains S

The CKY algorithm only recognises a string, in order to obtain the **parse tree** we need to:

- pair each non-terminal in a cell with a 2-tuple of the cells that derived it
- allow the same non-terminal to exist more than once in any particular cell (or allow it to be paired with a list of 2-tuples)

イロト 不得 トイヨト イヨト

The CKY algorithm can be used to create a parse



The CKY algorithm can be used to create a parse

 $0 NP_{(they)}$

FROM 1

2

can

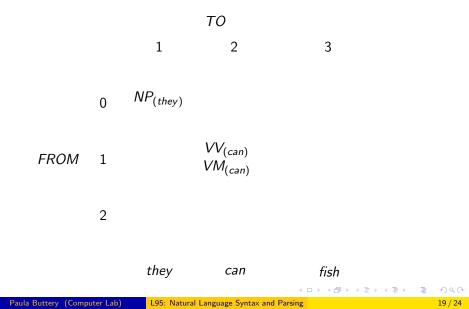
they

æ

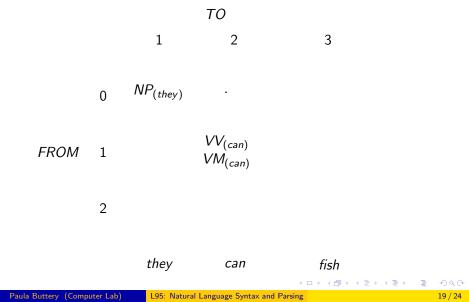
fish

イロト イヨト イヨト イヨト

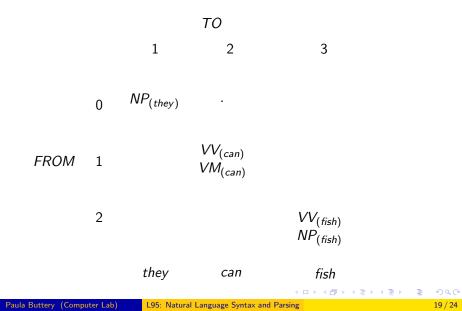
The CKY algorithm can be used to create a parse



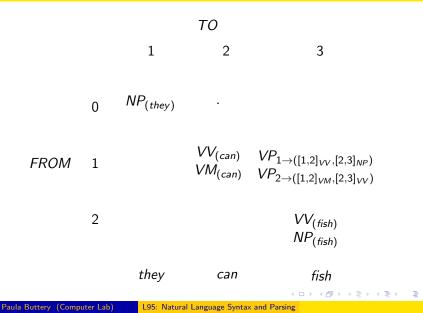
The CKY algorithm can be used to create a parse



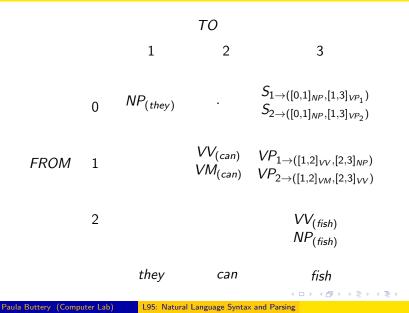
The CKY algorithm can be used to create a parse



The CKY algorithm can be used to create a parse



The CKY algorithm can be used to create a parse



19/24

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

Num of trees for sentence length
$$n = \prod_{k=2}^{n-1} \frac{(n-1)+k}{k}$$

sentence length	number of trees	sentence length	number of trees
3	2		429
4	5	9	1430
5	14	10	4862
6	42	11	16796
7	132	12	58786

We need parsing algorithms that can efficiently store the parse forest and not derive shared parts of tree more than once—

< □ > < □ > < □ > < □ > < □ > < □ >

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

Num of trees for sentence length
$$n = \prod_{k=2}^{n-1} \frac{(n-1)+k}{k}$$

sentence length	number of trees	sentence length	number of trees
3	2	8	429
4	5	9	1430
5	14	10	4862 16796
6	42	11	16796
7	132	12	58786

We need parsing algorithms that can efficiently store the parse forest and not derive shared parts of tree more than once—

(ロ) (同) (三) (三)

Ambiguous grammars derive a parse forest

Number of binary trees is proportional to the Catalan number

Num of trees for sentence length
$$n = \prod_{k=2}^{n-1} \frac{(n-1)+k}{k}$$

sentence length	number of trees	sentence length	number of trees
3	2	8	429
4	5	9	1430
5	14	10	4862
6	42	11	16796 58786
7	132	12	58786

We need parsing algorithms that can efficiently store the parse forest and not derive shared parts of tree more than once—use packing and/or a beam (the latter requires knowledge of the probability of derivations)

Parse probabilities may be derived using a PCFG

- $G_{pcfg} = (\Sigma, \mathcal{N}, S, \mathcal{P}, q)$ where q is a mapping from rules in \mathcal{P} to a probability and $\sum_{A \to \alpha \in \mathcal{P}} q(A \to \alpha) = 1$
- G_{pcfg} is **consistent** if the sum of all probabilities of all derivable strings equals 1 (grammars with infinite loops like $S \rightarrow S$ are inconsistent)
- The probability of a particular parse is the **product** of the probabilities of the rules that defined the parse tree. For a string W with parse tree T derived from rules $A_i \rightarrow B_i$, i = 1...n

$$P(T,W) = \prod_{i=1}^{n} P(A_i \to B_i)$$

• But note that P(T, W) = P(T)P(W|T) and that P(W|T) = 1 so

$$P(T, W) = P(T)$$
 and thus $P(T) = \prod_{i=1}^{n} P(A_i \rightarrow B_i)$

- ロ ト - (周 ト - (日 ト - (日 ト -)日

Parse probabilities may be derived using a PCFG

• The probability of an ambiguous string is the sum of all the parse trees that **yield** that string

$$P(W) = \sum_{\text{trees that yield } W} P(T, W) = \sum_{\text{trees that yield } W} P(T)$$

• We can disambiguate multiple parses by choosing the most probable parse tree for the string

$$\hat{T}(W) = \operatorname*{argmax}_{trees \ that \ yield \ W} P(T|W)$$

but

$$P(T|W) = \frac{P(T,W)}{P(W)} \rightarrow P(T,W) = P(T)$$

so

$$\hat{T}(W) = \underset{trees \ that \ yield \ W}{\operatorname{argmax}} P(T)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank: $P(A \to B) = P(A \to B|A) = \frac{count(A \to B)}{\sum count(A \to \gamma)} = \frac{count(A \to B)}{count(A)}$
- inside-outside algorithm can be used when no tree bank exists more in later lecture

Problems with PCFGs:

- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items

・ロト ・四ト ・ヨト ・ヨト … ヨ

^{...} more in later lectures

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank: $P(A \to B) = P(A \to B|A) = \frac{count(A \to B)}{\sum count(A \to \gamma)} = \frac{count(A \to B)}{count(A)}$
- inside-outside algorithm can be used when no tree bank exists ... more in later lectures

Problems with PCFGs:

- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items

... more in later lectures

・ロト ・四ト ・ヨト ・ヨト … ヨ

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank: $P(A \to B) = P(A \to B|A) = \frac{count(A \to B)}{\sum count(A \to \gamma)} = \frac{count(A \to B)}{count(A)}$
- inside-outside algorithm can be used when no tree bank exists ... more in later lectures

Problems with PCFGs:

- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items

... more in later lectures

ヘロト 不得 トイヨト イヨト 二日

- A treebank is a corpus of parsed sentences
- Rule probabilities can be estimated from counts in a treebank: $P(A \to B) = P(A \to B|A) = \frac{count(A \to B)}{\sum count(A \to \gamma)} = \frac{count(A \to B)}{count(A)}$
- inside-outside algorithm can be used when no tree bank exists ... more in later lectures

Problems with PCFGs:

- Independence ignores structural dependency within the tree
- Structure is dependent on lexical items

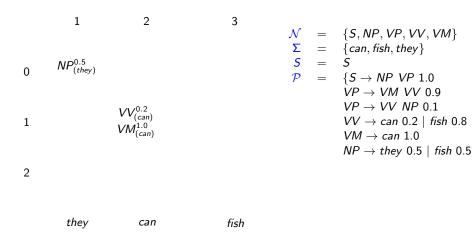
... more in later lectures

	1	2	3			$\{S, NP, VP, VV, VM\}$ $\{can, fish, they\}$
0				5	=	$S = \{S \rightarrow NP \ VP \ 1.0 \ VP \rightarrow VM \ VV \ 0.9 \}$
1						$VP \rightarrow VV \ NP \ 0.1$ $VV \rightarrow can \ 0.2 \mid fish \ 0.8$ $VM \rightarrow can \ 1.0$ $NP \rightarrow they \ 0.5 \mid fish \ 0.5$
2						
	they	can	fish			

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

	1	2	3			
						$\{S, NP, VP, VV, VM\}$
						{can, fish, they}
0	$NP_{(they)}^{0.5}$				=	
				P	=	$\{S \rightarrow NP VP 1.0 \ VP \rightarrow VM VV 0.9$
						$VP \rightarrow VN VV 0.9$ $VP \rightarrow VV NP 0.1$
1						$VV \rightarrow can 0.2 \mid fish 0.8$
T						$VM \rightarrow can \ 1.0$
						$NP \rightarrow they \ 0.5 \mid fish \ 0.5$
2						, , , , , , , , , , , , , , , , , , ,
2						
	<i>th</i>		<i>c</i> . 1			
	they	can	fish			

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam



- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

3

	1	2	3	M	_	$\{S, NP, VP, VV, VM\}$
0	$NP^{0.5}_{(they)}$			Σ 5	=	can, fish, they S $S \rightarrow NP VP 1.0$
1		$VV^{0.2}_{(can)}$ $VM^{1.0}_{(can)}$				$VP \rightarrow VM VV 0.9$ $VP \rightarrow VV NP 0.1$ $VV \rightarrow can 0.2 \mid fish 0.8$ $VM \rightarrow can 1.0$ $NP \rightarrow they 0.5 \mid fish 0.5$
2						Wi → they 0.5 lish 0.5
	they	can	fish			

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

	1	2	3			
						$\{S, NP, VP, VV, VM\}$
						$\{can, fish, they\}$
0	$NP^{0.5}_{(they)}$				=	
0	(\mathcal{P}	=	$\{S ightarrow NP VP 1.0$
						$VP \rightarrow VM VV 0.9$
		$VV^{0.2}$				VP ightarrow VV NP 0.1
1		$VV^{0.2}_{(can)}$ $VM^{1.0}_{(can)}$				$VV ightarrow can 0.2 \mid fish 0.8$
		V IVI(can)				VM ightarrow can 1.0
						$\textit{NP} ightarrow \textit{they} ~ 0.5 \mid \textit{fish} ~ 0.5$
2			$VV_{(fish)}^{0.8}$			
-			$NP_{(fish)}^{0.5}$			
			INF (fish)			
	they	can	fish			
о Г.						h u s d s

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

3

イロト 不得 トイヨト イヨト

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam

	1	2	3	٨٢	_	$\{S, NP, VP, VV, VM\}$
0	$NP^{0.5}_{(they)}$		$S^{0.5*1.0*0.8*0.9*1.0=0.36}_{([0,1]_{NP},[1,3]_{VP})}$	Σ	=	$\{can, fish, they\}$
1		$VV^{0.2}_{(can)}$ $VM^{1.0}_{(can)}$	$VP^{1.0*0.8*0.9=0.72}_{([1,2]_{VM},[2,3]_{VV})}$			$VP \rightarrow VV NP 0.1$ $VV \rightarrow can 0.2 \mid fish 0.8$ $VM \rightarrow can 1.0$ $NP \rightarrow they 0.5 \mid fish 0.5$
2			$VV_{(fish)}^{0.8}$ $NP_{(fish)}^{0.5}$			
	they	can	fish			

- For the best parse keep most probable non-terminal at each node
- Otherwise can pack and operate a beam