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Abstract—Many data center applications are latency-sensitive.
Monitoring continuously the network latency and reacting to
congestion on a network path is important to ensure that the
applications performance does not suffer penalties. We show
how to use the Precision Time Protocol (PTP) to infer network
latency and packet loss in data centers, and we conduct network
latency and packet loss measurements in data centers from
different cloud providers, using PTPd, an open-source software
implementation of PTP.

I. INTRODUCTION

Data centers run a mix of applications, some of which

are latency-sensitive, like web search, social networking or

key-value stores. For latency-sensitive applications, increased

network latency can lead to significant drops in application

performance [1], [2]. In order to ensure the best application

performance, we need to be able to measure continuously the

network latency across paths in data centers. Having up-to-

date latency values helps in tracking network service level

agreements (SLAs) for applications and in quickly finding

failures [3], [4]. These challenges led us to the idea of

designing a lightweight network latency monitoring system

for data centers. Additionally, the system would be able to

determine packet losses, as these have a huge negative impact

on application performance [3], [4].

In this paper, we investigate the use of the Precision Time

Protocol (PTP), with its open source software implementation

PTPd, to address these challenges. We leverage the statistics

offered by PTPd to measure network latency. We define a

metric to quantify packet loss ratio based on the number of

messages sent between the PTP slave and the PTP master.

We verify our metrics through performing experiments on

small-scale testbeds and in data centers across the world from

different cloud providers. Our approach is easy to deploy on

either the hypervisor or on VMs, making it a feasible tool

for cloud tenants for obtaining network performance statistics

without significant overhead.

II. THE PRECISION TIME PROTOCOL

The IEEE 1588 Precision Time Protocol (PTP) [5] is a

protocol used to synchronize clocks over a network and it can

achieve sub-microsecond precision. The master clock provides

the reference time for the slave clocks by communicating

over the network. A grandmaster is chosen from the available

clocks in the network, using the best master clock algorithm

Fig. 1: PTP protocol

(BMC). The grandmaster will be the root of a tree formed

out of devices that are PTP-enabled. Each element of the tree

is both a slave to its parent and a master for its children.

There are several types of PTP clocks. The simplest type is

the ordinary clock, which is an end device that has only one

network connection, and can act as a master or a slave. A

boundary clock has a slave port, receiving the time from the

master clock, and master ports, disseminating the time to other

slaves. Another type of clock is the transparent clock, which

timestamps incoming and outgoing messages and updates the

correction field in the messages to account for the delay across

the device. The mechanisms used by the last two types of

clocks ensure the scalability of PTP networks.

The PTP protocol message sequence is depicted in Figure 1.

A PTP master sends a Sync message. The time when the Sync

message was sent (T1) is recorded at the master and sent to

the slaves. A slave records the time when it received a Sync

message (T ′
1). The difference between the send and receipt

times represents the master-to-slave delay (T1 − T ′
1). A PTP

slave sends a Delay Request message. The slave records the

time when the Delay Request message was sent (T2), while the

master records the receipt time (T ′
2). The difference between

the send and receipt times of the Delay Request messages

represents the slave-to-master delay (T2 − T ′
2). By assuming

the propagation delays master-to-slave and slave-to-master are

symmetric, the one-way delay is computed as half of the sum

of the two delays. The time difference between the master

and slave clocks represents the clock offset from master and

is computed as a difference between the master-to-slave delay

and the one-way delay. If the master does not have the ability

to embed T1 in the Sync message, it sends an additional

message after the Sync message, Follow Up, that contains T1.

In the case that the master-to-slave and slave-to-master delays
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are asymmetric (due to network congestion for example), the

clock offset will suffer perturbations and the precision of the

clock synchronization will be affected.

PTP uses various mechanisms to ensure that there is no

interference in the clock synchronization. Firstly, PTP can use

hardware timestamping to eliminate the end-host delay caused

by the network stack [6]. PTP-enabled NICs have become

common in recent years. Secondly, PTP-enabled switches that

run as transparent clocks can eliminate the switching delays

that can affect the clock synchronization. In our work, we

do not use transparent clocks, as we want to leverage PTP’s

measurements to infer the actual network latency, which is

affected by network conditions like congestion.

III. PTP ANALYSIS

We use in our experiments the Precision Time Protocol

daemon (PTPd) [7], which is an implementation of PTP. The

PTPd logs statistics such as the clock offset, the master-to-

slave delay, the slave-to-master delay, the one-way delay. The

interval for sending the Sync and Delay request messages can

be configured in PTPd, up to a rate of 128 messages per

second, expressed as log 2 values.

A. PTP-enabled NICs

We first run experiments to see if PTPd is affected by

network traffic that originates from the same host, since

end-host packet processing might affect the measurements

performed by PTPd under increased load. We use a testbed

formed out of two hosts directly connected, running Ubuntu

server 14.04 LTS, kernel version 4.4.0-62-generic. The host

hardware is a single 3.5 GHz Intel Xeon E5-2637 v4 on

a SuperMicro X10-DRG-Q motherboard, equipped with a

Solarflare SFN8552 Network Interface Card (NIC) supporting

PTP [8] with hardware timestamping. We compare the clock

offset and one way delay obtained from sfptpd, Solarflare’s

PTP daemon which uses hardware timestamping (see Figure 2,

note: ns y-scale), and from PTPd (see Figure 3, note: μs y-

scale), which uses software timestamping, with and without

running an iperf TCP stream between the hosts. One host is

the PTP master, while the other acts as a PTP slave. We can see

from the two figures that the clock offset reported by sfptpd is

not affected by iperf. However, in the case of PTPd, the clock

offset deviates when the iperf stream starts and ends. NICs

supporting PTP are becoming increasingly available, which

means that measurements performed by a PTP implementation

that leverages this support will not suffer from end-host

interference, and will also eliminate the end-host delay from

measurements, reporting only the actual network latency.

B. Measuring Network Latency

Our testbed in Figure 4 consists of six servers Intel Xeon

E5-2430L v2 running at 2.40GHz, with Ubuntu 16.04, kernel

version 4.4.0.64-generic. The servers are connected using two

Arista 7050Q switches and all network links are 10Gbps.

In these experiments we use PTPd, with no NIC hardware

timestamping support. The two hosts running PTPd do not
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Fig. 2: The clock offset re-
ported by sfptpd is not af-
fected by iperf, since it uses
NIC hardware timestamping.
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Fig. 3: The clock offset re-
ported by PTPd is affected
by iperf, due to end-host in-
terference.

Fig. 4: Small-scale testbed to understand PTP’s behaviour caused by
congestion or packet loss.

send or receive any other network traffic. Our results include

the end-host delay, but are thus not affected by any concurrent

traffic originating from the host. Since our goal is that cloud

tenants use PTP as a tool to measure network conditions, we

do not use PTP-enabled NICs in the next experiments, since

these may not be available in the cloud data centers.

Basic Latency. We measure the network latency in our

setup between the PTP master and PTP slave hosts, using ping
and the latency measurement UDP-based tool that uses the

Time Stamp Counter (TSC) to measure the latency from [1],

and we compare it with the one-way delay reported by

PTPd. For PTPd, we set the interval for Sync and Delay

Request messages to 1 per second, and we run the clock

synchronization for 15 minutes. We run 1 million network

latency measurements with the UDP-based tool and 30000
ping probes. Each test is conducted separately, and there is

no other network traffic in our setup. The latency CDF is

presented in Figure 5. Intuitively, we would have expected the

one-way delay to be half of the values reported by the UDP-

based tool, however this is not the case. We assume this is due

to the fact that the one-way delay includes the computation

and processing done by PTPd at the end-host. On the other

hand, the one-way delay is approximately half of the median

ping values. Another aspect worth noting is that once the two

clocks synchronize (an initial starting period of 15 minutes is

excluded from the plotted data for PTPd), the one-way delay

reported is stable; there is no long tail for the reported one-

way delay values, meaning the OS scheduling does not affect

significantly PTPd [1].

Iperf. We study the effect of network congestion on the

statistics reported by the PTPd slave using the testbed in

Figure 4. In each test, we allow a clock synchronization phase

of 5 minutes for PTPd, before starting concurrently the two

other applications, Memcached [9] (with its corresponding
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benchmark memaslap [10]) and iperf in TCP mode. We set

the interval for the Sync and Delay Request messages to

0.25 seconds. We run two experiments: i) a 5 s iperf stream

running (Figure 6) and ii) three 5 s iperf streams with a 5
s break between them (Figure 7). In the first experiment, we

notice that the congestion episode determined by iperf leads

to an increase in the slave-to-master delay (on the iperf stream

direction), and consequently in the one-way delay, producing

deviation to the clock offset. In the second experiment, the

first congestion episode caused by iperf has the same effect as

in the first experiment. The next two intervals of iperf traffic

also produce deviations in the slave-to-master delay, however,

before iperf runs again, the clock offset had not reached the

normal operation values from before iperf started running.

Thus, if there are several congestion episodes before the slave

clock manages to resynchronize to the master clock, the one-

way delay reported by the slave will not be indicative of the

actual delay, although it will indicate that there is an event

(congestion, failure) on that network path.

Changing the interval for the Sync and Delay request
messages. We perform the same experiment with iperf and

memaslap concurrently running with PTPd, but iperf runs for

1 s. We vary the interval for the Sync and Delay request

messages, from 1 s down to 7.8125 ms. In Figure 8, we notice

that iperf does not produce any change in the PTPd statistics,

since the interval for messages is as long as iperf’s run.

However, when we increase the interval (Figures 9 and 10), the

concurrent traffic leads to deviations in the PTPd statistics, and

we see an increase in the one-way delay during iperf’s run. On

the other hand, the clock offset, master-to-slave and slave-to-

master delays oscillate between larger values when the Sync

and Delay Request interval is larger (compare the width of the

lines in Figures). However, the one-way delay, the metric we

are primarily interested in, does not exhibit such significant

oscillations.

C. Detecting Packet Losses

PTPd records the number of messages sent and received

(Announce, Sync, Followup, Delay Request, Delay Response),

and it is possible to export them periodically. The counters can

be reset after they are exported. On the slave side, a difference

between the number of Delay Request and Delay Response

messages would indicate packet loss, and the packet loss

ratio can be approximated as 1− #Delay Response messages
#Delay Request messages .

Normal operation should see the same number of Delay

Request and Response messages or a difference of at most one.

One disadvantage of computing the loss ratio in this way is

that it does not account for the Announce, Sync and Followup

messages that were potentially lost, as well as other types of

packets that may be lost (ARP packets for example).

We verify whether the ratio can be used as a good indication

for the packet loss ratio by artificially introducing packet

loss in the network. We use netem [11], an enhancement of

the Linux traffic control facilities, to emulate packet loss on

the outgoing network interface of the host which runs the

PTPd master. In this scenario, none of the Delay Request

TABLE I: Packet loss ratio computed based on the number of Delay
Request and Delay Response messages reported at the PTP slave

Netem
Packet Loss

Max. sample size
(Delay Request
messages)

Packet Loss
Median

Packet
Loss Std.
deviation

1% 2961 1.08% 0.23%
5% 571 5.43% 0.74%
10% 285 9.47% 0.34%

messages will be lost, although in practice this may hap-

pen. Since outgoing PTPd packets are looped back via the

IP MULTICAST GROUP [12], loss conditions are applied

on both the physical interface and loopback. We use the loss
random option of netem, which adds an independent loss

probability to the packets outgoing on the chosen network

interface. We use as values for packet loss 1%, 5% and 10%,

and we compute the ratio as described above to see if it

matches the loss values. We run the clock synchronization

for 50 minutes with a packet loss of 1%, 10 minutes with a

packet loss of 5%, and 5 minutes with a packet loss of 10%,

and for each loss value we perform 5 runs. The results are

presented in Table I. We can see that the metric we defined

can serve as a coarse estimate of the packet loss ratio over a

defined interval of time.

IV. CLOUD DEPLOYMENT AND MEASUREMENTS

A. Deployment Scenarios

We look at two deployment scenarios for a system based

on PTP in data centers [13]. In the first scenario, the cloud

provider deploys PTPd (or a different software implementation

for PTP) in the hypervisor, possibly alongside a separate

clock synchronization mechanism. In the second scenario,

the tenants themselves run PTPd inside their VMs and use

the reported measurements to check the network conditions.

In both scenarios, the PTP traffic should not prioritised and

switches in the network should be PTP-aware, otherwise the

measurements would not be indicative of the actual network

latency. Since ECMP (Equal cost multi-path) is used in data

centers to load balance the traffic across the available network

paths between two servers, the PTP traffic between the servers

may not follow the same network path as other network traffic

that exists between the two servers. To mitigate this issue,

we can change the ports on which PTPd is running, looping

over a range of ports to cover all network paths between the

two servers [4]. If the cloud provider knows how ECMP is

implemented in their networks and they do not use randomness

in the ECMP hash function [14], then they can define a list

of ports for PTPd to ensure that all network paths between

the two hosts are covered. Alternatively, if packet marking is

available [15], then the path taken by the PTP packets will be

known, and it can be verified that all the network paths are

covered when using different ports. Another aspect that needs

to be taken into account is the number of slaves a master

can synchronize with before becoming overloaded due to the

processing rate of the messages at the master.
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Fig. 6: A 5 s iperf stream starts running
at second 300.
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Fig. 7: 5 s iperf streams start running
at second 300, 310 and 320, with 5
seconds break between streams.
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Fig. 8: 1 s interval for Sync and Delay
request messages. A 1s iperf stream
starts running at second 300, PTPd does
not detect it.

0 2000 4000 6000 8000 10000 12000 14000

Messages since start

−400
−200

0

200

400

600

800

1000

O
ne

-w
ay

D
el

ay
[μ

s]

clock offset
−400
−200
0

200

400

600

800

1000

C
lo

ck
of

fs
et

[μ
s]

master-to-slave delay
slave-to-master delay
one-way delay

Fig. 9: 125 ms interval for Sync and De-
lay request messages. A 1s iperf stream
starts running at second 300, PTPd de-
tects it.
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Fig. 10: 7.8125 ms interval for Sync
and Delay request messages. A 1s iperf
stream starts running at second 300,
PTPd detects it.

B. Network Latency Measurements

We measure the one-way delay between multiple virtual

machines (VMs) from different cloud providers. For each of

the two cloud providers, A (Google Compute Engine) and B

(Amazon EC2), we chose one data center from West USA

and one from West Europe, and we rented 4 VMs in each

data center. We run the PTPd master on one VM, while

the other three VMs act as slaves. The VMs’ type is the

default type recommended by each cloud provider, running

Ubuntu 16.04. Since the VMs’ performance may be affected

by other collocated VMs, we ran the measurements over 6
hours between each VM pair. We use PTPDv2 2.3.1, using the

latest source code from the public repository. We run PTPd

in unicast mode, using unicast negociation, and using end-

to-end delay measurement. We set the number of Sync and

Delay Request messages to 1 per second. The results can be

seen in Table II and Figure 11. We also patched PTPd in

order to be able to specify the port on which the PTP event

and general messages are sent and received. We run PTPd

using different ports to see if the one-way delay reported by

PTPd changes significantly between runs, possibly signaling

that a different network path was used due to ECMP hashing

on a different header. While the one-way delay CDFs show

differences between ports in some cases, we cannot be sure

that these differences are not caused by an increase in network

traffic or a change in network configuration.

C. Path Symmetry

PTPd reports the master-to-slave and slave-to-master mea-

sured delays. We use these two statistics to determine if the

packets are sent on the same network path from the master to

the slave and from the slave to the master. We are interested in

seeing whether the simplifying assumption that the one-way

delay can be computed as half of the measured round-trip

time holds true in cloud data centers. We plot the master-to-

slave and slave-to-master CDF for 4 data centers from 2 cloud

providers, A and B, in Figure 11, for each of the three VM

pairs. Note here that the values can be negative, due to the

differences between the clocks of the master and that of the

slave. We can compare the quantiles of the two distributions

to determine if one network path is different than the other.

Table II lists the median values of the distributions. For cloud

provider A, the quantiles of the two distributions are equal or

close to each other, thus we can conclude that the two paths

(master to slave and slave to master) are symmetric. For cloud

provider B, we notice differences of at least 5μs between the

median values. For both cloud providers, we observe that the

master-to-slave median delay values are larger than the median

slave-to-master delay values. We checked that this is not due

to an issue with the VMs by reversing the role of the master

and slave between the two VMs, and we got consistent results

with what we have already observed.

D. Packet Loss

We investigate possible packet loss in the four data centers

over a 24 hours run for each of the VM pair. Using the metric

we defined for packet loss in Section III, we get packet loss

ratios of 10−5 to 10−4 (last line of Table II), similar to the

ranges reported in [3].
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TABLE II: Median values for the master-to-slave, slave-to-master and one-way delays across the four data centers for the 12 VM pairs. The last line
indicates the packet loss ratios over a period of 24 hours.

A EU 1 A EU 2 A EU 3 A US 1 A US 2 A US 3 B EU 1 B EU 2 B EU 3 B US 1 B US 2 B US 3
m-to-s (μs) 121.6 118 107 114.9 107 117.8 276.3 233.1 252.1 214.6 233 224
s-to-m (μs) 120.5 115 103.6 111.7 104.7 112.9 271.1 217.5 238.4 202.8 221 213.7

one-way (μs) 125.8 121.1 108.1 117.5 110.3 121.8 304.2 258.6 275.2 221 240.3 232.5

pkt loss ×10−5 8.11 13.98 9.37 9.26 6.96 6.96 15 6.97 10.4 0 1.27 2.41
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Fig. 11: Master-to-slave, slave-to-master and one-way delay within data centers for cloud providers A and B.

V. LIMITATIONS

Our measurement study in the cloud uses a total of 12
VMs across four data centers from two cloud providers. In

the future, we would like to expand our study across a wider

range of VMs and data centers. We do not focus on builing a

complete system to process the data collected by PTPd, but our

work can serve as a starting point for a system that includes

additional components for data storage and analysis.

VI. RELATED WORK

Network Latency and Packet Loss Monitoring Systems.
Table III compares the properties of systems used to measure

network latency and packet loss in data centers, including our

approach. Our comparison looks at aspects related to type of

measurements taken, implementation, deployment, and data

storage and analysis of collected measurements. Traditional

tools are ping and traceroute, however these lack the preci-

sion and flexibility of custom purpose built tools. Cisco IP

SLA [16] monitors network performance by sending probe

packets. It runs on Cisco switches and it can collect data about

one-way latency, jitter, packet loss and other metrics. The

measurements can be accessed through SNMP or command-

line interface, being stored in the switches. NetNORAD [4] is

a system used in Facebook’s data centers to measure RTT

and packet loss ratio by making servers ping each other,

for different Quality-of-Service (QoS) classes of traffic. The

system runs measurements at data center, region and global

level. Everflow [18] is a system that monitors all control

packets and special TCP packets for all flows (TCP SYN, FIN,

RST), and supports guided probing by injecting crafted packets

and monitoring their behaviour through the network, which

can be used to measure link RTTs. Pingmesh [3] is an always-
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TABLE III: Comparison between systems used to measure network latency and packet loss in data centers

Measurement Probe Type Probe Fre-
quency

Availability Scalability Coverage Deployment Data Storage
and Analysis

Ping RTT; packet loss
ratio

ICMP - single mea-
surement

intra-DC targeted
pair

Hypervisor or
VM

locally; analyze
independently

Traceroute RTT ICMP ECHO/
TCP SYN

- single mea-
surement

intra-DC targeted
pair

Hypervisor or
VM

locally; analyze
independently

Cisco IP
SLA [16]

RTT (average);
one-way delay;
packet loss

ICMP/ UDP/
TCP/ HTTP/
DNS

between 1
and 604800
seconds

always-on intra-DC targeted
path

CISCO
switches

locally; analyze
independently

Pingmesh [3] RTT; packet loss
ratio

TCP/HTTP minimum
10s seconds

always-on inter-DC all pairs Hypervisor Cosmos and
SCOPE [17]

NetNORAD [4] RTT; packet loss
ratio

UDP configurable always-on inter-DC all pairs Hypervisor or
VM

Scribe and
Scuba [4]

Everflow [18] link RTT packet marked
with debug bit

- single mea-
surement

intra-DC targeted
path

switches and
controller

custom analyzer
and SCOPE [17]

SLAM [19] network path la-
tency distribution

crafted probe - single mea-
surement

intra-DC targeted
path

OpenFlow
switches

controller

INT [20] end-to-end
latency

crafted probe - single mea-
surement

intra-DC targeted
path

P4 switches last switch on
path; analyze
independently

LossRadar [21] packet losses at
switches

no probes 10 ms always-on intra-DC cover all
paths

P4 switches custom collector
and analyzer

TIMELY [20] RTT TCP per flow always-on intra-DC all pairs end hosts with
special NICs

locally; analyze
independently

PTPmesh (this
work)

one-way delay
(average); packet
loss ratio

UDP up to 128
probes per
second

always-on inter-DC multiple
pairs

Hypervisor or
VM

locally; analyze
independently

on tool that runs round-trip time (RTT) measurements between

every two servers in data centers. The system measures inter-

server latencies at three levels, Top-of-Rack switch, intra data

center and inter data center. Pingmesh also reports the packet

drop rate, which is inferred based on the TCP connection

setup time. SLAM [19] is a latency monitoring framework for

SDN-enabled data center that sends probe packets in order to

trigger control messages from the first and last switches of a

network path. SLAM uses the arrival times at the controller

of the control messages to compute a latency distribution for

that network path and is able to detect increases in latency

of tens of milliseconds on a path. INT [20] leverages the

P4 programming language [22] to measure the end-to-end

latency between virtual switches. Each network element on

the path appends their per-hop latency to a packet that flows

between the two virtual switches located at the ends of the

path. The end-to-end latency is computed by adding the per-

hop latencies, and it assumes that switching and queueing

delays dominate, while the propagation delays are negligible.

However, this solution requires a network which uses only P4-

compatible switches, making it difficult to deploy in legacy

networks. LossRadar [21] is a system that can detect packet

losses in data centers within 10s of milliseconds, reporting

their locations and the 5-tuple flow identifiers. It keeps specific

data structures at switches, which are periodically exported

to a remote collector and analyzer. It does not offer any

latency measurements. TIMELY [23] uses the NIC hardware

timestamps and NIC-based ACK generation to compute the

RTT between two servers. Another way to monitor network

latency in a data center, though costly, is to have each host

equipped with a GPS receiver (the host clocks will thus be

synchronized) and run one-way delay measurements between

any pair. In comparison, our work, PTPmesh, uses PTP

statistics to report one-way delay and compute a packet loss

ratio. The number of probes is configurable, it can provide

continuous measurements, and does not have much overhead.

Futhermore, it is easy to deploy on either hypervisor or VM,

and tenants themselves can deploy it on their VMs.

Time Synchronization Protocols. NTP (Network Time

Protocol) [24] is a network protocol for clock synchronization,

that achieves microseconds precision. The recent DTP (Data-

centre Time Protocol) [25] is a protocol that uses the physical

layer to synchronize the hosts’ clocks, achieving sub-ns clock

precision. However it is not immediately deployable, since it

requires hardware modifications to switches.

VII. CONCLUSION

In this paper, we studied how the Precision Time Proto-

col statistics (one-way delay, master-to-slave delay, slave-to-

master and clock offset) can be used to measure network

latency and detect packet loss. We used the PTPd open-source

implementation for our study. We determined that PTP one-

way delay measurements can be used to infer network latency.

We defined a metric for computing packet loss ratio based

on the counters exported by the PTPd daemon. Finally, we

performed a small scale study in four data centers across

the world in which we deployed a modified version of PTPd

to perform network latency measurements. Our reproduction

environment and results are available at [26].
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G. Antichi, M. Wójcik, and A. W. Moore, “Where has my time gone?”
in Passive and Active Measurement: 18th International Conference,
PAM 2017, Sydney, NSW, Australia, March 30-31, 2017, Proceedings.
Cham: Springer International Publishing, 2017, pp. 201–214. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-54328-4 15

[2] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” Commun. ACM, vol. 60, no. 4, pp. 48–54, Mar.
2017. [Online]. Available: http://doi.acm.org/10.1145/3015146

[3] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A
large-scale system for data center network latency measurement and
analysis,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, ser. SIGCOMM ’15. New
York, NY, USA: ACM, 2015, pp. 139–152. [Online]. Available:
http://doi.acm.org/10.1145/2785956.2787496

[4] A. Adams, P. Lapukhov, and J. H. Zeng, “NetNO-
RAD: Troubleshooting networks via end-to-end probing,”
https://code.facebook.com/posts/1534350660228025/ netnorad-
troubleshooting-networks-via-end-to-end-probing/, 2016, online;
accessed February 2017.

[5] “IEEE 1588-2008 Precision Time Protocol,”
https://www.nist.gov/el/intelligent-systems-division-73500/introduction-
ieee-1588, 2017, online; accessed March 2017.

[6] P. Ohly, D. N. Lombard, and K. B. Stanton, “Hardware Assisted Preci-
sion Time Protocol. Design and case study,” in In Proc. of the 9th LCI
International Conference on High-Performance Clustered Computing.
Intel GmbH, 2008.

[7] “PTP daemon,” https://github.com/ptpd/ptpd, 2017, online; accessed
March 2017.

[8] “Solarflare PTP Adapters,” http://www.solarflare.com/ptp-adapters,
2017, online; accessed March 2017.

[9] “Memcached,” https://memcached.org/, 2017, online; accessed April
2017.

[10] “Memaslap,” http://docs.libmemcached.org/bin/memaslap.html, 2017,
online; accessed April 2017.

[11] “Netem,” http://man7.org/linux/man-pages/man8/tc-netem.8.html, 2017,
online; accessed March 2017.

[12] P. Ohly, D. N. Lombard, and K. B. Stanton, “Hardware assisted
precision time protocol. design and case study,” in Proc. of the 9th LCI
International Conference on High-Performance Clustered Computing.
Intel GmbH, 2008.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, ser. SIGCOMM ’08.
New York, NY, USA: ACM, 2008, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1402967

[14] N. Guilbaud and R. Cartlidge, “Localiz-
ing packet loss in a large complex network,”
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/
tues.general.GuilbaudCartlidge.Topology.7.pdf, 2013, online; accessed
February 2017.

[15] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren, “Passive realtime
datacenter fault detection and localization,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17).
Boston, MA: USENIX Association, 2017, pp. 595–612. [On-
line]. Available: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/roy

[16] Cisco, “Cisco ios ip slas configuration guide,”
http://www.cisco.com/c/en/us/td/docs/ios/12 4/ip sla/ configura-
tion/guide/hsla c/hsoverv.html, online; accessed April 2017.

[17] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver,
and J. Zhou, “Scope: Easy and efficient parallel processing of massive
data sets,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1265–1276, Aug.
2008. [Online]. Available: http://dx.doi.org/10.14778/1454159.1454166

[18] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry
in large datacenter networks,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 479–491.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2787483

[19] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V.
Madhyastha, Software-Defined Latency Monitoring in Data Center
Networks. Cham: Springer International Publishing, 2015, pp. 360–372.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-15509-8 27

[20] M. Hira and L. Wobker, “Improving Network Monitoring and Manage-
ment with Programmable Data Planes,” http://p4.org/p4/inband-network-
telemetry/, 2016, online; accessed September 2016.

[21] Y. Li, R. Miao, C. Kim, and M. Yu, “Lossradar: Fast detection
of lost packets in data center networks,” in Proceedings of
the 12th International on Conference on Emerging Networking
EXperiments and Technologies, ser. CoNEXT ’16. New York,
NY, USA: ACM, 2016, pp. 481–495. [Online]. Available:
http://doi.acm.org/10.1145/2999572.2999609

[22] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[23] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 537–550.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2787510

[24] N. T. Fundation, “Network time protocol,” http://www.ntp.org/, online,
accessed April 2017.

[25] K. S. Lee, H. Wang, V. Shrivastav, and H. Weatherspoon, “Globally
synchronized time via datacenter networks,” in Proceedings of the 2016
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016.

[26] D. A. Popescu and A. W. Moore, “PTPmesh: Data
Center Network Latency Measurements Using PTP,”
http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/mascots2017/,
2017.

79


