Introduction to Networking and Systems Measurements

Measurement Pitfalls

Andrew W. Moore andrew.moore@cl.cam.ac.uk

Networking and Systems Measurements(L50)

Common Measurement Pitfalls

- What are the hidden assumptions?
- What did you not notice (in the system, setup,)?
- What can your tool do?
- Vantage points
- Repeatability pitfalls
- Performance pitfalls
- Reading the results

Hidden Assumptions - Examples

- The path from A to B is the same (reverse) as the path from B to A
- There is no packet reordering
- Device throughput is the same for all packet sizes
- Test packets will experience the same effects as application's traffic
- The effect of DNS lookup is negligible
- The measurement tool has negligible overhead
- Previous work was correct

Another take:

8 fallacies of Distributed Systems

- (L. Peter Deutsch et al.)
- The network is reliable
- Latency is zero
- Bandwidth is infinite
- The network is secure
- Topology doesn't change
- There is one administrator
- Transport cost is zero
- The network is homogeneous

System and Setup Did you notice that....

- There are other jobs running on the same core
- ICMP traffic is throttled by the OS
- CPU frequency scaling is enabled
- The CPU that you are using is not connected directly to the NIC
- Kernel version has been updated overnight
- The 2x40G NIC uses PCIe Gen 3 x8 (~60Gbps)
- There is a new Errata…

What can your tool do? - Examples

- SSD can write at 450MB/s
 - Don't try to write data captured at 10Gbps
- The latency for reading CPU timestamp is ~tens of cycles
 - > Don't try to use it to measure cache access time
- DAG resolution is 4ns
 - Don't try to measure the propagation delay through 1m fibre
- OSNT can only capture at low rate

Don't try to measure latency of 10Gbps flows

Vantage Points: Example 2 (Lecture 5)

- Mellanox Spectrum vs Broadcom Tomahawk
 - Tolly report, 2016 <u>http://www.mellanox.com/related-docs/products/tolly-</u> <u>report-performance-evaluation-2016-march.pdf</u>
- Bandwidth distribution, $3 \rightarrow 1$ scenario
 - Source ports 25,26,27, Destination port 3133% BW from each port, on both devices
 - Source ports 24,25,26, Destination port 31
 33% BW from each port, on Spectrum
 25% from ports 25,26, 50% from port 24 on Tomahawk
- What does it mean?

Vantage Points: Example 2 Or: What is wrong with Broadcom Tomahawk?

Repeatability Pitfalls - Examples

Repeatability Pitfalls - Examples

Apache Webserver - Running in the cloud **38%** difference in median performance

Latency Pitfalls - Examples

- What is the definition of "latency"?
 - Propagation delay? Inter packet gap? Round trip time? Flow completion time?
- How was the latency measured?
 - Start of packet to start of packet? Start of packet to end of packet?
 - Single packet? Packet-pair? Packet-train?
- Where was the timestamp taken?
 - …and how did it affect the measurement?
- Resolution, precision and accuracy...

Bandwidth Pitfalls - Examples

- What is the definition of "bandwidth"?
 - Link capacity? Average throughput? Peak throughput?
- Controllability

Packet size? Protocol? QoS?

- What was the status of the network?
- Net neutrality?
- Did you pass through the bottlenecks?
- Resolution, precision and accuracy...

- Recall Lab 2, experiment 2.1 b
- Measuring the timestamp difference between 2 ports:

- 100,000 packets, 1024B
- Different Inter Packet Gaps (IPG)

- 100,000 packets, 64B
- Different Inter Packet Gaps (IPG)

- 100,000 packets, **64B**, running 10 times
- Same Inter Packet Gap (IPG)

- The reported iperf result for a NetFPGA reference switch is 9.4Gbps
- User complaint: I see only 8.9Gbps and packet drop in the switch

С	onned	cting to host	10.0.	0.13, port 52	01			
[4]	local 10.0.0.	12 po	rt 54764 conn	ected to 10.0.0.	13 por	t 5201	1
[ID]	Interval		Transfer	Bandwidth	Retr	Cwnd	
[4]	0.00-1.00	sec	1.02 GBytes	8.76 Gbits/sec	74	313	KBytes
[4]	1.00-2.00	sec	1.03 GBytes	8.86 Gbits/sec	34	198	KBytes
[4]	2.00-3.00	sec	1.03 GBytes	8.87 Gbits/sec	34	281	KBytes
[4]	3.00-4.00	sec	1.04 GBytes	8.92 Gbits/sec	34	238	KBytes
[4]	4.00-5.00	sec	1.04 GBytes	8.93 Gbits/sec	32	208	KBytes
[4]	5.00-6.00	sec	1.04 GBytes	8.92 Gbits/sec	29	187	KBytes
[4]	6.00-7.00	sec	1.04 GBytes	8.95 Gbits/sec	27	365	KBytes
[4]	7.00-8.00	sec	1.04 GBytes	8.94 Gbits/sec	28	233	KBytes
[4]	8.00-9.00	sec	1.03 GBytes	8.88 Gbits/sec	30	420	KBytes
[4]	9.00-10.00	sec	1.04 GBytes	8.96 Gbits/sec	33	423	KBytes
-								
[ID]	Interval		Transfer	Bandwidth	Retr		
[4]	0.00-10.00	sec	10.4 GBytes	8.90 Gbits/sec	355		sender
[4]	0.00-10.00	sec	10.4 GBytes	8.90 Gbits/sec			receiver

Networking and Systems Measurements (L50)

- Debug: Have you tried changing rx-usec?
- User: no more packet drop in the switch!
- ...but bandwidth is down to 7.5Gbps...
- New insight: NIC used on reference setup (Solarflare) is different than the NIC used by user (Intel)
- (skipping a few steps forward)

Switch throughput over time (10ms sampling resolution)

Switch throughput over time (100µs sampling resolution)

• What else is different?

Goals:

Evaluate the accuracy & precision of time-taking using CPU time stamp counter (TSC)

- Methodology:
 - Read TSC twice
 - Measure the time-gap between the two consecutive reads
- Results:

> Min/Median/99.9%: 9ns/10ns/11ns


```
while (!done)
1
    {
2
        //Read TSC twice, one immedately after the other
3
        do_rdtscp(tsc, cpu);
4
        do_rdtscp(tsc2,cpu2);
5
        //If the gap between the two reads is above a
6
             certain threshold, save it
        if ((tsc2 - tsc > threshold) && (cpu == cpu2))
7
           buffer[samples++] = tsc2-tsc;
8
    }
9
```


What happens over time?

• Source data:

X≤	User space Events
10	91428291492
11	404700
12	268521
22	268291
120	267465
1097	10768
10869	1

X≤	Kernel Events
9	11117819727
10	3973891503
49	287
53	201
98	90
1155	86
1184	85
1241	77
1982	1

Example: Topology Measurements

• Goal:

- Build a map of network connectivity that assigns IP addresses to locations
- Method:
 - Simple option: name resolution
 - 4.69.166.1 \Rightarrow ae-119-3505.edge4.London1.Level3.net
 - But many times information is missing, not indicative or is inaccurate
 - Better option: use geolocation services
 - Most services claim to be over 99% accurate

Example: Topology Measurements

Building a map of the network:

- Measurements for connectivity
- Geolocation databases for location

Example: Topology Measurements What is your ground truth?

Geolocation databases are over 99% accurate

Verizon/MCI/UUNET (ASN 703) 10-nodes PoP

Heatmap – Median distance between databases (2011)

Validation

- Measurements need to be validated
- Don't make assertions!
- Use ground truth (where available)
- Compare different tools and methodologies
- Do the results make sense?

RTT can't be faster than traveling at the speed of light..

Have I mentioned validation?

Labs 4-5 and Final Report

- Each student assigned an artifact
- Black-box evaluation
- Running in Azure Accept invite!
- Read the handout before Lab 4

Lab will provide a walk through and Q&A time

- Prepare a reproducibility review of a paper
- Extra mark for reproducing an experiment from the paper
- Lab 5 discussion of the test plan, Q&A

Final Report - Recommendations

- Include all figures within the report
 - Use proper scale, adapt the template if need be
- Make sure that your environment does not affect the results
- Do not make assertions
 - Support your claims through experimentations
- Discuss your results in depth:
 - Compare and contrast results gained through different vantage points, using different tools, on different platforms etc
 - Provide side-by-side comparisons
 - Use the questions in the handouts as guiding examples
- Use the right terminology (accuracy, precision, resolution)
- Correct typos and grammar mistakes
- Make sure not to run out of budget
- Follow the instructions in the handout

Course Summary

- This course has covered measurements tools and measurement techniques
- But also "why out most basic assumptions are wrong", "graphs lie", "what you don't know about your system", ...
- Remember:
 - Constant vigilance
 - Look at the data, best-practice, think.
- These ideas apply to

all types of measurements

