
Interactive Formal Verification (L21)
Exercises and Marking Scheme

Prof. Lawrence C Paulson
Computer Laboratory, University of Cambridge

Michaelmas Term, 2021

Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you
can complete in an hour, but you are not required to complete them: they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/, but they tend to be easy. The as-
sessed exercises are considerably harder, as you can see by looking at those
of previous years.

The handouts for the last two practical sessions determine your final
mark (50% each). For each assessed exercise, please complete the indicated
tasks and write a brief document explaining your work. You may earn addi-
tional credit by preparing this document using Isabelle’s theory presentation
facility.1 Alternatively, write the document using your favourite word pro-
cessing package. Please ensure that your specifications are correct (because
proofs based on incorrect specifications could be worthless) and that your
Isabelle theory actually runs.

Each assessed exercise is worth 100 marks.

• 50 marks are for completing the tasks. Proofs should be competently
done and tidily presented. Be sure to delete obsolete material from
failed proof attempts. Excessive length (within reason) is not pe-
nalised, but slow or redundant proof steps may be. Sledgehammer
may be used, but multi-line sledgehammer proofs can be unreadable
and should not be presented in their raw form. Avoid inserting apply
commands before the proof keyword.

• 20 marks are for a clear, basic write-up. It can be just a few pages,
and probably no longer than 6 pages. It should explain your proofs,
preferably displaying these proofs if they are not too long. It could

1See section 4.2 of the Isabelle/HOL Tutorial, https://www.cl.cam.ac.uk/research/
hvg/Isabelle/dist/Isabelle2021/doc/tutorial.pdf.

1

http://isabelle.in.tum.de/exercises/
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2021/doc/tutorial.pdf
https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2021/doc/tutorial.pdf


perhaps outline the strategic decisions that affected the shape of your
proof and include notes about your experience in completing it. Please
don’t copy the text of the exercises into your own write-up.

• The final 30 marks are for exceptional work. To earn some of these
marks, you may need to vary your proof style, maybe expanding some
apply-style proofs into structured proofs. The point is not to make
your proofs longer (brevity is a virtue) but to demonstrate a variety
of Isabelle skills, perhaps even techniques not covered in the course.
Taking the effort to make your proofs more readable can help. Even
better, strive for proofs that are direct and insightful; untidy or cir-
cuitous proofs and needless complexity can lose marks.
An exceptional write-up also gains a few marks in this category. Very
few students will gain more than half of these marks, but note that
85% is a very high score.

Isabelle theory files for all four sessions can be downloaded from the course
materials website. These files contain necessary Isabelle declarations that
you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
forbidden. Copying material found elsewhere counts as plagiarism. Here are
the deadline dates. Exercises are due at 12 noon.

• 1st exercise: Wednesday, 3 November 2021

• 2nd exercise: Wednesday, 17 November 2021

For each exercise, submit both the Isabelle theory file and the accompanying
write-up by the deadline, using Moodle.

2



1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.
consts replace :: "'a ⇒ 'a ⇒ 'a list ⇒ 'a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.
theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.
consts del1 :: "'a ⇒ 'a list ⇒ 'a list"

delall :: "'a ⇒ 'a list ⇒ 'a list"

Prove or disprove (by counterexample) the following theorems.
theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"

3



2 Power, Sum
2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.
consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:
theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.
consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.
theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).
consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions.
Determine first what the expression whatever should be.
theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between powSum_ex.sum and Sum? Prove the fol-
lowing equation, suitably instantiated.
theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j]
on lists in theory List.

4



3 Assessed Exercise I: Baby Theory of Clauses

This exercise concerns propositional satisfiability checking: clause form and
the elements of the DPLL procedure. A clause is conceptually a disjunc-
tion of literals, each of which is a (possibly negated) propositional variable.
Clauses are represented by finite maps from variables to their polarity, True
or False, where False indicates a negated variable. Variables are simply
natural numbers.

We import the theory of finite maps, HOL-Library.Finite_Map.
type_synonym var = nat
type_synonym clause = "var ⇀ bool"

Next, we need a function to return the set of variables present in a set
of clauses. A set of clauses is represented here by a list.
vars :: "clause list ⇒ var set"

Task 1 Define the function vars above. (Hint: you will need the function
dom.) Then prove the following consequences of your definition. [5 marks]

lemma vars_Nil: "vars [] = {}"

lemma vars_Cons: "vars (cl # cls) = dom cl ∪ vars cls"

To instantiate the variable v with the boolean value b, a clause where v
appears with polarity b must be deleted (for example, where v is positive
and is being instantiated to True). Otherwise we delete v from the clause
and continue recursively to the other clauses. (This process is called unit
propagation.)
fun inst :: "var ⇒ bool ⇒ clause list ⇒ clause list"

where "inst v b [] = []"
| "inst v b (cl#cls) =

(if cl v = Some b then inst v b cls
else cl(v:=None) # inst v b cls)"

Task 2 Prove the following two facts about the definition above. [5 marks]

lemma vars_inst: "vars (inst v b cl) ⊆ vars cl - {v}"

lemma inst_trivial: "v /∈ vars A =⇒ inst v b A = A"

The semantics of a set of clauses is defined in terms of environments,
which are simply functions from variables to values, Clauses_ex.var ⇒ bool.
Given an environment e, a clause is true if one of its literals evaluates to
true in e:

5



definition "evalC e cl ≡ ∃ v ∈ dom cl. cl v = Some (e v)"

We can easily extend evalC to sets of clauses by defining
eval :: "(var ⇒ bool) ⇒ clause list ⇒ bool"

Task 3 Complete the definition of eval above. Then prove the following
consequences of these definitions. Note that the last two relate to the treat-
ment of unit clauses and case splits in the DPLL procedure. [8 marks]

lemma eval_Nil: "eval e []"

lemma eval_Cons: "eval e (cl#cls) ←→ evalC e cl ∧ eval e cls"

lemma eval_notin_vars:
assumes "eval e cls" "v /∈ vars cls"
shows "eval (e (v:= b)) cls"

lemma unit_clause:
assumes "eval e cls" "cl ∈ set cls" "dom cl = {v}"
shows "cl v = Some (e v)"

lemma eval_cases:
assumes "eval (e (v:= True)) cls" "eval (e (v:= False)) cls"
shows "eval e cls"

Task 4 Prove the following lemma, which is about the semantics of an
instantiated set of clauses. [12 marks]

lemma eval_inst: "eval e (inst v b cls) = eval (e (v:= b)) cls"

Pure literals are those that appear with one polarity exclusively through
the entire set of clauses. We first define a function to return the set of
variables that appear with a given polarity b. We then define pure literals,
using set difference to express exclusively,.
definition signed_vars :: "bool ⇒ clause list ⇒ var set"

where "signed_vars b ≡ Union ◦ set ◦ (map (λm.{a. m a = Some b}))"

definition "pure b cls ≡ signed_vars b cls - signed_vars (¬b) cls"

Task 5 Prove the following lemma, stating that a pure literal v of polarity
b can be assumed to be set true in any model of a set of clauses. [20 marks]

lemma pure_literal_removal:
assumes "eval e cls" "v ∈ pure b cls"
shows "eval (e (v:= b)) cls"

No proof should require more than 25 lines, but be careful in your choice
of induction rules.

6



4 Assessed Exercise II: Prime Power Divisors

This exercise concerns the maximum power of a prime that divides a natural
number. It imports HOL-Computational_Algebra.Primes, the theory of prime
numbers.

First, we establish that the maximum power of a divisor exists.

Task 1 Prove the following three lemmas. The type constraint nat is es-
sential here. (Why?) The variable p will typically be prime, but the weaker
condition 2 ≤ p is often adequate. [5 marks]

lemma power_dvd_nonempty:
fixes n::nat shows "{j. p^j dvd n} 6= {}"

lemma power_Max_dvd:
fixes n::nat
assumes "n > 0" "2 ≤ p"
shows "p ^ Max{k. p ^ k dvd n} dvd n"

lemma Max_power_dvd_ge:
fixes n::nat
assumes "p ^ l dvd n" "n > 0" "2 ≤ p"
shows "l ≤ Max{k. p ^ k dvd n}"

We extend the definiton of this maximum power to return 0 in the un-
defined cases:
definition index where

"index p n ≡ if p ≤ Suc 0 ∨ n = 0 then 0 else Max {j. p^j dvd n}"

Task 2 Prove the following, which justifies the definition above. [5 marks]

lemma pow_divides_index:
"p^j dvd n ←→ n = 0 ∨ p = Suc 0 ∨ j ≤ index p n"

Task 3 Prove the following obvious-looking result, which turns out to be
surprisingly difficult. Hint: to reason about Max(A) where A is a complicated
set, simplify A using a previously-proved, carefully chosen set identities.

[15 marks]

lemma index_step:
"index p (p*n) = (if p ≤ Suc 0 ∨ n=0 then 0 else Suc (index p n))"

A problem with Max is that it is not computational. But we could instead
define the index function using plain recursion.

7



fun index_rec where
"index_rec p n = (if p ≤ Suc 0 ∨ n = 0 ∨ ¬ p dvd n then 0

else Suc (index_rec p (n div p)))"

With this version, we can evaluate expressions and use quickcheck to
check lemma statements.
value "index_rec 3 2430"

Task 4 Prove that the functions index and index_rec really are equivalent,
as formulated below. [10 marks]

lemma index_index_rec: "index p n = index_rec p n"

Task 5 The following definition, which refers to the cardinality of the set
of powers, is also equivalent to index. Prove it. [15 marks]

lemma index_card_def:
"index p n = (if p ≤ Suc 0 ∨ n = 0 then 0

else card {j. 1 ≤ j ∧ p^j dvd n})"

No proof needs to be longer than 35 lines. If yours is turning into a
monster, consider whether to start again.

8


	Replace, Reverse and Delete
	Power, Sum
	Power
	Summation

	Assessed Exercise I: Baby Theory of Clauses
	Assessed Exercise II: Prime Power Divisors

