Topics in Logic and Complexity

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2122/L15

Polymorphisms

For a pair of structures \mathbb{A} and \mathbb{B} over the same relational structure σ , we write $\mathbb{A} \times \mathbb{B}$ for their *Cartesian product*. This is defined to be the σ -structure with universe $A \times B$ so that for any *r*-ary $R \in \sigma$:

 $((a_1, b_1), \ldots, (a_r, b_r)) \in R^{\mathbb{A} \times \mathbb{B}}$ if, and only if,

 $(a_1,\ldots,a_r)\in R^{\mathbb{A}}$ and $(b_1,\ldots,b_r)\in R^{\mathbb{B}}.$

Note: we always have $\mathbb{A} \times \mathbb{B} \longrightarrow \mathbb{A}$ and $\mathbb{A} \times \mathbb{B} \longrightarrow \mathbb{B}$

Polymorphisms

We define the *k*th power of \mathbb{B} , written \mathbb{B}^k to be the Cartesian product of \mathbb{B} to itself.

For a structure \mathbb{B} , a *k-ary polymorphism* of \mathbb{B} is a homomorphism

 $h: \mathbb{B}^k \longrightarrow \mathbb{B}$

The collection of all polymorphisms of \mathbb{B} forms an *algebraic structure* called the *clone of polymorphisms* of \mathbb{B} .

Algebraic properties of this clone *determine* the *complexity* of $CSP(\mathbb{B})$.

CSP and MSO

For any fixed finite structure \mathbb{B} , the class of structures $CSP(\mathbb{B})$ is definable in *existential MSO*.

Let b_1, \ldots, b_n enumerate the elements of \mathbb{B} .

$$\exists X_1 \cdots \exists X_n \quad \forall x \bigvee_{i \neq j} X_i(x) \land$$
$$\forall x \bigwedge_{i \neq j}^{i} X_i(x) \to \neg X_j(x) \land$$
$$\bigwedge_{R \in \sigma} \forall x_1 \cdots \forall x_r (R(x_1 \cdots x_r) \to \bigvee_{(b_i_1 \cdots b_{i_r}) \in R^{\mathbb{B}}} \bigwedge_j X_{i_j}(x_j))$$

A structure A satisfies this sentence *if*, and only *if*, $\mathbb{A} \longrightarrow \mathbb{B}$.

k-local Consistency Algorithm

For a positive integer k we define an algorithm called the *k*-consistency algorithm for testing whether $\mathbb{A} \longrightarrow \mathbb{B}$.

Let S_0 be the collection of all *partial homomorphisms* $h : \mathbb{A} \hookrightarrow \mathbb{B}$ with *domain size* k.

Given a set $S \subseteq S_0$, say that $h \in S$ is *extendable* in S if for each restriction g of h to k - 1 elements and eacch $a \in A$, there is an $h' \in S$ that extends g and whose domain includes a.

k-local Consistency Algorithm

The k-consistency algorithm can now be described as follows

- 1. $S := S_0;$
- 2. $S' := \{h \in S \mid h \text{ is extendable in } S\}$
- 3. if $S' = \emptyset$ then reject
- 4. else if S' = S then accept
- 5. else goto 2.

If this algorithm rejects then $\mathbb{A} \not\longrightarrow \mathbb{B}$. If the algorithm accepts, we can't be sure.

Bounded Width CSP

We say that $CSP(\mathbb{B})$ has width k if the k-consistency algorithm correctly determines for each A whether or not $\mathbb{A} \longrightarrow \mathbb{B}$.

We say that $CSP(\mathbb{B})$ has bounded width if there is some k such that it has width k.

Note: If $CSP(\mathbb{B})$ has bounded width, it is solvable in *polynomial time*.

 $CSP(K_2)$ has width 3. $CSP(K_3)$ has *unbounded* width.

Definability in LFP

If $CSP(\mathbb{B})$ is of bounded width, there is a sentence of LFP that *defines* it.

The *k*-consistency algorithm is computing the *largest* set $S \subseteq S_0$ such that every $h \in S$ is extendable in S. This can be defined as the *greatest fixed point* of an operator definable in *first-order logic*.

Exercise: prove it!

Fact: If $CSP(\mathbb{B})$ is definable in LFP then it has *bounded width*. *Fact:* There are \mathbb{B} for which $CSP(\mathbb{B})$ is in P, but not of bounded width.

Near-Unanimity Polymorphisms

For $k \ge 3$, a function $f : B^k \to B$ is said to be a *near-unanimity* (NU) function if for all $a, b \in B$

$$f(a,\ldots,a,b)=f(a,\ldots,b,a)=\cdots=f(b,\ldots,a,a)=a.$$

Say \mathbb{B} has a *near-unanimity polymorphism* of arity k if there is a k-ary near-unanimity function that is a *polymorphism* of \mathbb{B} .

Fact: if \mathbb{B} has a NU polymorphism of arity k then for every l > k, it has a NU polymorphism of arity l.

If $g : \mathbb{B}^k \to \mathbb{B}$ is a NU polymorphism, define

 $h(x_1,\ldots,x_l)=g(x_1,\ldots,x_k)$

Near-Unanimity and Bounded Width

Theorem

If \mathbb{B} has a NU polymorphism of arity k, then $CSP(\mathbb{B})$ has width k.

Suppose *S* is a *non-empty* set of partial homomorphisms $h : \mathbb{A} \hookrightarrow \mathbb{B}$, each of which is *extendable* in *S*.

We can use this *and* the NU polymorphisms of \mathbb{B} to construct a *total* homomorphism $g : \mathbb{A} \to \mathbb{B}$.

Weak Near-Unanimity

For $k \ge 3$, a function $f : B^k \to B$ is said to be a *weak near-unanimity* (WNU) function if for all $a, b \in B$

$$f(a,\ldots,a,b)=f(a,\ldots,b,a)=\cdots=f(b,\ldots,a,a).$$

Theorem

If \mathbb{B} does not have *any* weak near-unanimity polymorphisms, then $CSP(\mathbb{B})$ is NP-complete.

Theorem (Bulatov; Zhuk)

If \mathbb{B} has a weak near-unanimity polymorphism of any arity, then CSP(\mathbb{B}) is in P.