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Polymorphisms

For a pair of structures A and B over the same relational structure σ, we
write A× B for their Cartesian product.
This is defined to be the σ-structure with universe A× B so that for any
r -ary R ∈ σ:

((a1, b1), . . . , (ar , br )) ∈ RA×B if, and only if,

(a1, . . . , ar ) ∈ RA and (b1, . . . , br ) ∈ RB.

Note: we always have A× B −→ A and A× B −→ B
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Polymorphisms

We define the kth power of B, written Bk to be the Cartesian product of
B to itself.

For a structure B, a k-ary polymorphism of B is a homomorphism

h : Bk −→ B

The collection of all polymorphisms of B forms an algebraic structure
called the clone of polymorphisms of B.
Algebraic properties of this clone determine the complexity of CSP(B).
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CSP and MSO

For any fixed finite structure B, the class of structures CSP(B) is
definable in existential MSO.
Let b1, . . . , bn enumerate the elements of B.

∃X1 · · · ∃Xn ∀x
∨
i

Xi (x)∧

∀x
∧
i 6=j

Xi (x)→ ¬Xj(x)∧∧
R∈σ

∀x1 · · · ∀xr
(
R(x1 · · · xr )→

∨
(bi1 ···bir )∈RB

∧
j

Xij (xj)
)

A structure A satisfies this sentence if, and only if, A −→ B.
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k-local Consistency Algorithm

For a positive integer k we define an algorithm called the k-consistency
algorithm for testing whether A −→ B.
Let S0 be the collection of all partial homomorphisms h : A ↪→ B with
domain size k .
Given a set S ⊆ S0, say that h ∈ S is extendable in S if

for each restriction g of h to k − 1 elements and eacch a ∈ A,
there is an h′ ∈ S that extends g and whose domain includes a.
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k-local Consistency Algorithm

The k-consistency algorithm can now be described as follows

1. S := S0;
2. S ′ := {h ∈ S | h is extendable in S}
3. if S ′ = ∅ then reject
4. else if S ′ = S then accept
5. else goto 2.

If this algorithm rejects then A 6−→ B.
If the algorithm accepts, we can’t be sure.
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Bounded Width CSP

We say that CSP(B) has width k if the k-consistency algorithm correctly
determines for each A whether or not A −→ B.

We say that CSP(B) has bounded width if there is some k such that it
has width k .

Note: If CSP(B) has bounded width, it is solvable in polynomial time.

CSP(K2) has width 3.
CSP(K3) has unbounded width.
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Definability in LFP

If CSP(B) is of bounded width, there is a sentence of LFP that defines it.

The k-consistency algorithm is computing the largest set S ⊆ S0 such
that every h ∈ S is extendable in S .
This can be defined as the greatest fixed point of an operator definable in
first-order logic.
Exercise: prove it!

Fact: If CSP(B) is definable in LFP then it has bounded width.
Fact: There are B for which CSP(B) is in P, but not of bounded width.
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Near-Unanimity Polymorphisms

For k ≥ 3, a function f : Bk → B is said to be a near-unanimity (NU)
function if for all a, b ∈ B

f (a, . . . , a, b) = f (a, . . . , b, a) = · · · = f (b, . . . , a, a) = a.

Say B has a near-unanimity polymorphism of arity k if there is a k-ary
near-unanimity function that is a polymorphism of B.

Fact: if B has a NU polymorphism of arity k then for every l > k , it has
a NU polymorphism of arity l .
If g : Bk → B is a NU polymorphism, define

h(x1, . . . , xl) = g(x1, . . . , xk)
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Near-Unanimity and Bounded Width

Theorem
If B has a NU polymorphism of arity k , then CSP(B) has width k .

Suppose S is a non-empty set of partial homomorphisms h : A ↪→ B,
each of which is extendable in S .

We can use this and the NU polymorphisms of B to construct a total
homomorphism g : A→ B.
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Weak Near-Unanimity

For k ≥ 3, a function f : Bk → B is said to be a weak near-unanimity
(WNU) function if for alla, b ∈ B

f (a, . . . , a, b) = f (a, . . . , b, a) = · · · = f (b, . . . , a, a).

Theorem
If B does not have any weak near-unanimity polymorphisms, then
CSP(B) is NP-complete.

Theorem (Bulatov; Zhuk)
If B has a weak near-unanimity polymorphism of any arity, then CSP(B)
is in P.
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