Topics in Logic and Complexity Handout 5

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2122/L15

Constraint Satisfaction Problems

Example:

Can we find x, y, z such that

Constraint Satisfaction Problems

In general a *constraint satisfaction problem (CSP)* is specified by:

- A collection V of variables.
- For each variable $x \in V$ a *domain* D_v of possible *values*.
- A collection of *constraints* each of which consists of a tuple (x_1, \ldots, x_r) of variables and a set

 $S \subseteq D_{x_1} \times \cdots \times D_{x_r}$

of permitted combinations of values.

We consider *finite-domain* CSP, where the sets D_x are *finite*. We further make the simplifying assumption that there is a *single domain* D, with $D_x = D$ for all $x \in V$.

Constraint Satisfaction Problems

In general a *constraint satisfaction problem (CSP)* is specified by:

- A collection *V* of *variables*.
- A domain **D** of values
- A collection of *constraints* each of which consists of a tuple (x_1, \ldots, x_r) of variables and a set $S \subseteq D^r$ of permitted combinations of values.

The problem is to *decide* if there is an assignment

 $\eta: V \to D$

such that for each constraint C = (x, S) we have

 $\eta(x) \in S$.

Logic and Complexity

Example - Boolean Satisfiability

Consider a Boolean formula ϕ in *conjunctive normal form* (CNF). This can be seen as *CSP* with

- V the set of variables occurring in ϕ
- $D = \{0, 1\}$
- a *constraint* for each *clause* of ϕ .

The clause $x \lor y \lor \overline{z}$ gives the constraint (x, y, z), S where

 $S = \{(0,0,0), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$

Structure Homomorphism

Fix a relational signature σ (no function or constant symbols). Let A and B be two σ -structures. A *homomorphism* from A to B is a function $h : A \to B$ such that for each relation $R \in \sigma$ and each tuple a

$$\mathsf{a} \in R^\mathbb{A} \;\; \Rightarrow \;\; h(\mathsf{a}) \in R^\mathbb{B}$$

The problem of deciding, given \mathbb{A} and \mathbb{B} whether there is a homomorphism from \mathbb{A} to \mathbb{B} is NP-complete. Why?

Homomorphism and CSP

Given a CSP with variables V, domain D and constraints C, let σ be a signature with a relation symbol R_S of arity r for each distinct relation $S \subseteq D^r$ occurring in C.

Let \mathbb{B} be the σ -structure with universe D where each R_S is interpreted by the relation S

Let \mathbb{A} be the structure with universe V where R_S is interpreted as the set of all tuples x for which $(x, S) \in C$.

Then, the CSP is solvable *if, and only if,* there is a homomorphism from \mathbb{A} to \mathbb{B} .

Complexity of CSP

Write $\mathbb{A} \longrightarrow \mathbb{B}$ to denote that *there is* a homomorphism from \mathbb{A} to \mathbb{B} .

The problem of determining, given A and B, whether $A \longrightarrow B$ is *NP-complete*, and can be decided in time $O(|B|^{|A|})$.

So, for a fixed structure $\mathbb{A},$ the problem of deciding membership in the set

 $\{\mathbb{B} \mid \mathbb{A} \longrightarrow \mathbb{B}\}$

is in P.

Non-uniform CSP

On the other hand, for a fixed structure \mathbb{B} , we define the *non-uniform CSP* with template \mathbb{B} , written $CSP(\mathbb{B})$ as the class of structures

 $\{\mathbb{A} \mid \mathbb{A} \longrightarrow \mathbb{B}\}$

The complexity of CSP(\mathbb{B}) depends on the particular structure \mathbb{B} . The problem is always in NP. For some \mathbb{B} , it is in P and for others it is NP-complete

Example - 3-SAT

Let \mathbb{B} be a structure with universe $\{0,1\}$ and *eight* relations

 $R_{000}, R_{001}, R_{010}, R_{011}, R_{100}, R_{101}, R_{110}, R_{111}$

where R_{ijk} is defined to be the relation

 $\{0,1\}^3 \setminus \{(i,j,k)\}.$

Then, $CSP(\mathbb{B})$ is *essentially* the problem of determining satisfiability of Boolean formulas in *3-CNF*.

Example - 3-Colourability

Let K_n be the *complete* simple undirected graph on *n* vertices.

Then, an undirected simple graph is in $CSP(K_3)$ *if, and only if,* it is *3-colourable*.

 $CSP(K_3)$ is NP-complete.

On the other hand, $CSP(K_2)$ is in P.

Example - 3XOR-SAT

Let $\mathbb B$ be a structure with universe $\{0,1\}$ and *two* ternary relations

 R_0 and R_1 .

where R_i is the collection of triples $(x, y, z) \in \{0, 1\}^3$ such that

 $x + y + z \equiv i \pmod{2}$

Then, $CSP(\mathbb{B})$ is *essentially* the problem of determining satisfiability of Boolean formulas in *3-XOR-CNF*. This problem is in P.

Schaefer's theorem

Schaefer (1978) proved that if \mathbb{B} is a structure on domain $\{0, 1\}$, then $CSP(\mathbb{B})$ is in P if one of the following cases holds:

- 1. Each relation of \mathbb{B} is 0-valid.
- 2. Each relation of \mathbb{B} is 1-valid.
- 3. Each relation of \mathbb{B} is *bijunctive*.
- 4. Each relation of \mathbb{B} is *Horn*.
- 5. Each relation of \mathbb{B} is *dual Horn*.
- 6. Each relation of \mathbb{B} is *affine*.

In all other cases, $CSP(\mathbb{B})$ is *NP-complete*.

Hell-Nešetřil theorem

Let *H* be a *simple*, *undirected graph*.

Hell and Nesetril (1990) proved that CSP(H) is in P if one of the following holds

- 1. *H* is *edgeless*
- 2. *H* is bipartite

In all other cases, CSP(H) is *NP-complete*.

Feder-Vardi conjecture

Feder and Vardi (1993) conjectured that for every finite relational structure B: either CSP(B) is in P or it is NP-complete.

Ladner (1975) showed that for any *languages L* and *K*, if $L \leq_P K$ and $K \not\leq_P L$, then there is a language *M* with

 $L \leq_P M \leq_P K$ and $K \not\leq_P M$ and $M \not\leq_P L$

Corollary: if $P \neq NP$ then there are problems in NP that are neither in P nor NP-complete.

Bulatov-Zhuk theorem

Bulatov and Zhuk (2017) independently proved the Feder-Vardi *dichotomy conjecture*.

The result came after a twenty-year development of the theory of CSP based on *universal algebra*.

The complexity of $CSP(\mathbb{B})$ can be completely classified based on the identitites satisfied by the *algebra of polymorphisms* of the structure \mathbb{B} .