Example:
Can we find x, y, z such that

\[
\begin{align*}
x + y + z &\geq 4 \\
x - y &= 3 \\
z &\leq 2 \\
x &= 1
\end{align*}
\]
Constraint Satisfaction Problems

In general a constraint satisfaction problem (CSP) is specified by:

- A collection V of variables.
- For each variable $x \in V$ a domain D_v of possible values.
- A collection of constraints each of which consists of a tuple (x_1, \ldots, x_r) of variables and a set
 $$S \subseteq D_{x_1} \times \cdots \times D_{x_r}$$
 of permitted combinations of values.

We consider finite-domain CSP, where the sets D_x are finite.
We further make the simplifying assumption that there is a single domain D, with $D_x = D$ for all $x \in V$.
Constraint Satisfaction Problems

In general a *constraint satisfaction problem (CSP)* is specified by:

- A collection V of *variables*.
- A domain D of *values*.
- A collection of *constraints* each of which consists of a tuple (x_1, \ldots, x_r) of variables and a set $S \subseteq D^r$ of permitted combinations of values.

The problem is to *decide* if there is an assignment

$$\eta : V \to D$$

such that for each constraint $C = (x, S)$ we have

$$\eta(x) \in S.$$
Example - Boolean Satisfiability

Consider a Boolean formula ϕ in *conjunctive normal form* (CNF). This can be seen as *CSP* with

- V the set of variables occurring in ϕ
- $D = \{0, 1\}$
- a *constraint* for each *clause* of ϕ.

The clause $x \lor y \lor \overline{z}$ gives the constraint $(x, y, z), S$ where

$$S = \{(0, 0, 0), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)\}$$
Fix a relational signature σ (no function or constant symbols). Let A and B be two σ-structures. A *homomorphism* from A to B is a function $h : A \rightarrow B$ such that for each relation $R \in \sigma$ and each tuple a

$$a \in R^A \Rightarrow h(a) \in R^B$$

The problem of deciding, given A and B whether there is a homomorphism from A to B is NP-complete. Why?
Homomorphism and CSP

Given a CSP with variables V, domain D and constraints C, let σ be a signature with a relation symbol R_S of arity r for each distinct relation $S \subseteq D^r$ occurring in C.

Let \mathcal{B} be the σ-structure with universe D where each R_S is interpreted by the relation S.

Let \mathcal{A} be the structure with universe V where R_S is interpreted as the set of all tuples x for which $(x, S) \in C$.

Then, the CSP is solvable if, and only if, there is a homomorphism from \mathcal{A} to \mathcal{B}.
Write $A \rightarrow B$ to denote that *there is* a homomorphism from A to B.

The problem of determining, given A and B, whether $A \rightarrow B$ is *NP-complete*, and can be decided in time $O(|B|^{|A|})$.

So, for a fixed structure A, the problem of deciding membership in the set

$$\{B \mid A \rightarrow B\}$$

is in P.
Non-uniform CSP

On the other hand, for a fixed structure B, we define the non-uniform CSP with template B, written $CSP(B)$ as the class of structures

$$\{A \mid A \rightarrow B\}$$

The complexity of $CSP(B)$ depends on the particular structure B. The problem is always in NP. For some B, it is in P and for others it is NP-complete.
Example - 3-SAT

Let \mathbb{B} be a structure with universe $\{0, 1\}$ and *eight* relations

$$R_{000}, R_{001}, R_{010}, R_{011}, R_{100}, R_{101}, R_{110}, R_{111}$$

where R_{ijk} is defined to be the relation

$$\{0, 1\}^3 \setminus \{(i, j, k)\}.$$

Then, $\text{CSP}(\mathbb{B})$ is *essentially* the problem of determining satisfiability of Boolean formulas in *3-CNF*.
Example - 3-Colourability

Let K_n be the *complete* simple undirected graph on n vertices.

Then, an undirected simple graph is in CSP(K_3) *if, and only if*, it is 3-colourable.

CSP(K_3) is NP-complete.

On the other hand, CSP(K_2) is in P.
Example - 3XOR-SAT

Let \mathcal{B} be a structure with universe $\{0, 1\}$ and two ternary relations R_0 and R_1.

where R_i is the collection of triples $(x, y, z) \in \{0, 1\}^3$ such that

$$x + y + z \equiv i \pmod{2}$$

Then, $\text{CSP}(\mathcal{B})$ is essentially the problem of determining satisfiability of Boolean formulas in 3-XOR-CNF. This problem is in P.
Schaefer’s theorem

Schaefer (1978) proved that if \(B \) is a structure on domain \(\{0, 1\} \), then \(\text{CSP}(B) \) is in \(P \) if one of the following cases holds:

1. Each relation of \(B \) is \textit{0-valid}.
2. Each relation of \(B \) is \textit{1-valid}.
3. Each relation of \(B \) is \textit{bijunctive}.
4. Each relation of \(B \) is \textit{Horn}.
5. Each relation of \(B \) is \textit{dual Horn}.
6. Each relation of \(B \) is \textit{affine}.

In all other cases, \(\text{CSP}(B) \) is \textit{NP-complete}.
Let H be a \textit{simple, undirected graph}.

\textbf{Hell and Nešetřil (1990)} proved that $\text{CSP}(H)$ is in P if one of the following holds

1. H is \textit{edgeless}
2. H is \textit{bipartite}

In all other cases, $\text{CSP}(H)$ is \textit{NP-complete}.
Feder and Vardi (1993) conjectured that for every finite relational structure \mathcal{B}:

either $\text{CSP}(\mathcal{B})$ is in P or it is NP-complete.

Ladner (1975) showed that for any languages L and K, if $L \leq_P K$ and $K \not\leq_P L$, then there is a language M with

$$L \leq_P M \leq_P K \text{ and } K \not\leq_P M \text{ and } M \not\leq_P L$$

Corollary: if $P \neq \text{NP}$ then there are problems in NP that are neither in P nor NP-complete.
Bulatov and Zhuk (2017) independently proved the Feder-Vardi dichotomy conjecture.

The result came after a twenty-year development of the theory of CSP based on universal algebra.

The complexity of \(\text{CSP}(\mathcal{B}) \) can be completely classified based on the identities satisfied by the algebra of polymorphisms of the structure \(\mathcal{B} \).