Topics in Logic and Complexity

Handout 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2122/L15
Expressive Power of Logics

We have seen that the expressive power of first-order logic, in terms of computational complexity is weak. Second-order logic allows us to express all properties in the polynomial hierarchy.

Are there interesting logics intermediate between these two? We have seen one—monadic second-order logic. We now examine another—LFP—the logic of least fixed points.
LFP is a logic that formalises *inductive definitions.*

Unlike in second-order logic, we cannot quantify over arbitrary relations, but we can build new relations inductively.

Inductive definitions are pervasive in mathematics and computer science. The *syntax* and *semantics* of various formal languages are typically defined inductively.

viz. the definitions of the syntax and semantics of first-order logic seen earlier.
The transitive closure of a binary relation E is the smallest relation T satisfying:

- $E \subseteq T$; and
- if $(x, y) \in T$ and $(y, z) \in E$ then $(x, z) \in T$.

This constitutes an inductive definition of T and, as we have already seen, there is no first-order formula that can define T in terms of E.

Transitive Closure
In order to introduce LFP, we briefly look at the theory of monotone operators, in our restricted context.

We write \(\text{Pow}(A) \) for the powerset of \(A \).

An operator on \(A \) is a function

\[
F : \text{Pow}(A) \rightarrow \text{Pow}(A).
\]

\(F \) is monotone if

if \(S \subseteq T \), then \(F(S) \subseteq F(T) \).
A **fixed point** of F is any set $S \subseteq A$ such that $F(S) = S$.

S is the **least fixed point** of F, if for all fixed points T of F, $S \subseteq T$.

S is the **greatest fixed point** of F, if for all fixed points T of F, $T \subseteq S$.
Least and Greatest Fixed Points

For any monotone operator F, define the collection of its pre-fixed points as:

$$Pre = \{ S \subseteq A \mid F(S) \subseteq S \}.$$

Note: $A \in Pre$.

Taking

$$L = \bigcap Pre,$$

we can show that L is a fixed point of F.
Fixed Points

For any set $S \in \text{Pre}$,

- $L \subseteq S$ \hspace{1cm} \text{by definition of } L.
- $F(L) \subseteq F(S)$ \hspace{1cm} \text{by monotonicity of } F.
- $F(L) \subseteq S$ \hspace{1cm} \text{by definition of } \text{Pre}.
- $F(L) \subseteq L$ \hspace{1cm} \text{by definition of } L.
- $F(F(L)) \subseteq F(L)$ \hspace{1cm} \text{by monotonicity of } F.
- $F(L) \in \text{Pre}$ \hspace{1cm} \text{by definition of } \text{Pre}.
- $L \subseteq F(L)$ \hspace{1cm} \text{by definition of } L.
Least and Greatest Fixed Points

\(L \) is a \textit{fixed point} of \(F \).

Every fixed point \(P \) of \(F \) is in \(Pre \), and therefore \(L \subseteq P \).

Thus, \(L \) is the least fixed point of \(F \)

Similarly, the greatest fixed point is given by:

\[
G = \bigcup \{ S \subseteq A \mid S \subseteq F(S) \}.
\]
Iteration

Let A be a *finite* set and F be a *monotone* operator on A.
Define for $i \in \mathbb{N}$:

\[
\begin{align*}
F^0 &= \emptyset \\
F^{i+1} &= F(F^i).
\end{align*}
\]

For each i, $F^i \subseteq F^{i+1}$ (proved by induction).
Iteration

Proof by induction.

\[\emptyset = F^0 \subseteq F^1. \]

If \(F^i \subseteq F^{i+1} \) then, by monotonicity

\[F(F^i) \subseteq F(F^{i+1}) \]

and so \(F^{i+1} \subseteq F^{i+2} \).
Fixed-Point by Iteration

If A has n elements, then

$$F^n = F^{n+1} = F^m \quad \text{for all} \quad m > n$$

Thus, F^n is a fixed point of F.

Let P be any fixed point of F. We can show by induction on i, that $F^i \subseteq P$.

$$F^0 = \emptyset \subseteq P$$

If $F^i \subseteq P$ then

$$F^{i+1} = F(F^i) \subseteq F(P) = P.$$

Thus F^n is the least fixed point of F.
Defined Operators

Suppose ϕ contains a relation symbol R (of arity k) not interpreted in the structure A and let x be a tuple of k free variables of ϕ.

For any relation $P \subseteq A^k$, ϕ defines a new relation:

$$F_P = \{ a \mid (A, P) \models \phi[a] \}.$$

The operator $F_\phi : \text{Pow}(A^k) \rightarrow \text{Pow}(A^k)$ defined by ϕ is given by the map

$$P \mapsto F_P.$$

Or, $F_{\phi, b}$ if we fix parameters b.
Definition
A formula ϕ is *positive* in the relation symbol R, if every occurrence of R in ϕ is within the scope of an even number of negation signs.

Lemma
For any structure A not interpreting the symbol R, any formula ϕ which is positive in R, and any tuple b of elements of A, the operator $F_{\phi,b} : \text{Pow}(A^k) \to \text{Pow}(A^k)$ is monotone.
Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, x is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then
 $$\text{lfp}_{R,x} \phi$$
 is a predicate expression of LFP of arity k.

All occurrences of R and variables in x in $\text{lfp}_{R,x} \phi$ are bound.
Syntax of LFP

• If \(t_1 \) and \(t_2 \) are terms, then \(t_1 = t_2 \) is a formula of LFP.
• If \(P \) is a predicate expression of LFP of arity \(k \) and \(t \) is a tuple of terms of length \(k \), then \(P(t) \) is a formula of LFP.
• If \(\phi \) and \(\psi \) are formulas of LFP, then so are \(\phi \land \psi \), and \(\neg \phi \).
• If \(\phi \) is a formula of LFP and \(x \) is a variable then, \(\exists x \phi \) is a formula of LFP.
Let $A = (A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ.

Let ϕ be a formula of LFP, and ι an interpretation in A of all the free variables (first or second order) of ϕ.

To each individual variable x, ι associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ, ι associates a relation $\iota(R) \subseteq A^k$.

ι is extended to terms t in the usual way.

For constants c, $\iota(c) = \mathcal{I}(c)$.

$\iota(f(t_1, \ldots, t_n)) = \mathcal{I}(f)(\iota(t_1), \ldots, \iota(t_n))$
Semantics of LFP

- If R is a relation symbol in σ, then $\iota(R) = \mathcal{I}(R)$.
- If P is a predicate expression of the form $\text{Ifp}_{R,x}\phi$, then $\iota(P)$ is the relation that is the least fixed point of the monotone operator F on A^k defined by:

$$F(X) = \{a \in A^k \mid \Delta \models \phi[\iota'\langle X/R, x/a \rangle]\},$$

where $\iota\langle X/R, x/a \rangle$ denotes the interpretation ι' which is just like ι except that $\iota'(R) = X$, and $\iota'(x) = a$.

Anuj Dawar Logic and Complexity
Semantics of LFP

• If ϕ is of the form $t_1 = t_2$, then $A \models \phi[i]$ if, $i(t_1) = i(t_2)$.
• If ϕ is of the form $R(t_1, \ldots, t_k)$, then $A \models \phi[i]$ if,

$$(i(t_1), \ldots, i(t_k)) \in i(R).$$

• If ϕ is of the form $\psi_1 \land \psi_2$, then $A \models \phi[i]$ if, $A \models \psi_1[i]$ and $A \models \psi_2[i]$.
• If ϕ is of the form $\neg \psi$ then, $A \models \phi[i]$ if, $A \not\models \psi[i]$.
• If ϕ is of the form $\exists x \psi$, then $A \models \phi[i]$ if there is an $a \in A$ such that $A \models \psi[i\langle x/a \rangle]$.
Transitive Closure

The formula (with free variables u and v)

$$
\theta \equiv \text{lfp}_{T,xy}[(x = y \lor \exists z(E(x, z) \land T(z, y)))](u, v)
$$

defines the reflexive and transitive closure of the relation E.

Thus $\forall u \forall v \theta$ defines connectedness.

The expressive power of LFP properly extends that of first-order logic.
Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs \textit{positively}, then the \textit{greatest fixed point} of the monotone operator F_ϕ defined by ϕ can be defined by the formula:

$$\neg[lfp_{R,x} \neg \phi(R/\neg R)](x)$$

where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

\textit{Exercise:} Verify!.
Simultaneous Inductions

We are given two formulas \(\phi_1(S, T, x) \) and \(\phi_2(S, T, y) \), \(S \) is \(k \)-ary, \(T \) is \(l \)-ary.

The pair \((\phi_1, \phi_2) \) can be seen as defining a map:

\[
F : \text{Pow}(A^k) \times \text{Pow}(A^l) \rightarrow \text{Pow}(A^k) \times \text{Pow}(A^l)
\]

If both formulas are positive in both \(S \) and \(T \), then there is a least fixed point.

\[
(P_1, P_2)
\]

defined by *simultaneous induction* on \(A \).
Simultaneous Inductions

Theorem
For any pair of formulas $\phi_1(S, T)$ and $\phi_2(S, T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_S and ϕ_T of LFP which, on any structure A containing at least two elements, define the two relations that are defined on A by ϕ_1 and ϕ_2 by simultaneous induction.
Proof

Assume $k \leq l$.

We define P, of arity $l + 2$ such that:

$$(c, d, a_1, \ldots, a_l) \in P \text{ if, and only if, either } c = d \text{ and } (a_1, \ldots, a_k) \in P_1 \text{ or } c \neq d \text{ and } (a_1, \ldots, a_l) \in P_2$$

For new variables x_1 and x_2 and a new $l + 2$-ary symbol R, define ϕ'_1 and ϕ'_2 by replacing all occurrences of $S(t_1, \ldots, t_k)$ by:

$$x_1 = x_2 \land \exists y_{k+1}, \ldots, \exists y_l R(x_1, x_2, t_1, \ldots, t_k, y_{k+1}, \ldots, y_l),$$

and replacing all occurrences of $T(t_1, \ldots, t_l)$ by:

$$x_1 \neq x_2 \land R(x_1, x_2, t_1, \ldots, t_l).$$
Proof

Define ϕ as

$$(x_1 = x_2 \land \phi_1') \lor (x_1 \neq x_2 \land \phi_2').$$

Then,

$$(\text{lfp}_{R, x_1 x_2 y} \phi)(x, x, y)$$

defines P, so

$$\phi_S \equiv \exists x \exists y_{k+1}, \ldots, \exists y_l (\text{lfp}_{R, x_1 x_2 y} \phi)(x, x, y);$$

and

$$\phi_T \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land \text{lfp}_{R, x_1 x_2 y} \phi)(x_1, x_2, y).$$
Complexity of LFP

Any query definable in LFP is decidable by a deterministic machine in polynomial time.

To be precise, we can show that for each formula ϕ there is a t such that

$$\mathbb{A} \models \phi[a]$$

is decidable in time $O(n^t)$ where n is the number of elements of \mathbb{A}. We prove this by induction on the structure of the formula.
Complexity of LFP

- Atomic formulas by direct lookup ($O(n^a)$ time, where a is the maximum arity of any predicate symbol in σ).

- Boolean connectives are easy.

 If $\mathbb{A} \models \phi_1$ can be decided in time $O(n^{t_1})$ and $\mathbb{A} \models \phi_2$ in time $O(n^{t_2})$, then $\mathbb{A} \models \phi_1 \land \phi_2$ can be decided in time $O(n_{\max(t_1,t_2)})$

- If $\phi \equiv \exists x \, \psi$ then for each $a \in \mathbb{A}$ check whether

 $$(\mathbb{A}, c \mapsto a) \models \psi[c/x],$$

 where c is a new constant symbol. If $\mathbb{A} \models \psi$ can be decided in time $O(n^t)$, then $\mathbb{A} \models \phi$ can be decided in time $O(n^{t+1})$.

Complexity of LFP

Suppose $\phi \equiv [\text{lfp}_{R,x}\psi](t)$ (R is l-ary)
To decide $\mathbb{A} \models \phi[a]$:

$$
R := \emptyset \\
\text{for } i := 1 \text{ to } n' \text{ do} \\
\quad R := F_{\psi}(R) \\
\text{end} \\
\text{if } a \in R \text{ then accept else reject}
$$
Complexity of LFP

To compute $F_\psi(R)$

For every tuple $a \in A^l$, determine whether $(A, R) \models \psi[a]$.

If deciding $(A, R) \models \psi$ takes time $O(n^t)$, then each assignment to R inside the loop requires time $O(n^{l+t})$. The total time taken to execute the loop is then $O(n^{2l+t})$. Finally, the last line can be done by a search through R in time $O(n^l)$. The total running time is, therefore, $O(n^{2l+t})$.

The space required is $O(n^l)$.
For any ϕ of LFP, the language $\{[A]_\prec | A \models \phi\}$ is in P.

Suppose ρ is a signature that contains a binary relation symbol \prec, possibly along with other symbols.

Let O_ρ denote those structures A in which \prec is a linear order of the universe.

For any language $L \in P$, there is a sentence ϕ of LFP that defines the class of structures

$$\{A \in O_\rho | [A]_\prec A \in L\}$$

(Immerman; Vardi 1982)
Capturing P

Recall the proof of *Fagin’s Theorem*, that ESO captures NP.

Given a machine M and an integer k, there is a *first-order* formula $\phi_{M,k}$ such that

$$\Delta \models \exists < \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k}$$

if, and only if, M accepts $[\Delta]_<$ in time n^k, for some order $<$. If we *fix* the order $<$ as part of the structure Δ, we do not need the outermost quantifier.

Moreover, for a *deterministic* machine M, the relations $T_{\sigma_1} \cdots T_{\sigma_s}, S_{q_1} \cdots S_{q_m}, H$ can be defined *inductively*.
Capturing P

\[
\text{Tape}_a(x, y) \iff (x = 1 \land \text{Init}_a(y)) \lor \\
\exists t \exists h \bigvee_q (x = t + 1 \land \text{State}_q(t, h) \land \\
[h = y \land \bigvee \{b, d, q' \mid \Delta(q, b, q', a, d)\} \text{Tape}_b(t, y) \lor \\
h \neq y \land \text{Tape}_a(t, y)])
\]

where \(\text{Init}_a(y)\) is the formula that defines the positions in which the symbol \(a\) appears in the input.
Capturing P

\[\text{State}_q(x, y) \Leftrightarrow (x = 1 \land y = 1 \land q = q_0) \lor \exists t \exists h \bigvee \{a, b, q' \mid \Delta(q', a, q, b, R) \} \]

\[\bigvee \{a, b, q' \mid \Delta(q', a, q, b, L) \} \]

\[(x = t + 1 \land \text{State}_{q'}(t, h) \land \text{Tape}_a(t, h) \land y = h + 1) \]

\[(x = t + 1 \land \text{State'}_{q}(t, h) \land \text{Tape}_a(t, h) \land h = y + 1) \].
In the absence of an order relation, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an even number of elements.
Let \mathcal{E} be the collection of all structures in the empty signature. In order to prove that *evenness* is not defined by any LFP sentence, we show the following.

Lemma
For every LFP formula ϕ there is a first order formula ψ, such that for all structures A in \mathcal{E}, $A \models (\phi \leftrightarrow \psi)$.
Unordered Structures

Let $\psi(x, y)$ be a first order formula.

\[\text{lfp}_{R, x} \psi \] defines the relation

\[F^\infty_{\psi, b} = \bigcup_{i \in \mathbb{N}} F^i_{\psi, b} \]

for a fixed interpretation of the variables y by the tuple of parameters b.

For each i, there is a first order formula ψ^i such that on any structure \mathbb{A},

\[F^i_{\psi, b} = \{ a \mid \mathbb{A} \models \psi^i[a, b] \}. \]
These formulas are obtained by \textit{induction}.

\[\psi^1 \text{ is obtained from } \psi \text{ by replacing all occurrences of subformulas of the form } R(t) \text{ by } t \neq t. \]

\[\psi^{i+1} \text{ is obtained by replacing in } \psi, \text{ all subformulas of the form } R(t) \text{ by } \psi^i(t, y) \]
Let \(b \) be an \(l \)-tuple, and \(a \) and \(c \) two \(k \)-tuples in a structure \(\mathbb{A} \) such that there is an automorphism \(\iota \) of \(\mathbb{A} \) (i.e. an isomorphism from \(\mathbb{A} \) to itself) such that

1. \(\iota(b) = b \)
2. \(\iota(a) = c \)

Then,

\[
a \in F_{\psi,b}^i \quad \text{if, and only if,} \quad c \in F_{\psi,b}^i.
\]
Bounding the Induction

This defines an *equivalence relation* $a \sim_b c$.

If there are p distinct equivalence classes, then

$$F^\infty_{\psi,b} = F^p_{\psi,b}$$

In \mathcal{E} there is a uniform bound p, that does not depend on the size of the structure.