Descriptive Complexity

Descriptive Complexity provides an alternative perspective on Computational Complexity.

Computational Complexity

- Measure use of resources (space, time, *etc.*) on a machine model of computation;
- Complexity of a language—i.e. a set of strings.

Descriptive Complexity

- Complexity of a class of structures—e.g. a collection of graphs.
- Measure the complexity of describing the collection in a formal logic, using resources such as variables, quantifiers, higher-order operators, *etc.*

There is a fascinating interplay between the views.
In general a signature (or vocabulary) σ is a finite sequence of relation, function and constant symbols:

$$\sigma = (R_1, \ldots, R_m, f_1, \ldots, f_n, c_1, \ldots, c_p)$$

where, associated with each relation and function symbol is an arity.
A structure \mathbf{A} over the signature σ is a tuple:

$$
\mathbf{A} = (A, R_1^\mathbf{A}, \ldots, R_m^\mathbf{A}, f_1^\mathbf{A}, \ldots, f_n^\mathbf{A}, c_1^\mathbf{A}, \ldots, c_n^\mathbf{A}),
$$

where,

- A is a non-empty set, the universe of the structure \mathbf{A},
- each $R_i^\mathbf{A}$ is a relation over A of the appropriate arity.
- each $f_i^\mathbf{A}$ is a function over A of the appropriate arity.
- each $c_i^\mathbf{A}$ is an element of A.

Formulas of \textit{first-order logic} are formed from the signature σ and an infinite collection X of variables as follows.

- \textit{terms} – c, x, $f(t_1, \ldots, t_a)$

\textit{Formulas} are defined by induction:

- \textit{atomic formulas} – $R(t_1, \ldots, t_a)$, $t_1 = t_2$
- \textit{Boolean operations} – $\phi \land \psi$, $\phi \lor \psi$, $\neg \phi$
- \textit{first-order quantifiers} – $\exists x \phi$, $\forall x \phi$
Queries

A formula ϕ with free variables among x_1, \ldots, x_n defines a map Q from structures to relations:

$$Q(\mathcal{A}) = \{a \mid \mathcal{A} \models \phi[a]\}.$$

Any such map Q which associates to every structure \mathcal{A} an $(n$-ary) relation on A, and is isomorphism invariant, is called a $(n$-ary) query. Q is isomorphism invariant if, whenever $f : \mathcal{A} \to \mathcal{B}$ is an isomorphism between \mathcal{A} and \mathcal{B}, it is also an isomorphism between $(\mathcal{A}, Q(\mathcal{A}))$ and $(\mathcal{B}, Q(\mathcal{B}))$.

If $n = 0$, we can regard the query as a map from structures to $\{0, 1\}$—a Boolean query.
Graphs

For example, take the signature \((E)\), where \(E\) is a binary relation symbol. Finite structures \((V, E)\) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

\[\forall x \neg Exx \land \forall x \forall y (Exy \rightarrow Eyx) \]

can be identified with the class of \((\text{loop-free, undirected})\) graphs.
Complexity

For a first-order sentence ϕ, we ask what is the computational complexity of the problem:

Input: a structure \mathcal{A}

Decide: if $\mathcal{A} \models \phi$

In other words, how complex can the collection of finite models of ϕ be?

In order to talk of the complexity of a class of finite structures, we need to fix some way of representing finite structures as strings.
Representing Structures as Strings

We use an alphabet $\Sigma = \{0, 1, \#, -\}$.

For a structure $A = (A, R_1, \ldots, R_m, f_1, \ldots, f_l)$, fix a linear order $<$ on $A = \{a_1, \ldots, a_n\}$.

R_i (of arity k) is encoded by a string $[R_i]_<$ of 0s and 1s of length n^k.

f_i is encoded by a string $[f_i]_<$ of 0s, 1s and $-$s of length $n^k \log n$.

$$[A]_< = 1 \cdots 1 \# [R_1]_< \# \cdots \# [R_m]_< \# [f_1]_< \# \cdots \# [f_l]_<$$

The exact string obtained depends on the choice of order.
Naïve Algorithm

The straightforward algorithm proceeds recursively on the structure of ϕ:

- Atomic formulas by direct lookup.
- Boolean connectives are easy.
- If $\phi \equiv \exists x \psi$ then for each $a \in A$ check whether

$$ (A, c \mapsto a) \models \psi[c/x], $$

where c is a new constant symbol.

This runs in time $O(ln^m)$ and $O(m \log n)$ space, where m is the nesting depth of quantifiers in ϕ.

$$ \text{Mod}(\phi) = \{A \mid A \models \phi\} $$

is in logarithmic space and polynomial time.
Complexity of First-Order Logic

The following problem:

\textit{FO satisfaction}

\textit{Input:} a structure \mathbb{A} and a first-order sentence ϕ

\textit{Decide:} if $\mathbb{A} \models \phi$

is \textsc{PSPACE}-complete.

It follows from the $O(ln^m)$ and $O(m \log n)$ space algorithm that the problem is in \textsc{PSPACE}.

How do we prove completeness?
We define *quantified Boolean formulas* inductively as follows, from a set \mathcal{X} of *propositional variables*.

- A propositional constant T or F is a formula
- A propositional variable $X \in \mathcal{X}$ is a formula
- If ϕ and ψ are formulas then so are: $\neg \phi$, $\phi \land \psi$ and $\phi \lor \psi$
- If ϕ is a formula and X is a variable then $\exists X \phi$ and $\forall X \phi$ are formulas.

Say that an occurrence of a variable X is *free* in a formula ϕ if it is not within the scope of a quantifier of the form $\exists X$ or $\forall X$.
Given a quantified Boolean formula ϕ and an assignment of *truth values* to its free variables, we can ask whether ϕ evaluates to *true* or *false*. In particular, if ϕ has no free variables, then it is equivalent to either *true* or *false*.

QBF is the following decision problem:

Input: a quantified Boolean formula ϕ with no free variables.

Decide: whether ϕ evaluates to *true*.

Anuj Dawar
Logic and Complexity
Complexity of QBF

Note that a Boolean formula ϕ *without quantifiers* and with variables X_1, \ldots, X_n is *satisfiable* if, and only if, the formula

$$\exists X_1 \cdots \exists X_n \phi$$

is true.

Similarly, ϕ is *valid* if, and only if, the formula

$$\forall X_1 \cdots \forall X_n \phi$$

is true.

Thus, $\text{SAT} \leq_L \text{QBF}$ and $\text{VAL} \leq_L \text{QBF}$ and so QBF is NP-hard and co-NP-hard.

In fact, QBF is PSPACE-complete.
To see that QBF is in PSPACE, consider the algorithm that maintains a 1-bit register X for each Boolean variable appearing in the input formula ϕ and evaluates ϕ in the natural fashion.

The crucial cases are:

- If ϕ is $\exists X \psi$ then return T if either $(X \leftarrow T ; \text{ evaluate } \psi)$ or $(X \leftarrow F ; \text{ evaluate } \psi)$ returns T.
- If ϕ is $\forall X \psi$ then return T if both $(X \leftarrow T ; \text{ evaluate } \psi)$ and $(X \leftarrow F ; \text{ evaluate } \psi)$ return T.
To prove that QBF is PSPACE-complete, we want to show:

Given a machine M with a polynomial space bound and an input x, we can define a quantified Boolean formula ϕ^M_x which evaluates to true if, and only if, M accepts x.

Moreover, ϕ^M_x can be computed from x in polynomial time (or even logarithmic space).

The number of distinct configurations of M on input x is bounded by 2^{nk} for some k ($n = |x|$). Each configuration can be represented by nk bits.
We use tuples A, B of n^k Boolean variables each to encode configurations of M.

Inductively, we define a formula $\psi_i(A, B)$ which is true if the configuration coded by B is reachable from that coded by A in at most 2^i steps.

$$\psi_0(A, B) \equiv \text{“}A = B\text{”} \lor \text{“}A \rightarrow_M B\text{”}$$
$$\psi_{i+1}(A, B) \equiv \exists Z \forall X \forall Y \left[(X = A \land Y = Z) \lor (X = Z \land Y = B) \implies \psi_i(X, Y)\right]$$

$$\phi \equiv \psi_{nk}(A, B) \land \text{“}A = \text{start}\text{”} \land \text{“}B = \text{accept}\text{”}$$
Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE. To show that it is PSPACE-complete, it suffices to show that $QBF \leq_L FO$ sat.

The reduction maps a quantified Boolean formula ϕ to a pair (A, ϕ^*) where A is a structure with two elements: 0 and 1 interpreting two constants f and t respectively.

ϕ^* is obtained from ϕ by a simple inductive definition.
Expressive Power of FO

For any \textit{fixed} sentence ϕ of first-order logic, the class of structures $\text{Mod}(\phi)$ is in L.

There are computationally easy properties that are not definable in first-order logic.

- There is no sentence ϕ of first-order logic such that $A \models \phi$ if, and only if, $|A|$ is even.
- There is no formula $\phi(E, x, y)$ that defines the transitive closure of a binary relation E.

We will see proofs of these facts later on.
Second-Order Logic

We extend first-order logic by a set of *relational variables*. For each \(m \in \mathbb{N} \) there is an infinite collection of variables \(\mathcal{V}^m = \{ V_1^m, V_2^m, \ldots \} \) of *arity* \(m \).

Second-order logic extends first-order logic by allowing *second-order quantifiers*

\[
\exists X \phi \quad \text{for } X \in \mathcal{V}^m
\]

A structure \(\mathcal{A} \) satisfies \(\exists X \phi \) if there is an \(m \)-ary relation \(R \) on the universe of \(\mathcal{A} \) such that \((\mathcal{A}, X \to R) \) satisfies \(\phi \).
Existential Second-Order Logic

ESO—*existential second-order logic* consists of those formulas of second-order logic of the form:

$$\exists X_1 \cdots \exists X_k \phi$$

where ϕ is a first-order formula.
Examples

Evenness

This formula is true in a structure if, and only if, the size of the domain is even.

\[\exists B \exists S \forall x \exists y B(x, y) \land \forall x \forall y \forall z B(x, y) \land B(x, z) \rightarrow y = z \]

\[\forall x \forall y \forall z B(x, z) \land B(y, z) \rightarrow x = y \]

\[\forall x \forall y S(x) \land B(x, y) \rightarrow \neg S(y) \]

\[\forall x \forall y \neg S(x) \land B(x, y) \rightarrow S(y) \]
Examples

Transitive Closure
This formula is true of a pair of elements a, b in a structure if, and only if, there is an E-path from a to b.

$$\exists P \forall x \forall y \ P(x, y) \rightarrow E(x, y)$$
$$\exists x P(a, x) \land \exists x P(x, b) \land \neg \exists x P(x, a) \land \neg \exists x P(b, x)$$
$$\forall x \forall y (P(x, y) \rightarrow \forall z (P(x, z) \rightarrow y = z))$$
$$\forall x \forall y (P(x, y) \rightarrow \forall z (P(z, y) \rightarrow x = z))$$
$$\forall x ((x \neq a \land \exists y P(x, y)) \rightarrow \exists z P(z, x))$$
$$\forall x ((x \neq b \land \exists y P(y, x)) \rightarrow \exists z P(x, z))$$
Examples

3-Colourability
The following formula is true in a graph \((V, E)\) if, and only if, it is 3-colourable.
\[
\exists R \exists B \exists G \quad \forall x (R x \lor B x \lor G x) \land \\
\forall x (\neg (R x \land B x) \land \neg (B x \land G x) \land \neg (R x \land G x)) \land \\
\forall x \forall y (E x y \rightarrow (\neg (R x \land R y) \land \\
\neg (B x \land B y) \land \\
\neg (G x \land G y)))
\]
Fagin’s Theorem

Theorem (Fagin)

A class \mathcal{C} of finite structures is definable by a sentence of *existential second-order logic* if, and only if, it is decidable by a *nondeterministic machine* running in polynomial time.

$$\text{ESO} = \text{NP}$$

One direction is easy: Given $\exists \mathcal{A}$ and $\exists P_1 \ldots \exists P_m \phi$.

a nondeterministic machine can guess an interpretation for P_1, \ldots, P_m and then verify ϕ.
Fagin’s Theorem

Given a machine M and an integer k, there is an ESO sentence ϕ such that $A \models \phi$ if, and only if, M accepts $[A]_<$, for some order $<$ in n^k steps.

We construct a first-order formula $\phi_{M,k}$ such that

$$(A, <, X) \models \phi_{M,k} \iff X \text{ codes an accepting computation of } M \text{ of length at most } n^k \text{ on input } [A]_<$$

So, $A \models \exists < \exists X \phi_{M,k}$ if, and only if, there is some order $<$ on A so that M accepts $[A]_<$ in time n^k.
The formula $\phi_{M,k}$ is built up as the *conjunction* of a number of formulas. The first of these simply says that $<$ is a *linear order*

\[
\forall x (\neg x < x) \land \\
\forall x \forall y (x < y \rightarrow \neg y < x) \land \\
\forall x \forall y (x < y \lor y < x \lor x = y) \\
\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)
\]

We can use a linear order on the elements of A to define a lexicographic order on k-tuples.
Ordering Tuples

If \(x = x_1, \ldots, x_k \) and \(y = y_1, \ldots, y_k \) are \(k \)-tuples of variables, we use \(x = y \) as shorthand for the formula \(\bigwedge_{i < k} x_i = y_i \) and \(x < y \) as shorthand for the formula

\[
\bigvee_{i < k, j < i} \left((\bigwedge_{j} x_j = y_j) \land x_i < y_i \right)
\]

We also write \(y = x + 1 \) for the following formula:

\[
x < y \land \forall z (x < z \rightarrow (y = z \lor y < z))
\]
Constructing the Formula

Let $M = (K, \Sigma, s, \delta)$.

The tuple X of second-order variables appearing in $\phi_{M,k}$ contains the following:

- S_q a k-ary relation symbol for each $q \in K$
- T_σ a $2k$-ary relation symbol for each $\sigma \in \Sigma$
- H a $2k$-ary relation symbol
Intuitively, these relations are intended to capture the following:

- $S_q(x)$ – the state of the machine at time x is q.
- $T_\sigma(x, y)$ – at time x, the symbol at position y of the tape is σ.
- $H(x, y)$ – at time x, the tape head is pointing at tape cell y.

We now have to see how to write the formula $\phi_{M,k}$, so that it enforces these meanings.
Initial state is s and the head is initially at the beginning of the tape.

$$\forall x ((\forall y \, x \leq y) \rightarrow S_s(x) \land H(x, x))$$

The head is never in two places at once

$$\forall x \forall y (H(x, y) \rightarrow (\forall z (y \neq z) \rightarrow (\neg H(x, z))))$$

The machine is never in two states at once

$$\forall x \bigwedge_q (S_q(x) \rightarrow \bigwedge_{q' \neq q} (\neg S_{q'}(x)))$$

Each tape cell contains only one symbol

$$\forall x \forall y \bigwedge_\sigma (T_\sigma(x, y) \rightarrow \bigwedge_{\sigma' \neq \sigma} (\neg T_{\sigma'}(x, y)))$$
The initial contents of the tape are \([A]_<\).

\[\forall x \quad x \leq n \rightarrow T_1(1, x) \land \\
 x \leq n^a \rightarrow (T_1(1, x + n + 1) \leftrightarrow R_1(x|_a)) \]

\[\ldots \]

where,

\[x < n^a : \bigwedge_{i \leq (k-a)} x_i = 0 \]
The tape does not change except under the head

\[\forall x \forall y \forall z (y \neq z \rightarrow (\bigwedge_{\sigma} (H(x, y) \land T_\sigma(x, z) \rightarrow T_\sigma(x + 1, z)))) \]

Each step is according to \(\delta \).

\[\forall x \forall y \bigwedge_{\sigma} \bigwedge_{q} (H(x, y) \land S_q(x) \land T_\sigma(x, y)) \rightarrow \bigvee_{\Delta} (H(x + 1, y') \land S_{q'}(x + 1) \land T_{\sigma'}(x + 1, y)) \]
where Δ is the set of all triples (q', σ', D) such that $((q, \sigma), (q', \sigma', D)) \in \delta$ and

$$y' = \begin{cases}
 y & \text{if } D = S \\
 y - 1 & \text{if } D = L \\
 y + 1 & \text{if } D = R
\end{cases}$$

Finally, some accepting state is reached

$$\exists x \ S_{acc}(x)$$
Recall that a language L is in NP if, and only if,

$$L = \{x \mid \exists y R(x, y)\}$$

where R is polynomial-time decidable and polynomially-balanced.

Fagin’s theorem tells us that polynomial-time decidability can, in some sense, be replaced by first-order definability.
USO—*universal second-order logic* consists of those formulas of second-order logic of the form:

\[\forall X_1 \cdots \forall X_k \phi \]

where \(\phi \) is a first-order formula.

A corollary of Fagin’s theorem is that a class \(C \) of finite structures is definable by a sentence of *universal second-order logic* if, and only if, its complement is decidable by a *nondeterministic machine* running in polynomial time.

\[\text{USO} = \text{co-NP} \]
Second-Order Alternation Hierarchy

We can define further classes by allowing other second-order quantifier prefixes.

\[\Sigma_1^1 = \text{ESO} \]
\[\Pi_1^1 = \text{USO} \]

\[\Sigma_{n+1}^1 \] is the collection of properties definable by a sentence of the form:
\[\exists X_1 \ldots \exists X_k \phi \text{ where } \phi \text{ is a } \Pi_n^1 \text{ formula.} \]

\[\Pi_{n+1}^1 \] is the collection of properties definable by a sentence of the form:
\[\forall X_1 \ldots \forall X_k \phi \text{ where } \phi \text{ is a } \Sigma_n^1 \text{ formula.} \]

Note: every formula of second-order logic is \[\Sigma_n^1 \] and \[\Pi_n^1 \] for some \(n \).
Polynomial Hierarchy

We have, for each \(n \):

\[
\Sigma^1_n \cup \Pi^1_n \subseteq \Sigma^1_{n+1} \cap \Pi^1_{n+1}
\]

The classes together form the *polynomial hierarchy* or \(\text{PH} \).

\(\text{NP} \subseteq \text{PH} \subseteq \text{PSPACE} \)
\[P = \text{NP} \quad \text{if, and only if,} \quad P = \text{PH} \]