MPhil Advanced Computer Science Topics in Logic and Complexity

Exercise Sheet 2

Lent 2022

Anuj Dawar

1. In the lecture we saw an illustration of a construction to show that *acyclic-ity* of graphs is not definable in first-order logic. Write out a proof of this result.

Prove that *acyclicity* is not definable in Mon. Σ_1^1 . Is it definable in Mon. Π_1^1 ?

2. Prove (using Hanf's theorem or otherwise) that 3-colourbility of graphs is not definable in first-order logic.

Graph 3-colourability (and, indeed, 2-colourability) are definable in $\mathsf{Mon}.\Sigma_1^1$. Can you show they are not definable in $\mathsf{Mon}.\Pi_1^1$? Are they definable in *universal second-order logic*?

- 3. Prove the lemma stated in the lecture that any formula that is positive in the relation symbol R defines a monotone operator.
- 4. Prove that the formula of LFP $\neg [\mathbf{lfp}_{R,\mathbf{x}} \neg \phi(R/\neg R)](\mathbf{x})$, where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$, defines the greatest fixed point of the operator defined by ϕ .
- 5. In the lectures, we saw how definitions by simultaneous induction can be replaced by a single application of the **lfp** operator. In this exercise, you are asked to show the same for *nested* applications of the **lfp** operator.

Suppose $\phi(\mathbf{x}, \mathbf{y}, S, T)$ is a formula in which the relational variables S (of arity s) and T (of arity t) only appear positively, and \mathbf{x} and \mathbf{y} are tuples of variables of length s and t respectively. Show that (for any t-tuple of terms \mathbf{t}) the predicate expression

$$[\mathbf{lfp}_{S,\mathbf{x}}([\mathbf{lfp}_{T,\mathbf{v}}\phi](\mathbf{t}))]$$

is equivalent to an expression with just one application of lfp.

6. Consider a vocabulary consisting of two unary relations P and O, one binary relation E and two constants s and t. We say that a structure $\mathbb{A} = (A, P, O, E, s, t)$ in this vocabulary is an *arena* if $P \cup O = A$ and $P \cap O = \emptyset$. That is, P and O partition the universe into two disjoint sets.

An arena defines the following game played between a *player* and an *opponent*. The game involves a *token* that is initially placed on the element s. At each move, if the token is currently on an element of P it is *player* who plays and if it is on an element of O, it is *opponent* who plays. At each move, if the token is on an element a, the one who plays choses an element b such that $(a, b) \in E$ and moves the token from a to b. If the token reaches t at any point then *player* has won the game.

We define GAME to be the class of arenas for which *player* has a strategy for winning the game. Note that in an arena $\mathbb{A} = (A, P, O, E, s, t)$, *player* has a strategy to win from an element a if *either* $a \in P$ and there is some move from a so that *player* still has a strategy to win after that move or $a \in O$ and for every move from a, *player* can win after that move.

(a) Give a sentence of LFP that defines the class of structures GAME.

We say that a collection C of decision problems is *closed under logarithmic* space reductions if whenever $A \in C$ and $B \leq_L A$ (i.e. B is reducible to A by a logarithmic-space reduction) then $B \in C$.

The class of structures GAME defined above is known to be P-complete under logarithmic-space reductions.

- (b) Explain why this, together with (a) implies that the class of problems definable in LFP is *not* closed under logarithmic-space reductions.
- 7. Give a sentence of LFP that defines the class of linear orders with an even number of elements.
- 8. The directed graph reachability problem is the problem of deciding, given a structure (V, E, s, t) where E is an arbitrary binary relation on V, and $s, t \in V$, whether (s, t) is in the reflexive-transitive closure of E. This problem is known to be decidable in NL.

Transitive closure logic is the extension of first-order logic with an operator \mathbf{tc} which allows us to form formulae

$$\phi \equiv [\mathbf{t}\mathbf{c}_{\mathbf{x},\mathbf{y}}\psi](\mathbf{t}_1,\mathbf{t}_2)$$

where \mathbf{x} and \mathbf{y} are k-tuples of variables and \mathbf{t}_1 and \mathbf{t}_2 are k-tuples of terms, for some k; and all occurrences of variables \mathbf{x} and \mathbf{y} in ψ are bound in ϕ . The semantics is given by saying, if \mathbf{a} is an interpretation for the free variables of ϕ , then $\mathcal{A} \models \phi[\mathbf{a}]$ just in case $(\mathbf{t}_1^{\mathbf{a}}, \mathbf{t}_2^{\mathbf{a}})$ is in the reflexive-transitive closure of the binary relation defined by $\psi(\mathbf{x}, \mathbf{y})$ on \mathcal{A}^k .

- (a) Show that any class of structures definable by a sentence ϕ , as above, where ψ is first-order, is decidable in NL.
- (b) Show that, if K is an isomorphism-closed class of structures in a relational signature including <, such that each structure in K interprets < as a linear order and

$$\{[\mathcal{A}]_{<} \mid \mathcal{A} \in K\}$$

is decidable in NL, then there is a sentence of transitive-closure logic that defines K.

9. For a binary relation E on a set A, define its *deterministic transitive* closure to be the set of pairs (a, b) for which there are $c_1, \ldots, c_n \in A$ such

that $a = c_1, b = c_n$ and for each $i < n, c_{i+1}$ is the unique element of A with $(c_i, c_{i+1}) \in E$.

Let DTC denote the logic formed by extending first-order logic with an operator **dtc** with syntax analogous to **tc** above, where $[\mathbf{dtc}_{\mathbf{x},\mathbf{y}}\psi]$ defines the deterministic transitive closure of $\psi(\mathbf{x},\mathbf{y})$.

- (a) Show that every sentence of DTC defines a class of structures decidable in $\mathsf{L}.$
- (b) Show that, if K is an isomorphism-closed class of structures in a relational signature including <, such that each structure in K interprets < as a linear order and

$$\{[\mathcal{A}]_{<} \mid \mathcal{A} \in K\}$$

is decidable in L, then there is a sentence of DTC that defines K.

- 10. The structure homomorphism problem for a relational structure σ (with no function or constant symbols) is the problem of deciding, given two σ -structures \mathbb{A} and \mathbb{B} whether there is a homomorphism $\mathbb{A} \longrightarrow \mathbb{B}$.
 - (a) Show that if σ contains only unary relations, then the structure homomorphism problem for σ is decidable in polynomial time.
 - (b) Show that if σ contains a relation of arity 2 or more, then the the structure homomorphism problem for σ is NP-complete.
- 11. Schaefer's theorem (Handout 5, page 12) gives six conditions under which $\mathsf{CSP}(\mathbb{B})$ is in P, for \mathbb{B} a structure on domain $\{0,1\}$. For each of the six conditions, show that indeed any $\mathsf{CSP}(\mathbb{B})$ is in P.

For the first five conditions, it is also the case that $\mathsf{CSP}(\mathbb{B})$ is definable in LFP. Prove this.

- We saw (Handout 6, page 3) that for any B, CSP(B) is definable in MSO. Write out an MSO formula for 3-SAT as defined on page 9 of Handout 5.
- 13. Prove that if $\mathsf{CSP}(\mathbb{B})$ has bounded width, it is definable in LFP.
- 14. We saw in the lecture that $CSP(K_2)$ has width 3. Prove that $CSP(K_3)$ does not have width 3. (*Hint*: Consider the graph K_4).