
Incremental structured prediction

L101: Machine Learning for Language Processing
Andreas Vlachos

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence, cf lecture 6):

Where Y is rather large and often depends on the input (e.g. L|x| in PoS tagging)

Structured prediction reminder

Various approaches:
● Linear models (structured perceptron)
● Probabilistic linear models (conditional random fields)
● Non-linear models

Assuming we have a trained model, decode/predict/solve the argmax/inference:

Decoding

Dynamic programming to the rescue?

Yes! But we need to make assumptions on the structure:
● 1st order Markov assumption (linear chains), rarely more than 2nd
● The scoring function must decompose over the output structure

What if we need greater flexibility?

Examples:
● Predicting the PoS tags word-by-word (MEMM without Viterbi)
● Building a syntax tree by shifting items to and reducing a stack
● Generating a sentence word-by-word (these days with seq2seq)

Incremental structured prediction
A classifier f predicting actions to construct the output:

Incremental structured prediction

Pros:
✓ No need to enumerate all possible outputs
✓ No modelling restrictions on features

Cons:
x Prone to error propagation
x Classifier not trained w.r.t. task-level loss

Ranzato et al. (ICLR2016)

We do not score complete
outputs:
● early predictions do not

know what follows
● cannot be undone if purely

incremental/monotonic
(doesn’t need to be)

● we are training with gold
standard predictions for
previous predictions, but
test with predicted ones
(exposure bias)

Error propagation

https://arxiv.org/abs/1511.06732
https://arxiv.org/pdf/1902.02192.pdf

Greedy: pick the most likely
action (“the nice woman”)

Beam: keep the top-k paths
alive (“the dog has” with k=2)

Overcome locally optimal
decisions that are not globally
optimal according to the model

Incremental basics: Greedy and Beam search

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate

Beam search algorithm

Beam search in practice
● It works, but implementation matters

○ Feature decomposability is key to reuse
previously computed scores

○ Sanity check: on small/toy instances
large enough beam should find the
exact argmax

● Take care of bias due to action types with
different score ranges: picking among all
English words is not comparable with
picking among PoS tags

https://www.aclweb.org/anthology/P13-2111/
https://arxiv.org/abs/1909.11049
https://arxiv.org/abs/1909.11049

Reranking:
● Adjust probabilities to normalise for sentence length
● Model to pick outputs that are likely to have better global score (e.g. BLEU)
● Re-rank intermediate beams, a.k.a. incremental beam manipulation

We still rely on beam search to generate good hypotheses

Beam search extensions

Training decoders for beam search:
● Penalize the model when the correct hypothesis falls of the beam (beam

search optimization, beam-aware training)
● Train a greedy decoder to approximate beam search to maximize a

sentence-level score

https://arxiv.org/abs/1808.10006
https://arxiv.org/pdf/1606.05491.pdf
https://arxiv.org/abs/2102.02574
https://arxiv.org/pdf/1606.02960.pdf
https://arxiv.org/pdf/1606.02960.pdf
https://arxiv.org/pdf/2010.04980.pdf
https://openreview.net/forum?id=rJZlKFkvM

● Search errors save us from model errors!
○ Also MAP decoding does not always do justice to our models

● In Neural Machine Translation performance degrades with larger beams...

Being less exact helps?

● Part of the problem at least is that we train word-level models but the task
makes (a lot more!) sense at the sentence-level really...

https://arxiv.org/abs/1908.10090
https://arxiv.org/pdf/2005.10283.pdf
https://www.aclweb.org/anthology/W17-3204/

Predict the action leading the correct output. Losses over structured outputs:

● Hamming loss: number of incorrect part of speech tags in a sentence
● False positives and false negatives: e.g. named entity recognition
● Reduction in BLEU score (n-gram overlap) in generation tasks, e.g. machine

translation

Training for incremental structured prediction
In supervised training we assume a loss function e.g. negative log likelihood against
gold labels in classification with logistic regression/ feedforward NNs.

In incremental structured prediction, what do we train our classifier to do?

Can we assess the goodness of each action?

● In PoS tagging, predicting a tag at a
time with Hamming loss?
○ YES

● In machine translation predicting a
word at a time with BLEU score?
○ NO

BLEU score doesn’t decompose over the
actions defined by the transition system

Loss and decomposability

Incremental structured prediction can be viewed as (degenerate) RL:
● No environment dynamics
● No need to worry about physical costs (e.g. robots damaged)

Reinforcement learning

Sutton and Barto (2018)

http://incompleteideas.net/book/the-book.html

We can now do our stochastic gradient (ascent) updates:

Learn the parameters θ of policy/classifier π that optimize rewards/task loss v:

Policy gradient

What could go wrong?

● on-policy learning: the policy affects the distributions of states visited d
● the reward from reaching a state s is its expectation according to the policy

See Choshen et al. (2020), and Kiegeland and Kreutzer (2021) for a recent debate
To obtain training signal we need complete trajectories
● Can sample (REINFORCE) but inefficient in large search spaces
● High variance when many actions are needed to reach the end (credit

assignment problem)
● Can learn Q to evaluate the outcome of the action (actor-critic)

In NLP, often the models are trained initially in the standard supervised way and
then fine-tuned with RL (e.g. for summarization)
● Hard to tune the balance between the two
● Constrains the benefits of RL

Reinforcement learning is hard...

https://arxiv.org/pdf/1907.01752.pdf
https://arxiv.org/pdf/2106.08942.pdf
https://openreview.net/forum?id=SJDaqqveg
https://arxiv.org/pdf/1705.04304.pdf

Imitation learning

● Both reinforcement and imitation learning learn a
classifier/policy to maximize reward

● Learning in imitation learning is facilitated by an expert
● Basic form: supervised learning using expert demonstrations,

a.k.a behavioural cloning; IL algorithms go beyond this

Train without
assuming that all
previous words are
correctly predicted

This idea was
first introduced
as the DAgger
algorithm in
robotics

Scheduled sampling

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://papers.nips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf

Imitation learning in a nutshell

● Rollins-rollouts mix model
and expert predictions

● First iteration trained on
expert, later ones
increasingly use the trained
model

● Exploring one-step
deviations from the rollin of
the classifierChang et al. (2015)

https://arxiv.org/abs/1502.02206

Imitation learning is hard too!

● Defining a good expert is difficult
○ How to know all possible correct next words to add given a partial

translation and a gold standard?
○ Without a better than random expert, we are back to RL

● While expert demonstrations make learning more efficient, it is still difficult
to handle large numbers of actions

● The interaction between learning the feature extraction and learning the
policy/classifier is not well understood in the context of RNNs

http://approximatelycorrect.com/2020/10/26/superheroes-of-deep-learning-vol-1-machine-learning-yearning/

● Kai Zhao’s survey
● Noah Smith’s book
● Sutton and Barton Reinforcement learning book
● This blog on policy gradient methods
● Imitation learning tutorials:

○ structured prediction
○ natural language generation
○ ML-oriented

Bibliography

https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Survey_Kai_Zhao_12_11_2014.pdf
http://www.cs.cmu.edu/~nasmith/LSP/
http://incompleteideas.net/book/the-book.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#what-is-policy-gradient
https://sheffieldnlp.github.io/ImitationLearningTutorialEACL2017/
https://slideslive.com/38922816/imitation-learning-and-its-application-to-natural-language-generation
https://sites.google.com/view/icml2018-imitation-learning/

