
Program Synthesis

MPhil ACS module P230 - Alan Blackwell

You do the rest!

Principles of program synthesis, from HCI perspective

} The user experience of ML-based synthesis:
} The user says: “Here is an example of what I want to do”
} Followed by: “You do the rest”

} System response: “OK, I’ll do others the same way”
} How does it know what “others” are?
} How does it know what “the same way” is?

} Usability issues:
} How to specify applicability?
} How to control generalisation?
} How to understand what was inferred?
} How to modify the synthesised program?

Classic programming by example

} Keyboard macros – demo in Emacs

} Get a plain text file containing semi-structured text

} <Ctrl+x> (starts macro recording

} Perhaps search for context, cut and paste, add text …

} Remember to go to known location (e.g. start of next line)

} <Ctrl+x>) ends recording

} <Ctrl+x> e plays back once

} <ESC> 1 0 0 <Ctrl+x> e repeats 100 time

Value proposition

} The next generation of AI: “Intelligent tools”

} If a user knows how to perform a task on a computer, that should be sufficient to
create a program to perform the task.
} Early research aimed to achieve “programming in the user interface”

} Macro recorders are one model, but they are “too literal”
} Do only what they are shown (no generalisation)
} Unable to adjust for different cases (no inference)

} Other models:
} Automation of repetitive activities
} Creation of custom applications

} Machine learning problem is to create a model of user intent
} Ideally informed by prior likelihood – from this user, and other users

Eager

Classic mixed-initiative programming by example

} Allen Cypher’s “Eager” created at Apple research in 1990
} Implemented as extension to Hypercard (event capture + injection)
} Machine learning implemented in LISP

} Scenario – create a script to produce a list of subject lines from messages

Chimera

Programming by demonstration in the graphics domain

} Classic example: David Kurlander’s Chimera
} Infers constraints via heuristics, from snapshots of drawing editor state
} Users can generalise a “graphical macro” in editable history of operations
} https://youtu.be/JbrJQW25ekI?t=7m7s

} D. Kurlander Graphical Editing by Example (1993)
} PhD thesis, Columbia University. CS Tech/ Report CUCS-023-93

https://youtu.be/JbrJQW25ekI?t=7m9s

ToonTalk

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Generalising a constraint with Dusty

Generalising a constraint with Dusty

Generalisation

Why is the generalisation step so significant?

} Generalisation from examples is fundamental to mental abstraction
} Repetition of concrete instances (i.e. direct manipulation) does not require abstraction
} Any automated action (i.e. programming) does require abstraction

} So program synthesis requires the user to conceptualise their problem in an
abstract way
} Programming by example is a strategy for achieving this …
} … the user can become comfortable with individual cases, while
} … the system formulates abstractions at the same time the user does.

} Essential that user & system can “discuss” what they are concluding:
} So is this what you want me to do?
} No, here is a case where you should do something else.
} Oh, I see, so like this?

The Attention Investment model of abstraction use

} Programming is not like direct manipulation, so the standard rules of usability
(Shneiderman’s direct manipulation principles) do not apply:
} Incremental action
} Fully visible state
} Immediate feedback
} Easily reversible actions

} Making abstractions is cognitively hard, because actions take place in the future, and
they apply to multiple potential contexts.
} Automating repetitive actions does save time and (mental) effort
} But formulating and refining abstractions costs time and mental effort!
} What leads a user to approach their tasks in this way?

} Richard Potter’s “Just In Time Programming”
} Rosson and Carroll’s “Paradox of the Active User”
} Bainbridge’s “Ironies of Automation”
} Burnett’s “Surprise, Explain, Reward” (cf mixed-initiative design strategies, including Clippy)

SWYN: See What You Need

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Communicating inference to the user

} (0|0044)1223[356][0–9]+

} Find one of the following:
} a) either the sequence “0”
} b) the sequence “0044”

} followed by the sequence “1223”

} followed by
} any one of these characters: “3”or “5”or “6”

} followed by at least one, possibly more, of the following:
} any one of these characters: any one from“0” to “9”

Structured text editing as an ML application

} Aimed at the kind of things people did with sed/awk/perl
} Many automated text operations involved regexps
} But users found these the hardest thing to understand …
} … research agenda for machine learning: sed/awk/perl/swyn

} Similar goals to Witten and Mo’s TELS (1989)
} Learning Text Editing Tasks from Examples
} See Cypher book chapter 8

} Luke Church demonstrated working solution (2007)
} Recursive language model “Structured Prediction by Partial Match”
} Prior expectation based on harvested corpus of regular expressions

Example applications

The Programmer’s Assistant project from 1978 onwards

} Implemented as Knowledge-Based Emacs (KB-Emacs)
} PhD project of Charles Rich at MIT
} Aimed to recognise cognitive plan elements within source code

} In practice, programmer-assist features in modern IDEs are implemented using
heuristics rather than AI models
} Syntax-directed editing
} Auto-complete of standard constructs
} Refactoring
} Inference from identifier names (e.g. follow x=x+1; with y=y+1;)
} Navigate-by-completion for library APIs

} There is significant research inferring more such patterns from code bases, and a
few products coming onstream with more generative predictions
} https://www.tabnine.com

Working in a data-centric paradigm: FlashFill for Excel

} Building on this paper by Sumit Gulwani (MSR Redmond)
} Automating String Processing in Spreadsheets using Input-Output Examples, Proc. POPL 2011
} https://www.microsoft.com/en-us/research/publication/automating-string-processing-

spreadsheets-using-input-output-examples/

} Live Demo
} Paste a list of semi-structured text data into the left column
} Type an example transform result in top cell to the right, then <Enter>
} Press <Ctrl+E>

} “Synthesises a program from input-output examples”
} How do you choose the examples?
} How do you know what will happen?
} Using this ‘program’ as a component of a larger system is still a research topic

Visualising abstract structure: Data Noodles

} https://www.youtube.com/watch?v=hyCVBxfx7VE

} Applies a transformation paradigm
} Directed search for fold/unfold transforms that will achieve the demonstrated result

} Search procedure uses off-the-shelf program synthesis toolkit
} PROSE SDK from Gulwani team at MSR Redmond

} Custom-built front-end
} The “spreadsheet” is purely for familiarity of presentation

} No actual spreadsheet calculation is performed
} Drag-and-drop target previews allow user to anticipate inference
} Noodles preserve and visualise the demonstrated actions

} Allow reasoning about causality from example to synthesised program
} Potentially support modification/correction of examples

https://www.youtube.com/watch?v=hyCVBxfx7VE

