
Hoare logic and Model checking
Revision class

Christopher Pulte cp526
University of Cambridge

CST Part II – 2021/22



Hoare logic and separation logic



The concept of ownership

Ownership of a heap cell is the permission to (safely)
read/write/dispose of it: {P} C {Q} guarantees C does not fail,
the ownership of the locations in P is sufficient.

Essential: this ownership is not duplicable.

1



The concept of ownership (continued)

E.g.: use-after-free: dispose(X); [X ] := 5

Separation logic:

{X 7→ v}
dispose(X);
{emp}
proof fails
{X 7→ v}
[X] := 5
{X 7→ 5}

If ownership was duplicable:

{X 7→ v}
{X 7→ v ∗ X 7→ v}
dispose(X);
{X 7→ v}
[X] := 5
{X 7→ 5}

(This is very different from Hoare logic assertions that are freely
duplicable.)

2



Ownership formally, and linear vs. affine

[[←]](⇐) : Assertion → Stack → P(Heap)

[[t1 7→ t2]](s)
def
=


h ∈ Heap

∣∣∣∣∣∣∣∣∣∣∣∣
∃`,N.

[[t1]](s) = ` ∧
` 6= null ∧
[[t2]](s) = N ∧
dom(h) = {`} ∧
h(`) = N


t1 7→ t2 asserts ownership of location `, so to capture ownership,
requires {`} ⊆ dom(h).

• In our linear separation logic resources cannot be dropped:
to prevent memory leaks, we require dom(h) = {`}.

• Having the requirement {`} ⊆ dom(h) instead would give us
an affine separation logic. 3



Memory leaks?

Ok in an affine logic.

{X 7→ 1 ∗ Y 7→ 2}
skip
{X 7→ 1 ∗ Y 7→ 2}
{X 7→ 1}

We use a linear logic.

{X 7→ 1 ∗ Y 7→ 2}
dispose(Y);
{X 7→ 1}

4



How is ownership related to framing?

If we have proved {P} C {Q} for some program C and we want to
use this triple in a proof involving assertion R , we can use the
frame rule to conclude {P ∗ R} C {Q ∗ R}: R is preserved by C .

` {P} C {Q} mod(C) ∩ FV (R) = ∅

` {P ∗ R} C {Q ∗ R}

Intuitively: P must have all the ownership required for the safe
execution of C — all the parts of the heap that C manipulates.
The separating conjunction ensures that R cannot have ownership
of those heap locations (or the precondition is false).

Recall: P ∗ R requires the disjointness of the heap cells for which
P and R assert ownership.

5



Formal semantics of separation logic triples

Written formally, the semantics is:

|= {P} C {Q} def
=

∀s, h1, hF . dom(h1) ∩ dom(hF ) = ∅ ∧ h1 ∈ [[P ]](s) ⇒ (¬(〈C , 〈s, h1 ] hF 〉〉 →∗  )) ∧(
∀s ′, h′.

〈C , 〈s, h1 ] hF 〉〉 →∗ 〈skip, 〈s ′, h′〉〉 ⇒
∃h′

1. h′ = h′
1 ] hF ∧ h′

1 ∈ [[Q]](s ′)

) 
This has “framing baked in”. Q: Does it have to?

No. See for instance: “Separation Logic: A Logic for Shared Mutable
Data Structures”, J. C. Reynolds; and “A Semantic Basis for Local
Reasoning.”, H. Yang and P. O’Hearn

6



Pure assertions

[[←]](⇐) : Assertion → Stack → P(Heap)

[[⊥]](s) def
= ∅

[[>]](s) def
= Heap

[[P ∧ Q]](s) def
= [[P ]](s) ∩ [[Q]](s)

[[P ∨ Q]](s) def
= [[P ]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s) def
= {h ∈ Heap | h ∈ [[P ]](s) ⇒ h ∈ [[Q]](s)}

...

What is the meaning of pure assertion X = Y ?

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise 7



Semantics of pure assertions

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise

[[p(t1, . . . tn]](s) = {h | [[p]]([[t1]](s), . . . , [[tn]](s))}

More generally, the semantics of a pure assertion in a stack s:

Informally: “check the pure assertion in s”; if it holds in s, return
the set of all heaps, if not return the empty set of heaps.

Formally: don’t worry about it, because we have not defined it.

8



Semantics of pure assertions, wrt. heap

Do pure assertions such as X = 1 or X = Y assert properties
about the heap? E.g. do they implicitly assert · · · ∧ emp
(ownership of the empty resource/heap)? No.

The meaning of >, for instance, is [[>]](s) = Heap, the set of all
heaps (not the set containing the empty heap).

9



Semantics of pure assertions, wrt. heap (continued)

The 2019 exam paper 8, question 7 asks:

{N = n ∧ N ≥ 0}
X := null; while N > 0 do (X := alloc(N, X); N := N −1)
{list(1, . . . , n)}

(I have not checked whether that year used different definitions
from ours, but) This does seem to be missing the emp in the
pre-condition: {N = n ∧ N ≥ 0 ∧ emp}

Why? {N = n ∧ N ≥ 0} makes no statement about the heap —
the precondition is satisfied by any heap (and suitable stack).

But without the emp requirement, we would not be able prove the
post-condition list(1, . . . , n), which asserts that the only ownership
is that of the list predicate instance.

10



Conjunction and separating conjunction

What are the differences between them and when to use which?
And how do they interact with pure assertions?

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

11



Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

p1 7→ v1 ∗ p2 7→ v2 vs. p1 7→ v1 ∧ p2 7→ v2

• p1 7→ v1 ∗ p2 7→ v2 holds for a heap h that is the disjoint union of
heaplets h1 and h2, where h1 contains just cell p1 with value v1, and
h2 just cell p2, with value v2. So: ownership of two disjoint heap
cells p1 and p2 with p1 6= p2.

• p1 7→ v1 ∧ p2 7→ v2 holds for a heap h that satisfies two assertions
simultaneously (is in the intersection of their interpretations):
(1) p1 7→ v1: h is a heap of just one heap cell, p1 with value v1

(2) p2 7→ v2: h is a heap of just one heap cell, p2 with value v2

So: ownership of just one heap cell, p1 = p2 with value v1 = v2.
12



Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

(p 7→ 1) ∗ Y = 0 vs. (p 7→ 1) ∧ Y = 0

• (p 7→ 1) ∗ Y = 0 holds for a stack s and a heap h where h is the
disjoint union of heaplets h1 and h2, such that h1 contains
ownership of one cell, p with value 1, and h2 is an arbitrary heap
where s satisfies Y = 0. So, s must map Y to 0 and h is the
disjoint union of the heaplet of just p with value 1 and an arbitrary
disjoint heap h2.

• (p 7→ 1) ∧ Y = 0 holds for a stack s and a heap h satisfying two
assertion simultaneously: p 7→ 1 and Y = 0. This means s must
map Y to 0 and h must be the heap consisting of just that one cell.

13



It is good to be careful about the unexpected interaction of the
usual logical connectives with the new separation logic connectives!

14



Variable assignment, heap derefencing, heap assignment
Variable assignment ` {P [E/X ]} X := E {P}

Heap assignment
` {E1 7→ t} [E1] := E2 {E1 7→ E2}

Heap derefence
` {E 7→ v ∧ X = x} X := [E ] {E [x/X ] 7→ v ∧ X = v}

Why do the rules look so different? Could they be made more similar?

1. X := E and [X ] := E are fundamentally different operations.

2. A heap assignment rule with substitution behaviour (similar to
variable assignment) would not work: there is nothing to be
substituted, since E1 is a pointer.

3. One could have a separation logic with ownership of program
variables, where variable assignment might look more similar to
heap assignment.

4. One could indeed have a variable assignment rule more similar to
(the “variable-updating” part of) heap dereferencing 15



Proof outlines to proof trees

Good strategy for converting proof outlines to proof trees: read
“inside out”, starting with the inner triples around commands.
Note: these steps work only if it is a detailed proof outline – with
all the steps.

• {P} C {Q}, an inner triple for an “atomic command” (skip,
assignment, heap derefence, heap assignment, allocation,
disposal), translates to an application of the Hoare/separation
logic inference rule for that command C .

16



Proof outlines to proof trees (continued)

• {P1}
{P2}
C
{Q2}

{Q1}

The rule for existentials and the frame rule are indicated by
indentation. (Which of these should be clear from the
outline.) This translates to an instance of either of these:

{P2}C{Q2} side condition . . .
{P1}C{Q1}

17



Proof outlines to proof trees (continued)

• {P1}
{P2}
C
{Q2}
{Q1}

The rule of consequence is indicated by un-indented brackets
of assertions

`FOL P1 ⇒ P2 ` {P2} C {Q2} `FOL Q2 ⇒ Q1

` {P1} C {Q1}

For an example of how to read proof outlines, see lecture 5, slide
10 (and video). Note that the website has updated slides for these
compared to the printed handout.

18



Proof outlines

How much detail to give in proof outline in exam?

19



Model Checking



LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”
CTL: ψ = A G ((Call2 ∧ E X Loc2) → A X Loc2)

Q: Can we express the same in LTL with
φ = G (Call2 ∧ (Loc1 ∨ Loc3)) → X Loc2?

This depends on the details of the elevator temporal model this
may produce the same answers.1 In any case, ψ and φ are not
generally equivalent. The point is: expressing properties of the tree
of possible transitions out of a given state — such as asserting the
existence of some path — is not possible with LTL.

1I think — the way we have sketched the elevator in lecture 7 — it will not:
Loc1 ∨ Loc3 does not imply there exists a next step such that Loc2 holds.

20



LTL/CTL expressivity

An LTL formula not expressible in CTL: φ = (F p) → (F q).

a) CTL formula ψ1 = (A F p) → (A F q).
φ does not hold, ψ1 does.

1 : {} 2 : {p}3 : {}

b) CTL formula ψ2 = A G (p → (A F q)).
φ holds, ψ2 does not.

4 : {q} 5 : {p}

21



LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent?

1 : {p} 2 : {} 3 : {p}

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3
forever. Both kinds of paths eventually reach a state in which p
holds generally (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics for):

• all paths π from 1 satisfy F A G p, so
• all paths π from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in A G p is not
satisfied, because there exists a path π2 that goes to 2 from there.

22



It is good to be careful about the unexpected interaction of the
temporal operators, with other temporal operators and with path
quantifiers.

23



Why have simulation relations and not simulation functions?

AP = AP ′ = {good}

1 : {}

2 : {good}

3 : {good}

4 : {}

5 : {good}

M M ′

M simulates M ′ 24



Compositional model checking?

• “Compositional model checking”, E.M. Clarke; D.E. Long;
K.L. McMillan (1989)

• “Compositional Model Checking for Multi-Properties”,
O. Goudsmid, O. Grumberg, S. Sheinvald (2021)

25



Good luck!

26


	Hoare logic and separation logic
	Model Checking

