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Hoare logic and separation logic

The concept of ownership

Ownership of a heap cell is the permission to (safely)
read/write/dispose of it: {P} C {Q} guarantees C does not fail,
the ownership of the locations in P is sufficient.

Essential: this ownership is not duplicable.
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The concept of ownership (continued)

E.g.: use-after-free: dispose(X); [X ] := 5

Separation logic:

{X 7→ v}
dispose(X);
{emp}
proof fails
{X 7→ v}
[X] := 5
{X 7→ 5}

If ownership was duplicable:

{X 7→ v}
{X 7→ v ∗ X 7→ v}
dispose(X);
{X 7→ v}
[X] := 5
{X 7→ 5}

(This is very different from Hoare logic assertions that are freely
duplicable.)
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Ownership formally, and linear vs. affine

[[←]](⇐) : Assertion → Stack → P(Heap)

[[t1 7→ t2]](s)
def
=


h ∈ Heap

∣∣∣∣∣∣∣∣∣∣∣∣
∃`,N.

[[t1]](s) = ` ∧
` 6= null ∧
[[t2]](s) = N ∧
dom(h) = {`} ∧
h(`) = N


t1 7→ t2 asserts ownership of location `, so to capture ownership,
requires {`} ⊆ dom(h).

• In our linear separation logic resources cannot be dropped:
to prevent memory leaks, we require dom(h) = {`}.

• Having the requirement {`} ⊆ dom(h) instead would give us
an affine separation logic. 3

Memory leaks?

Ok in an affine logic.

{X 7→ 1 ∗ Y 7→ 2}
skip
{X 7→ 1 ∗ Y 7→ 2}
{X 7→ 1}

We use a linear logic.

{X 7→ 1 ∗ Y 7→ 2}
dispose(Y);
{X 7→ 1}

4

How is ownership related to framing?

If we have proved {P} C {Q} for some program C and we want to
use this triple in a proof involving assertion R , we can use the
frame rule to conclude {P ∗ R} C {Q ∗ R}: R is preserved by C .

` {P} C {Q} mod(C) ∩ FV (R) = ∅

` {P ∗ R} C {Q ∗ R}

Intuitively: P must have all the ownership required for the safe
execution of C — all the parts of the heap that C manipulates.
The separating conjunction ensures that R cannot have ownership
of those heap locations (or the precondition is false).

Recall: P ∗ R requires the disjointness of the heap cells for which
P and R assert ownership.
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Formal semantics of separation logic triples

Written formally, the semantics is:

|= {P} C {Q} def
=

∀s, h1, hF . dom(h1) ∩ dom(hF ) = ∅ ∧ h1 ∈ [[P ]](s) ⇒ (¬(〈C , 〈s, h1 ] hF 〉〉 →∗  )) ∧(
∀s ′, h′.

〈C , 〈s, h1 ] hF 〉〉 →∗ 〈skip, 〈s ′, h′〉〉 ⇒
∃h′

1. h′ = h′
1 ] hF ∧ h′

1 ∈ [[Q]](s ′)

) 
This has “framing baked in”. Q: Does it have to?

No. See for instance: “Separation Logic: A Logic for Shared Mutable
Data Structures”, J. C. Reynolds; and “A Semantic Basis for Local
Reasoning.”, H. Yang and P. O’Hearn
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Pure assertions

[[←]](⇐) : Assertion → Stack → P(Heap)

[[⊥]](s) def
= ∅

[[>]](s) def
= Heap

[[P ∧ Q]](s) def
= [[P ]](s) ∩ [[Q]](s)

[[P ∨ Q]](s) def
= [[P ]](s) ∪ [[Q]](s)

[[P ⇒ Q]](s) def
= {h ∈ Heap | h ∈ [[P ]](s) ⇒ h ∈ [[Q]](s)}

...

What is the meaning of pure assertion X = Y ?

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise 7

Semantics of pure assertions

[[X = Y ]](s) = {h | s(X) = s(Y )} =

Heap if [[X ]](s) = [[Y ]](s)
∅ otherwise

[[p(t1, . . . tn]](s) = {h | [[p]]([[t1]](s), . . . , [[tn]](s))}

More generally, the semantics of a pure assertion in a stack s:

Informally: “check the pure assertion in s”; if it holds in s, return
the set of all heaps, if not return the empty set of heaps.

Formally: don’t worry about it, because we have not defined it.
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Semantics of pure assertions, wrt. heap

Do pure assertions such as X = 1 or X = Y assert properties
about the heap? E.g. do they implicitly assert · · · ∧ emp
(ownership of the empty resource/heap)? No.

The meaning of >, for instance, is [[>]](s) = Heap, the set of all
heaps (not the set containing the empty heap).
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Semantics of pure assertions, wrt. heap (continued)

The 2019 exam paper 8, question 7 asks:

{N = n ∧ N ≥ 0}
X := null; while N > 0 do (X := alloc(N, X); N := N −1)
{list(1, . . . , n)}

(I have not checked whether that year used different definitions
from ours, but) This does seem to be missing the emp in the
pre-condition: {N = n ∧ N ≥ 0 ∧ emp}

Why? {N = n ∧ N ≥ 0} makes no statement about the heap —
the precondition is satisfied by any heap (and suitable stack).

But without the emp requirement, we would not be able prove the
post-condition list(1, . . . , n), which asserts that the only ownership
is that of the list predicate instance.
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Conjunction and separating conjunction

What are the differences between them and when to use which?
And how do they interact with pure assertions?

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)
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Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

p1 7→ v1 ∗ p2 7→ v2 vs. p1 7→ v1 ∧ p2 7→ v2

• p1 7→ v1 ∗ p2 7→ v2 holds for a heap h that is the disjoint union of
heaplets h1 and h2, where h1 contains just cell p1 with value v1, and
h2 just cell p2, with value v2. So: ownership of two disjoint heap
cells p1 and p2 with p1 6= p2.

• p1 7→ v1 ∧ p2 7→ v2 holds for a heap h that satisfies two assertions
simultaneously (is in the intersection of their interpretations):
(1) p1 7→ v1: h is a heap of just one heap cell, p1 with value v1

(2) p2 7→ v2: h is a heap of just one heap cell, p2 with value v2

So: ownership of just one heap cell, p1 = p2 with value v1 = v2.
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Conjunction and separating conjunction (continued)

[[P ∗ Q]](s) def
=

h ∈ Heap

∣∣∣∣∣∣∣∃h1, h2.

h1 ∈ [[P ]](s) ∧
h2 ∈ [[Q]](s) ∧
h = h1 ] h2


[[P ∧ Q]](s) def

= [[P ]](s) ∩ [[Q]](s)

(p 7→ 1) ∗ Y = 0 vs. (p 7→ 1) ∧ Y = 0

• (p 7→ 1) ∗ Y = 0 holds for a stack s and a heap h where h is the
disjoint union of heaplets h1 and h2, such that h1 contains
ownership of one cell, p with value 1, and h2 is an arbitrary heap
where s satisfies Y = 0. So, s must map Y to 0 and h is the
disjoint union of the heaplet of just p with value 1 and an arbitrary
disjoint heap h2.

• (p 7→ 1) ∧ Y = 0 holds for a stack s and a heap h satisfying two
assertion simultaneously: p 7→ 1 and Y = 0. This means s must
map Y to 0 and h must be the heap consisting of just that one cell.
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It is good to be careful about the unexpected interaction of the
usual logical connectives with the new separation logic connectives!
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Variable assignment, heap derefencing, heap assignment
Variable assignment ` {P [E/X ]} X := E {P}

Heap assignment
` {E1 7→ t} [E1] := E2 {E1 7→ E2}

Heap derefence
` {E 7→ v ∧ X = x} X := [E ] {E [x/X ] 7→ v ∧ X = v}

Why do the rules look so different? Could they be made more similar?

1. X := E and [X ] := E are fundamentally different operations.

2. A heap assignment rule with substitution behaviour (similar to
variable assignment) would not work: there is nothing to be
substituted, since E1 is a pointer.

3. One could have a separation logic with ownership of program
variables, where variable assignment might look more similar to
heap assignment.

4. One could indeed have a variable assignment rule more similar to
(the “variable-updating” part of) heap dereferencing 15

Proof outlines to proof trees

Good strategy for converting proof outlines to proof trees: read
“inside out”, starting with the inner triples around commands.
Note: these steps work only if it is a detailed proof outline – with
all the steps.

• {P} C {Q}, an inner triple for an “atomic command” (skip,
assignment, heap derefence, heap assignment, allocation,
disposal), translates to an application of the Hoare/separation
logic inference rule for that command C .
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Proof outlines to proof trees (continued)

• {P1}
{P2}
C
{Q2}

{Q1}

The rule for existentials and the frame rule are indicated by
indentation. (Which of these should be clear from the
outline.) This translates to an instance of either of these:

{P2}C{Q2} side condition . . .
{P1}C{Q1}
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Proof outlines to proof trees (continued)

• {P1}
{P2}
C
{Q2}
{Q1}

The rule of consequence is indicated by un-indented brackets
of assertions

`FOL P1 ⇒ P2 ` {P2} C {Q2} `FOL Q2 ⇒ Q1

` {P1} C {Q1}

For an example of how to read proof outlines, see lecture 5, slide
10 (and video). Note that the website has updated slides for these
compared to the printed handout.
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Proof outlines

How much detail to give in proof outline in exam?
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Model Checking

LTL/CTL expressivity

An elevator property: “If it is possible to answer a call to some
level in the next step, then the elevator does that”
CTL: ψ = A G ((Call2 ∧ E X Loc2) → A X Loc2)

Q: Can we express the same in LTL with
φ = G (Call2 ∧ (Loc1 ∨ Loc3)) → X Loc2?

This depends on the details of the elevator temporal model this
may produce the same answers.1 In any case, ψ and φ are not
generally equivalent. The point is: expressing properties of the tree
of possible transitions out of a given state — such as asserting the
existence of some path — is not possible with LTL.

1I think — the way we have sketched the elevator in lecture 7 — it will not:
Loc1 ∨ Loc3 does not imply there exists a next step such that Loc2 holds.
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LTL/CTL expressivity

An LTL formula not expressible in CTL: φ = (F p) → (F q).

a) CTL formula ψ1 = (A F p) → (A F q).
φ does not hold, ψ1 does.

1 : {} 2 : {p}3 : {}

b) CTL formula ψ2 = A G (p → (A F q)).
φ holds, ψ2 does not.

4 : {q} 5 : {p}
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LTL/CTL expressivity

Why are F G p in LTL and A F A G p in CTL not equivalent?

1 : {p} 2 : {} 3 : {p}

Two kinds of infinite paths: (L1) loop in 1 forever, (L2) loop in 3
forever. Both kinds of paths eventually reach a state in which p
holds generally (1 or 3, respectively). So F G p holds.

Informally: A F A G p holds if (check CTL (CTL*) semantics for):

• all paths π from 1 satisfy F A G p, so
• all paths π from 1 eventually reach a state where A G p holds

But path kind (L1) does not: never leaves 1, and in A G p is not
satisfied, because there exists a path π2 that goes to 2 from there.
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It is good to be careful about the unexpected interaction of the
temporal operators, with other temporal operators and with path
quantifiers.
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Why have simulation relations and not simulation functions?

AP = AP ′ = {good}

1 : {}

2 : {good}

3 : {good}

4 : {}

5 : {good}

M M ′

M simulates M ′ 24

Compositional model checking?

• “Compositional model checking”, E.M. Clarke; D.E. Long;
K.L. McMillan (1989)

• “Compositional Model Checking for Multi-Properties”,
O. Goudsmid, O. Grumberg, S. Sheinvald (2021)
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Good luck!
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