Hoare logic and Model checking
Part 1l: Model checking

Lecture 10: Implementing model checking

Christopher Pulte cp526
University of Cambridge

CST Part Il — 2021/22

Model checking

What is model checking?

The model checking problem for CTL is to determine, for a given a
temporal model M over some set of atomic propositions AP and
CTL formula v over AP, whether M satisfies 1):

ME

We need a function that computes this.

In the last two lectures we saw LTL and CTL as examples of
temporal logics that can specify the behaviour of temporal models.
For using temporal logics in the verification of artefacts, we need
model checkers to check a temporal model against a temporal

logic specification.

In this lecture we will implement a naive model checker for CTL:
the world's worst model checker for CTL.

Definite temporal models

The temporal models we have defined in lecture 7 were not
restricted in any way that guarantees computability. Here we will
assume a definite temporal model, using a finite set of states
and computable functions for the initial state predicate, the
transition relation and the labelling of states.

Type of temporal models Specifying a CTL model checker

type state = int

module States = Set.Make(Int) We will implement a naive CTL model checker:

val mc : 'ap tmodel -> 'ap state_prop -> bool
type 'ap tmodel = {
s : States.t; (*» finite set =*) which has the following specification:
sO@ : state -> bool; (* computable =*)
t : state -> state -> bool; (* computable =*)
1 : state -> 'ap -> bool; (* computable =*) VM, . (me My & MF)
}
4
Defining a CTL model checker CTL model checker
To check whether t.h(.e .model sat|sf|.es 3 property ¢, we .have. to (This is often phrased in terms of “labelling” of states.)
check whether the initial states satisfy 1. We check this using an
auxiliary function mca that returns the states satisfying a given Strategy: For a given CTL state-property ¢): compute the states
state property. of the temporal model that satisfies 1), by
let mc (m : 'ap tmodel) (psi : 'ap state_prop) : bool = = exploiting CTL formula equivalences to encode 1 as a formula
assert (left—tOtél_m); ¢ that uses only existential path quantification (using
let v = mca m psi in negation in the right places)
States.for_all (fun s ->
not (m.s@ s) || States.mem s v " (recAursiver) computing the states satisfying the sub-formulas
) m.s of 1, and

= using this information to determine which states should be

This mca function works by recursion on the proposition, calling returned for &

itself on the sub-propositions.

CTL model checker: propositional fragment

mca, for a given temporal model and state property returns the set
of states satisfying the state property.

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =
match psi with
| True ->
m.s
| False ->
States.empty
| AP p ->
States.filter (fun s -> m.1l s p) m.s
| Not psi' ->
let v = mca m psi' in
States.diff m.s v

8
CTL model checker: A
We use
s AX 9 =—E X ()
« AG/ =—EF (=¢)
let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =
| A (X psi') ->
mca m (Not (E (X (Not psi'))))
| A (G psi') ->
mca m (Not (E (F (Not psi'))))
| A (F_) ->
failwith "TODO: exercise"
| A (U (psil, psi2)) ->
failwith "TODO: tricky exercise" 0

CTL model checker: propositional fragment (continued)

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =

| And (psil, psi2) ->
let vl = mca m psil in
let v2 = mca m psi2 in
States.inter v1 v2
| Or (psil, psi2) ->
let vl = mca m psil in
let v2 = mca m psi2 in
States.union v1 v2
| Impl (psil, psi2) ->
mca m (Or (Not psil, psi2))

CTL model checker: EX

If we know in which states 1)’ holds, then we know in which states
X 9’ holds: their predecessors:

let rec mca (m : 'ap tmodel) (psi : 'ap state_prop)
: States.t =

| E (X psi') ->
let v = mca m psi' in
States.filter (fun s ->
States.exists (fun s' ->
m.t s s'
) v

) m.s

11

CTL model checker: EF

We use E F ¢/ = E (T U ¢)

let rec mca (m : 'ap tmodel) (psi :
: States.t =

i.é (F psi') ->
mca m (E (U (True, psi')))

CTL model checker: EG

For E G ¢
1. compute the set v of states satisfying ¢/
2. define the output set to be v/ := v

'ap state_prop)

3. until there are no more changes: remove from v/ elements

that cannot transition into v’

| E (G psi') ->
let v = mca m psi' in
fixpoint (fun v' ->
States.filter (fun s ->

States.exists (fun s' ->

m.t ss'
) v'
) v!
) v

12

14

CTL model checker: EG and EU

Left to do are E G ¢/ and E (1 U 1)2), which talk about infinite
paths. We will implement those using fixpoint operations on sets,

where the finite size of the set of states guarantees termination.

13

CTL model checker: EU

For E (1 U 4»):

1.
2.
3.

compute the sets v; and v, of states satisfying 1 and 1,
define the output set to be v/ := v

until there are no more changes: add states from vy that can
transition into v/

| E (U (psil, psi2)) ->

let vl = mca m psil in
let v2 = mca m psi2 in
fixpoint (fun v' ->

States.union v'

(States.filter (fun s ->
States.exists (fun s' ->
m.tss'
) V!
) v1)
) v2 15

Actually implementing model checking

This is not very efficient!
In practice,

= the labelling (the V's) are memoised: in our code the Vs are
re-computed each time, in the case of nested CTL formulas
= “symbolic model checking” uses binary decision diagrams (IB Counterexamples
Logic and proof) to represent sets of states, and performs

operations on sets-as-BDDs, instead of explicitly manipulating
the sets;

= the states can be computed lazily;

= “partial order reduction” tries to not enumerate redundant

interleavings;

= 40+ years of tricks!

16
Generating counterexamples Shape of ECTL witnesses
.)) o The shape of a ECTL witness for a set of atomic propositions AP
Adapted from “Tree-Like Counterexamples in Model Checking”.
and temporal model M:
If the specification is not satisfied, and is in ACTL, then we can do Witness , ‘—
better than just say “no”: we can produce a counterexample. | WAP € M.S — Witness
o . . | WNAP € M.S — Witness
The idea is that M ¥ ¢"™ is equivalent to M = =", where —)"™ | WAnd € Witness,; — Witness, — Witness
can be expressed in ECTL. | WOrL € Witness;, — Witness
So M ¥ *™ implies the existence of a witness for the | WOrR € Witness), — Witness
corresponding ECTL property. | WX € M.S — M.S — Witness;; — Witness

| WF € list M.S — Witness), — Witness
| WG € list (M.S x Witness;;) — Witness
| WU € list (M.S x Witness;;) — M.S — Witness), — Witness

We will now assume formulas in negation normal form: formulas
without implication, and where the only use of negation is
immediately preceding an atomic proposition.

17 There are (on purpose) no cases for A

Being an ECTL Being an ECTL witness: atomic propositions

We will define when a witness is a “valid witness” for a property:

A witness for an atomic proposition is just the fact that the atomic

(s By) wit-by W proposition holds according to M.¢:
should hold whenever W is a valid witness for the fact that 1 (s p) wit-by W =
holds in state s of temporal model M. W =WAP sAM.l's p

Similarly for negation of atomic propositions.

19

20
Being an ECTL witness: next Being an ECTL witness: future
A witness for the ‘future’ temporal operator is a finite path that
leads to a state for which we have a witness that it satisfies the
sub-property:
A witness for ‘next’ is a transition from the current state to a next
state, and a witness that the sub-property holds in the next state:
» (s Fu E F) wit-by W <
(s Fu (E X9)) wit-by W= Js’ € M.S, 7 € list M.S, W’ € Witness
Js’ € M.S, W’ € Witness),,. W=WFsx WA
W=WXss WA IsFinitePath M 7 A
s M.T s' A nth 7 0 = some s A
(s Fu) wit-by W’ last 7 = some s’ A
(s By) wit-by W/
21

22

Being an ECTL witness: generally

A witness for the ‘generally’ temporal operator is a lasso-shaped
path, together with witnesses that each state along the path

satisfies the sub-property:

def

(sEmw E G 4) wit-by W =
ISWs € list (M.S x Witness,).
W =WG SWs A
let m = firsts SWs in
IsFinitePath M 7 A
nthmt0=s
(3i € N.(last m) M. T (nth 7 i)) A
VjeN,s' € M.S, W € Witness,,.
nth SWs j = some (s, W') =
(s' By ¢) wit-by W/

Being an ECTL witness: conjunction

def

(s By 101 A ihp) wit-by W =
dW; € Witness);, Wo € Witness),.
W = WAnd W3 W) A
(s En 1) wit-by Wh A (s By 1h2) wit-by W

)

23

25

Being an ECTL witness: until

def

(s Em E (¢1 U 1)) wit-by W =

ISWs € list (M.S x Witness;),s’ € M.S, W' € Witness),.

W =WU SWs s W' A
IsFinitePath M (firsts SWs + [s']) A
nth SWs 0 = (s,_) A
VieN,s” € M.S, W' € Witness,,.
nth SWs i = some (s, W) = A
< (s" B 1) wit-by W”)
(5 s 1) wit-by W)

Being an ECTL witness: disjunction

def

(s By 11 Vo) wit-by W =
JW' € Witness),.

(W = WOrL W’ A (s 1) wit-by W/) v

(W =WOrR W A (s F 1y 1) wit-by W')

24

26

Satisfiability and existence of witnesses

Here we have required finite temporal models, and so witnesses are

finite. (Otherwise, we would need to deal with infinite witnesses.)

Now, if we have M ¥ 4p 1) for some ACTL formula), there exists
a witness W for the fact that the ECTL formula corresponding to
—1) holds — and we could effectively find it by tweaking our model
checking algorithm (details elided).

27

Summary

We saw a model checking algorithm for CTL, and sketched how it
could be modified to generate counterexamples for ACTL formulas.

29

Witnesses beyond ECTL

Can we have witnesses for more than just ECTL?

Yes. For example, one of the nice things about LTL is that

counterexamples are just paths.

28

