
FoCS Lecture 5: 
SriogntSorting

Anil Madhavapeddy & Jeremy Yallop

18th Oct 2021



Applications of sorting
• fast search


• fast merging


• finding duplicates


• inverting tables


• graphics algorithms 



Applications of sorting
• fast search


• fast merging


• finding duplicates


• inverting tables


• graphics algorithms 

Once a set of 
items is sorted, 

it simplifies 
many other 
problems in 
computer 
science.



Complexity of 
Comparison Sort?

• typically count the number of comparisons 


• there are  permutations of  elements


• each comparison eliminates half of the permutations 



• therefore 


• The lower bound of comparison is 

C(n)

n! n

2C(n) ≥ n!

C(n) ≥ log(n!) ≈ n log n − 1.44n

O(n log n)



Common sorting algorithms

• Insertion sort


• Quicksort


• Mergesort

We begin by examining three in detail:



Insertion Sort



Insertion Sort
# let rec ins = function
    | x, [] -> [x]
    | x, y::ys ->
        if x <= y then
          x :: y :: ys
        else
          y :: ins (x, ys)  
 
# let rec insort = function
    | [] -> []
    | x::xs -> ins (x, insort xs)



Insertion Sort
# let rec ins = function
    | x, [] -> [x]
    | x, y::ys ->
        if x <= y then
          x :: y :: ys
        else
          y :: ins (x, ys)  
 
# let rec insort = function
    | [] -> []
    | x::xs -> ins (x, insort xs)

Input is inserted in the output in 
the right place to be sorted



Insertion Sort
# let rec ins = function
    | x, [] -> [x]
    | x, y::ys ->
        if x <= y then
          x :: y :: ys
        else
          y :: ins (x, ys)  
 
# let rec insort = function
    | [] -> []
    | x::xs -> ins (x, insort xs)

Input is inserted in the output in 
the right place to be sorted

Then continue to process the 
remainder of the input



Insertion Sort
• Items from input are copied 

to the output


• Inserted in order, so the 
output is always sorted

# let rec ins = function
    | x, [] -> [x]
    | x, y::ys ->
        if x <= y then
          x :: y :: ys
        else
          y :: ins (x, ys)  
 
# let rec insort = function
    | [] -> []
    | x::xs -> ins (x, insort xs)



Insertion Sort
• Items from input are copied 

to the output


• Inserted in order, so the 
output is always sorted

# let rec ins = function
    | x, [] -> [x]
    | x, y::ys ->
        if x <= y then
          x :: y :: ys
        else
          y :: ins (x, ys)  
 
# let rec insort = function
    | [] -> []
    | x::xs -> ins (x, insort xs)

Complexity is  comparisons 
vs the theoretical best case of 

O(n2)
O(n log n)



Quicksort



Quicksort

• Choose a pivot element  

• Divide: partition the input into two sublists


- those at most  in value


- those exceeding 


• Conquer: using recursive calls to sort sublists


• Combine: sorted lists by appending them

a

a

a



Quicksort
# let rec quick = function
    | [] -> []
    | [x] -> [x]
    | a::bs ->
        let rec part = function
          | (l, r, []) -> (quick l) @ (a :: quick r)
          | (l, r, x::xs) ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)



Quicksort
# let rec quick = function
    | [] -> []
    | [x] -> [x]
    | a::bs ->
        let rec part = function
          | (l, r, []) -> (quick l) @ (a :: quick r)
          | (l, r, x::xs) ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)

“Divide”



Quicksort
# let rec quick = function
    | [] -> []
    | [x] -> [x]
    | a::bs ->
        let rec part = function
          | (l, r, []) -> (quick l) @ (a :: quick r)
          | (l, r, x::xs) ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)

“Conquer”“Divide”



Quicksort
# let rec quick = function
    | [] -> []
    | [x] -> [x]
    | a::bs ->
        let rec part = function
          | (l, r, []) -> (quick l) @ (a :: quick r)
          | (l, r, x::xs) ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)

“Divide” “Conquer” “Combine”



Quicksort
# let rec quick = function
    | [] -> []
    | [x] -> [x]
    | a::bs ->
        let rec part = function
          | (l, r, []) -> (quick l) @ (a :: quick r)
          | (l, r, x::xs) ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)

Complexity is  in the average case O(n log n)



Quicksort
# let rec quick = function
    | [] -> []
    | [x] -> [x]
    | a::bs ->
        let rec part = function
          | (l, r, []) -> (quick l) @ (a :: quick r)
          | (l, r, x::xs) ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)

Complexity is  in the average case 
but  in the worst case!

O(n log n)
O(n2)



Append-free Quicksort
# let rec quik = function
    | ([], sorted) -> sorted
    | ([x], sorted) -> x::sorted
    | a::bs, sorted ->
        let rec part = function
          | l, r, [] -> quik (l, a :: quik (r, sorted))
          | l, r, x::xs ->
              if (x <= a) then
                part (x::l, r, xs)
              else
                part (l, x::r, xs)
        in
        part ([], [], bs)



Comparing both quicksorts
let rec quik = function
  | [], sorted -> sorted
  | [x], sorted -> x::sorted
  | a::bs, sorted ->
     let rec part = function
       | l, r, [] ->
           quik (l, a :: quik (r, sorted))
       | l, r, x::xs ->
           if x <= a then
             part (x::l, r, xs)
           else
             part (l, x::r, xs)
     in
     part ([], [], bs)

let rec quick = function
  | [] -> []
  | [x] -> [x]
  | a::bs ->
      let rec part = function
        | (l, r, []) ->
            (quick l) @ (a :: quick r)
        | (l, r, x::xs) ->
            if (x <= a) then
              part (x::l, r, xs)
            else
              part (l, x::r, xs)
      in
      part ([], [], bs)



Comparing both quicksorts
let rec quik = function
  | [], sorted -> sorted
  | [x], sorted -> x::sorted
  | a::bs, sorted ->
     let rec part = function
       | l, r, [] ->
           quik (l, a :: quik (r, sorted))
       | l, r, x::xs ->
           if x <= a then
             part (x::l, r, xs)
           else
             part (l, x::r, xs)
     in
     part ([], [], bs)

let rec quick = function
  | [] -> []
  | [x] -> [x]
  | a::bs ->
      let rec part = function
        | (l, r, []) ->
            (quick l) @ (a :: quick r)
        | (l, r, x::xs) ->
            if (x <= a) then
              part (x::l, r, xs)
            else
              part (l, x::r, xs)
      in
      part ([], [], bs)

Call “quick” twice and 
then append results

Call “quik” once, cons “a” to 
it, then call “quik” again



Mergesort



Merge Two Lists
# let rec merge = function
    | [], ys -> ys
    | xs, [] -> xs
    | x::xs, y::ys ->
        if x <= y then
          x :: merge (xs, y::ys)
        else
          y :: merge (x::xs, ys)



Merge Two Lists
• Does at most  

comparisons where  and  
are length of input lists


• Fast if lists are roughly equal 
and >1 length

(m + n − 1)
m n

# let rec merge = function
    | [], ys -> ys
    | xs, [] -> xs
    | x::xs, y::ys ->
        if x <= y then
          x :: merge (xs, y::ys)
        else
          y :: merge (x::xs, ys)

Useful as the basis for several other 
divide-and-conquer algorithms.



Top down mergesort
# let rec tmergesort = function
    | [] -> []
    | [x] -> [x]
    | xs ->
        let k = List.length xs / 2 in
        let l = tmergesort (take (xs, k)) in
        let r = tmergesort (drop (xs, k)) in
        merge (l, r)



Top down mergesort
# let rec tmergesort = function
    | [] -> []
    | [x] -> [x]
    | xs ->
        let k = List.length xs / 2 in
        let l = tmergesort (take (xs, k)) in
        let r = tmergesort (drop (xs, k)) in
        merge (l, r)

• Unlike quicksort, no need to pick a pivot


• Count half the list and divide using take and drop



Top down mergesort
# let rec tmergesort = function
    | [] -> []
    | [x] -> [x]
    | xs ->
        let k = List.length xs / 2 in
        let l = tmergesort (take (xs, k)) in
        let r = tmergesort (drop (xs, k)) in
        merge (l, r)

• Unlike quicksort, no need to pick a pivot


• Count half the list and divide using take and drop

“Divide”

“Conquer”

“Combine”



Top down mergesort
# let rec tmergesort = function
    | [] -> []
    | [x] -> [x]
    | xs ->
        let k = List.length xs / 2 in
        let l = tmergesort (take (xs, k)) in
        let r = tmergesort (drop (xs, k)) in
        merge (l, r)

• Complexity of mergesort is 


• But unlike quicksort, is always that even in the worst case.


• So why not always use mergesort?

O(n log n)



Sorting through sorting algorithms

Optimal is  comparisonsO(n log n)



Sorting through sorting algorithms

Optimal is  comparisonsO(n log n)

Insertion sort: simple to code, quadratic complexity

Quicksort: fast on average, quadratic complexity in worst case

Mergesort: optimal in theory, often slower than quicksort in practise



Sorting through sorting algorithms

Optimal is  comparisonsO(n log n)

Insertion sort: simple to code, quadratic complexity

Quicksort: fast on average, quadratic complexity in worst case

Mergesort: optimal in theory, often slower than quicksort in practise

Match the algorithm to the application



Exercises

Optimal is  comparisonsO(n log n)

Insertion sort: simple to code, quadratic complexity

Quicksort: fast on average, quadratic complexity in worst case

Mergesort: optimal in theory, often slower than quicksort in practise

Work through selection sort and 
bubblesort, and examine the 

complexity and runtime tradeoffs of 
their approaches


