
Foundations of Computer Science
Lecture #1: Introduction

Fri Oct 8th, 2021 
Anil Madhavapeddy & Jeremy Yallop

2021-2022

Getting Started
• Course Home: 

https://www.cl.cam.ac.uk/teaching/2122/FoundsCS/

• Interactive online notebook: 
https://hub.cl.cam.ac.uk/

• This notebook corresponds to the printed notes that you
should all have. 
If you cannot login, email me immediately.

• At the end of this lecture, will also explain the practicals:
https://www.cl.cam.ac.uk/teaching/2122/OCaml/

https://www.cl.cam.ac.uk/teaching/2122/FoundsCS/
https://hub.cl.cam.ac.uk/
https://www.cl.cam.ac.uk/teaching/2122/OCaml/

• Computers: a child can use them; 
 but nobody can fully understand them!

• We can master complexity through levels of abstraction

• Focus on 2 or 3 levels at most!

• Recurring issues:

• what services to provide at each level

• how to implement them using lower-level services

• the interface by which two levels should communicate

• Computers: a child can use them; 
 but nobody can fully understand them!

• We can master complexity through levels of abstraction

• Focus on 2 or 3 levels at most!

• Recurring issues:

• what services to provide at each level

• how to implement them using lower-level services

• the interface by which two levels should communicate

Example: Dates
• Abstract level: dates over a certain interval

• Concrete level: typically 6 characters: YYMMDD

• (where each character is represented by 8 bits)

• Date crises caused by inadequate internal formats:

• Digital’s PDP-10: 12-bit dates (good for at most 11 years)

• Y2K crisis: 48-bits could be good for lifetime of universe!

• Our choices of representations within a computer has long-ranging
consequences.

Example: Floating Point Numbers

• Computers have integers (like 1066) 
 and floats (like 1.066 × 103).

• A floating-point number is represented by two integers.

• The concept of a data type involves:

• how a value is represented inside the computer

• the suite of operations given to programmers

• valid and invalid (or exceptional) results, such as “infinity”

• Computer arithmetic can yield incorrect answers 
due to finite precision!

Goals of Programming
• to describe a computation so that it can be done mechanically:

• expressions compute values

• commands cause effects

• to do so efficiently and correctly, giving right answers quickly

• to allow easy modification as our needs change

• through an orderly structure based on abstraction principles

• programmer should be able to predict effects of changes

Why Program in OCaml?
• It is interactive.

• It has a flexible notion of data type.

• It hides the underlying hardware: no crashes.

• Programs can easily be understood mathematically.

• It distinguishes naming from updating memory.

• It manages storage in memory for us.

The Practical Classes
https://www.cl.cam.ac.uk/teaching/2122/OCaml/

• Executed online in the hub.cl.cam.ac.uk server

• There are 5 ticks, each of which have a deadline for
submission 10 days after they are issued (except last tick,
which goes into Lent term).

• Exact dates for the first tick will be announced later today /
over weekend.

• Some of you will be selected for in person "ticks" in the Lab to
explain your workings.

https://www.cl.cam.ac.uk/teaching/2122/OCaml/
http://hub.cl.cam.ac.uk

