Foundations of Computer Science
Lecture #1: Introduction

Fri Oct 8th, 2021

Anil Madhavapeddy & Jeremy Yallop
2021-2022

Getting Started

Course Home:
https:.//www.cl.cam.ac.uk/teaching/2122/FoundsCS/

Interactive online notebook:
https://hub.cl.cam.ac.uk/

This notebook corresponds to the printed notes that you
should all have.
If you cannot login, email me immediately.

At the end of this lecture, will also explain the practicals:
https://www.cl.cam.ac.uk/teaching/2122/0Caml/

https://www.cl.cam.ac.uk/teaching/2122/FoundsCS/
https://hub.cl.cam.ac.uk/
https://www.cl.cam.ac.uk/teaching/2122/OCaml/

e Computers: a child can use them;
but nobody can fully understand them!

560 Q

100 kKQ

Fo\

Eg - R ‘._k)".".

> ;i;’;_¥;~;;:.' - "‘.:; ey :.‘"“
¥ oy : d Mﬁz“:ﬁ.ﬁ.
e TN TT1Y

{

Computers: a child can use them;
but nobody can fully understand them!

We can master complexity through levels of abstraction

Focus on 2 or 3 levels at most!

Recurring issues:

* what services to provide at each level

* how to implement them using lower-level services

* the interface by which two levels should communicate

Example: Dates

Abstract level: dates over a certain interval

Concrete level: typically 6 characters: YYMMDD

* (where each character is represented by 8 bits)

Date crises caused by inadequate internal formats:

* Digital’s PDP-10: 12-bit dates (good for at most 11 years)
* Y2K crisis: 48-bits could be good for lifetime of universe!

Our choices of representations within a computer has long-ranging
consequences.

Example: Floating Point Numbers

e Computers have integers (like 1066)
and floats (like 1.066 x 103,

e A floating-point number is represented by two integers.
* The concept of a data type involves:

e how a value is represented inside the computer

e the suite of operations given to programmers

e valid and invalid (or exceptional) results, such as “infinity

e Computer arithmetic can yield incorrect answers
due to finite precision!

Goals of Programming

* to describe a computation so that it can be done mechanically:
* expressions compute values
* commands cause effects
* to do so efficiently and correctly, giving right answers quickly
e to allow easy modification as our needs change
e through an orderly structure based on abstraction principles

e programmer should be able to predict effects of changes

Why Program in OCaml?

* |t is interactive.

e |t has a flexible notion of data type.

* |t hides the underlying hardware: no crashes.

* Programs can easily be understood mathematically.
* |t distinguishes naming from updating memory.

* |t manages storage in memory for us.

The Practical Classes

https://www.cl.cam.ac.uk/teaching/2122/0Caml/

e Executed online in the hub.cl.cam.ac.uk server

e There are 5 ticks, each of which have a deadline for
submission 10 days after they are issued (except last tick,
which goes into Lent term).

e Exact dates for the first tick will be announced later today /
over weekend.

e Some of you will be selected for in person "ticks" in the Lab to
explain your workings.

https://www.cl.cam.ac.uk/teaching/2122/OCaml/
http://hub.cl.cam.ac.uk

