— Solution notes —

COMPUTER SCIENCE TRIPOS Part IA — 2013 — Paper 1

2 Foundations of Computer Science (LCP)
This question has been translated from Standard ML to OCaml

algorithms, lists, ~ The function perms returns all n! permutations of a given n-element list.
curried functions,

higher-order let rec perms = function
functions | [1 -> [[1]
| xs ->

let rec permsl xs ys =
match xs with
I 00 -> [
| x::xs8 —>
List.map (List.cons x) (perms (List.rev ys @ xs)) @
permsl xs (x::ys)
in
permsl xs []
(a) Explain the ideas behind this code, including the function perms1 and the ex-

pression List.map (List.cons x). What value is returned by perms [1; 2; 317
[7 marks|

Answer: The base case is [[1] because the empty list has one permutation, namely [1. The
idea of the code is that the permutations of a list containing some element x consist of (a)
those that begin with z, the tail computed by a recursive call, and (b) those that do not begin
with z. The function perms1 walks down a list, choosing successive list elements to play the
role of z above. The expression List.map (List.cons x) modifies the list of permutations
obtained from the recursive call by inserting x as the first element of each. Here, List.cons
is a curried function.

perms [1; 2; 3] =
[r1; 25 31; [1; 3; 21; [2; 1; 31; [2; 3; 11; [3; 1; 21; [3; 2; 111

lazy lists (b) A student modifies perms to use an OCaml type of lazy lists, where appendq
and mapq are lazy list analogues of @ and List.map.

let rec lperms = function
| [-> Cons ([], fun O -> Nil)

| xs ->
let rec fun permsl xs ys = function
| [1 -> Nil
| x::x8 ->

appendq (mapq (List.cons x) (lperms (List.rev ys @ xs)))
(permsl xs (x::ys))
in
permsl xs []
Unfortunately, lperms computes all n! permutations as soon as it is called.

Describe how lazy lists are implemented in OCaml and explain why laziness is
not achieved here. [5> marks]

— Solution notes —

Answer: OCaml’s lazy values do not form part of the syllabus. Lazy lists can be simulated
using the following variant type declaration:

type 'a seq = Nil
| Cons of 'a * (unit -> 'a seq)

Laziness can be obtained through writing functions of the form fun () -> FE, for then the
expression F is not evaluated until the function is called, with argument ().

Thw function above uses lazy list primitives correctly as regards types, but the only occurrence
of fun () -> protects an instance of Nil. All recursive calls to lperms take place when the
function is called, and therefore all permutations are computed.

lazy lists (¢) Modify the function lperms, without changing its type, so that it computes
permutations upon demand rather than all at once. [8 marks]

Answer: The trick is to insert an occurrence of fun () -> within the recursive calls. One
way of doing this is by modifying the function mapq. There are other solutions.

let rec mapapp f xq yf =
match xq with
| Nil ->
yf O
| Cons (x, xf) —>
Cons(f x, fun () -> mapapp f (xf () yf)

let rec lperms = function
| [1 -> Cons ([], fun () -> Nil)
| xs ->
let rec permsl xs ys =
match xs with
| [1 —> Nil
| x::xs8 —>
mapapp (List.cons x) (lperms (List.rev ys @ xs))
(fun () -> permsl xs (x::ys))
in
permsl xs []
An OCaml version of this Tripos would probably have prohibited the use of the Lazy module,
but this can also be achieved with:

type 'a seq = Nil
| Cons of 'a * 'a seq lazy_t

let rec mapapp f xq yf =
match xq with
| Nil ->
Lazy.force yf
| Cons (x, xf) —>
Cons (f x, lazy (mapapp f (Lazy.force xf) yf))

let rec lperms = function
| [-> Cons ([], lazy Nil)
| xs —>
let rec permsl xs ys =
match xs with

— Solution notes —

[0 -> Nil
| x::xs ->
mapapp (List.cons x) (lperms (List.rev ys @ xs))
(lazy (permsl xs (x::ys)))
in
permsl xs []

All OCaml code must be explained clearly and should be free of needless complexity.

