
— Solution notes —

2

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

The function perms returns all n! permutations of a given n-element list.algorithms, lists,
curried functions,
higher-order
functions

let rec perms = function

| [] -> [[]]

| xs ->

let rec perms1 xs ys =

match xs with

| [] -> []

| x::xs ->

List.map (List.cons x) (perms (List.rev ys @ xs)) @

perms1 xs (x::ys)

in

perms1 xs []

(a) Explain the ideas behind this code, including the function perms1 and the ex-
pression List.map (List.cons x). What value is returned by perms [1; 2; 3]?

[7 marks]

Answer: The base case is [[]] because the empty list has one permutation, namely []. The
idea of the code is that the permutations of a list containing some element x consist of (a)
those that begin with x, the tail computed by a recursive call, and (b) those that do not begin
with x. The function perms1 walks down a list, choosing successive list elements to play the
role of x above. The expression List.map (List.cons x) modifies the list of permutations
obtained from the recursive call by inserting x as the first element of each. Here, List.cons
is a curried function.

perms [1; 2; 3] =

[[1; 2; 3]; [1; 3; 2]; [2; 1; 3]; [2; 3; 1]; [3; 1; 2]; [3; 2; 1]]

(b) A student modifies perms to use an OCaml type of lazy lists, where appendqlazy lists

and mapq are lazy list analogues of @ and List.map.

let rec lperms = function

| [] -> Cons ([], fun () -> Nil)

| xs ->

let rec fun perms1 xs ys = function

| [] -> Nil

| x::xs ->

appendq (mapq (List.cons x) (lperms (List.rev ys @ xs)))

(perms1 xs (x::ys))

in

perms1 xs []

Unfortunately, lperms computes all n! permutations as soon as it is called.
Describe how lazy lists are implemented in OCaml and explain why laziness is
not achieved here. [5 marks]

1



— Solution notes —

Answer: OCaml’s lazy values do not form part of the syllabus. Lazy lists can be simulated
using the following variant type declaration:

type 'a seq = Nil

| Cons of 'a * (unit -> 'a seq)

Laziness can be obtained through writing functions of the form fun () -> E, for then the
expression E is not evaluated until the function is called, with argument ().

Thw function above uses lazy list primitives correctly as regards types, but the only occurrence
of fun () -> protects an instance of Nil. All recursive calls to lperms take place when the
function is called, and therefore all permutations are computed.

(c) Modify the function lperms, without changing its type, so that it computeslazy lists

permutations upon demand rather than all at once. [8 marks]

Answer: The trick is to insert an occurrence of fun () -> within the recursive calls. One
way of doing this is by modifying the function mapq. There are other solutions.

let rec mapapp f xq yf =

match xq with

| Nil ->

yf ()

| Cons (x, xf) ->

Cons(f x, fun () -> mapapp f (xf ()) yf)

let rec lperms = function

| [] -> Cons ([], fun () -> Nil)

| xs ->

let rec perms1 xs ys =

match xs with

| [] -> Nil

| x::xs ->

mapapp (List.cons x) (lperms (List.rev ys @ xs))

(fun () -> perms1 xs (x::ys))

in

perms1 xs []

An OCaml version of this Tripos would probably have prohibited the use of the Lazy module,
but this can also be achieved with:

type 'a seq = Nil

| Cons of 'a * 'a seq lazy_t

let rec mapapp f xq yf =

match xq with

| Nil ->

Lazy.force yf

| Cons (x, xf) ->

Cons (f x, lazy (mapapp f (Lazy.force xf) yf))

let rec lperms = function

| [] -> Cons ([], lazy Nil)

| xs ->

let rec perms1 xs ys =

match xs with

2



— Solution notes —

| [] -> Nil

| x::xs ->

mapapp (List.cons x) (lperms (List.rev ys @ xs))

(lazy (perms1 xs (x::ys)))

in

perms1 xs []

All OCaml code must be explained clearly and should be free of needless complexity.

3


