
— Solution notes —

1

COMPUTER SCIENCE TRIPOS Part IA – 2013 – Paper 1

Foundations of Computer Science (LCP)

This question has been translated from Standard ML to OCaml

(a) Write brief notes on OCaml variants and pattern-matching in functionvariants,
pattern-matching declarations. [6 marks]

Answer: Solutions should include examples of variant type declarations and mention the
concept of a constructor. Examples of pattern-matching should be non-trivial, with nested
constructors and (preferably) overlapping patterns.

(b) A binary tree is either a leaf (containing no information) or is a branchprogramming,
binary trees containing a label and two subtrees (called the left and right subtrees). Write

OCaml code for a function that takes a label and two lists of trees, returning all
trees that consist of a branch with the given label, with the left subtree taken
from the first list of trees and the right subtree taken from the second list of
trees. [6 marks]

Answer: The variant type declaration is not required as part of the answer, but sets the
stage. Students are unlikely to know about List.concat, but it can be coded in two lines
with the help of @ (append).

type 'a tree = Lf

| Br of 'a * 'a tree * 'a tree

let make_trees v t1 =

List.map (fun t2 -> Br (v, t1, t2))

let make_trees2 v t1s t2s =

List.concat (List.map (fun t1 -> make_trees v t1 t2s) t1s)

(c) Write OCaml code for a function that, given a list of distinct values, returns aprogramming,
binary trees list of all possible binary trees whose labels, enumerated in inorder, match that

list. For example, given the list [1; 2; 3] your function should return (in any
order) the following list of trees:

1

2

3

1

3

2

2

31

3

2

1

3

1

2

[8 marks]

Answer:

let rec anti l1 = function

1



— Solution notes —

| [] -> []

| v::l2 ->

make_trees2 v (anti_inorder (List.rev l1)) (anti_inorder l2) @

anti (v::l1) l2

and anti_inorder = function

| [] -> [Lf]

| xs = anti [] xs

Note that the question refers to binary trees, not to binary search trees, and it does not impose
an ordering constraint on the labels of these trees.

All OCaml code must be explained clearly and should be free of needless complexity.

2


