
— Solution notes —

5

COMPUTER SCIENCE TRIPOS Part IA – 2004 – Paper 1

Foundations of Computer Science (ACN)

This question has been translated from Standard ML to OCaml

The following OCaml type can be viewed as defining a lazy or infinite sort of tree
where each node in the tree holds an integer:

type tr = N of int * unit -> tr * unit -> tr

(a) Write a function called ndeep such that if n is an integer and z is a tree (i.e. of
type tr) the call ndeep n z will return an ordinary list of all the 2n integers at
depth exactly n in the tree. Note that if n = 0 it will return a list of length 1,
being just the top integer in the tree. Comment on its efficiency. [8 marks]

Answer:

let rec ndeep n (N(v, l, r)) =

if n = 0 then

[v]

else

ndeep (n - 1) (l ()) @ ndeep (n - 1) (r ())

The append makes this slower than would be perfect, and experts can do the usual conversion
to avoid that.

(b) You are given a tr, and told that it contains arbitrarily large values at least
somewhere in it. You want to find a value from it that is bigger than 100 (but
if there are many big values it does not matter which one is returned). Because
the tree is infinite you cannot use simple depth-first search: you decide to use
iterative deepening. Thus you first check all integers at depth 1, then at depth 2,
depth 3, . . . and return when you first find a value that is greater than 100.

Use exception handling to return the large value when you find it. Present and
explain code that searches the lazy tree. [12 marks]

Answer:

exception Found of int

let rec throwifin = function

| [] -> ()

| x::xs ->

if x > 100 then

raise (Found x)

else

throwifin xs

let search z =

let rec depth n =

throwifin (ndeep n z);

1



— Solution notes —

depth (n + 1)

in

try

depth 1;

0 (* Unreachable *)

with Found x -> x

2


