
Lecture 5:
Designing smart systems
Using statistical methods to anticipate user needs and actions with Bayesian 
strategies



Overview of the course

• Theory driven approaches to HCI
• Design of visual displays
• Goal-oriented interaction
• Designing efficient systems
• Designing smart systems
• Designing meaningful systems (guest lecturer)
• Evaluating interactive system designs
• Designing complex systems



Uniform text entry

Apple UK



Information gain per key press



The q?



Information gain per key press

“As you are aware, E is the most common letter in the English 
alphabet, and it predominates to so marked an extent that even in a 
short sentence one would expect to find it most often”

The Adventure of the Dancing Men, 

  Sir Arthur Conan Doyle



https://norvig.com/mayzner.html

https://norvig.com/mayzner.html


Hacking Fitt’s Law: “semantic pointing”

Renaud Blanch, Yves Guiard and Michel Beaudouin-Lafon. Semantic Pointing: Improving Target Acquisition with Control-Display Ratio 
Adaptation. In Proceedings of CHI 2004, pages 519-526, Vienna - Austria, April 2004.

http://chi2004.org/


Simple application of Fitts Law

E
T A

O I

N

S

R
HL

DCU

M

F

P

G W
YBV

K

X

J

Q

Z

What’s wrong with this?



Bigrams

Increasing the depth of the language allows for a 
further separation...



Building a system based on relative frequencies

Dasher 
(https://www.youtube.com/watch?v=FLalNywdHxU)

http://www.youtube.com/watch?v=FLalNywdHxU
https://www.youtube.com/watch?v=FLalNywdHxU


• Turning an information theoretic model into a user 
interface requires a lot of creativity

=> Interaction with Machine learning course

• In many cases simple models (nGrams + 
smoothing) are as - or more - effective than 
complex ones (neural nets)

• Supporting even famous software, useful for 
marginalised groups is hard

Some lessons from Dasher

(The Financial Times, February 2002)



Artificial languages

new Future.?

New Future.aaaaa()
New Future.aaaab()
New Future.aaaac()
New Future.error()
…
New Future.aaaad()
New Future.aaaae()
New Future.value()



Artificial languages

new Future.?

New Future.aaaaa()
New Future.aaaab()
New Future.aaaac()
New Future.error()
…
New Future.aaaad()
New Future.aaaae()
New Future.value()

Liveness becomes Entelechy, Church et al



Ordering code completion suggestions

A simple scheme for predicting code completions:

void main() { 

    Stopwatch sw = new Stopwatch(); 

    sw. // <--- What goes here? 

}

elapsed
elapsedMicroseconds
elapsedMilliseconds
elapsedTicks
Frequency
hashCode
isRunning
noSuchMethod
Reset
runtimeType
Start
Stop
toString



Ordering code completion suggestions

We calculate:

P(completion = “reset” | context = “void main() { Stopwatch sw = new Stopwatch(); sw.”)
P(completion = “start” | context = “void main() { Stopwatch sw = new Stopwatch(); sw.”) 

...

And the usual: 



Ordering code completion suggestions

P(completion = ? | context = “...”) ∝ P(context = “...” | completion = ?) P(completion = ?) 

Completion c Count of seen completions P(completion)

start 10 0.5

reset 5 0.25

elapsed 5 0.25

Feature vector



Ordering code completion suggestions

P(completion = c | context = “...”) ∝ P(context = “...” | completion = c) P(completion = c) 

Completion c Feature Feature value Count

start “First-Use” true 9

false 1

reset “First-Use” true 2

false 3

elapsed “First-Use” true 1

false 4

Completion c P(completion==c | context)

∝
Order

start 0.9 * 0.5 = 0.45 0

reset 0.4 * 0.25 = 0.1 1

elapsed 0.2 * 0.25 = 0.06 2



Some progress in information efficient IDEs

IntelliJ (Jetbrains)
JSNICE (ETH Zurich)



Building user interfaces 
(from Per Ola’s material)



Building user interfaces 
(from Per Ola’s material)

• Entry and error rate
• Learning curve, familiarity and immediate efficacy
• Form factor, presentation, time and comfort
• User engagement
• Visual attention and cognitive resources
• Privacy
• Single vs Multi-character entry
• Specification vs Navigation
• One/Two handed
• Task integration
• Robustness
• Device independence
• Computational demands
• Manufacturing and support cost
• Localisation
• Market acceptance



• From closed to open-loop
• Avoid the need for a visual feedback loop

• Continuous novice-to-expert transition
• Avoid explicit learning

• Path dependency
• Avoid redesign the interaction layer

• Flexibility
• Enable users to compose and edit in a variety of styles without explicit mode 

switching
• Efficiency

• Let users’ creativity by the bottle-neck

Building user interfaces: Solution principles 
(from Per Ola’s material)


