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Figure 1: This architectural free form structure – built of beams of constant height meeting in optimized nodes and covered with planar glass
facets – was designed using the theory and algorithms presented in this paper. Our method also allows for the construction of secondary
parallel offsets at a variable distance, here physically realized as a structure designed to cast shadows which is optimized to reduce heat load
for particular sun positions.

Abstract

The geometric challenges in the architectural design of freeform
shapes come mainly from the physical realization of beams and
nodes. We approach them via the concept of parallel meshes, and
present methods of computation and optimization. We discuss pla-
nar faces, beams of controlled height, node geometry, and multi-
layer constructions. Beams of constant height are achieved with
the new type of edge offset meshes. Mesh parallelism is also the
main ingredient in a novel discrete theory of curvatures. These
methods are applied to the construction of quadrilateral, pentago-
nal and hexagonal meshes, discrete minimal surfaces, discrete con-
stant mean curvature surfaces, and their geometric transforms. We
show how to design geometrically optimal shapes, and how to find
a meaningful meshing and beam layout for existing shapes.
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1 Introduction

Freeform shapes in architecture is an area of great engineering chal-
lenges and novel design ideas. Obviously the design process, which
involves shape, feasible segmentation into discrete parts, function-
ality, materials, statics, and cost, at every stage benefits from a com-
plete knowledge of the complex interrelations between geometry
requirements and available degrees of freedom. Triangle meshes
– the most basic, convenient, and structurally stable way of repre-
senting a smooth shape in a discrete way – do not support desirable
properties of meshes relevant to building construction (most impor-
tantly, “torsion-free” nodes). Alternatives, namely quad-dominant
and hexagonal meshes tend to have less weight, and can be con-
structed with geometrically optimized nodes and beams. However,
the geometry of such meshes is more difficult. Especially challeng-
ing are aesthetic layout of edges and the geometric constraints of
planar faces and optimized nodes.

Only recently, researchers have become interested in the geometric
basics of single- and multilayer freeform structures which are not
based on triangle meshes. Existing literature has been motivated
by problems in the fabrication of steel/glass and other structures
and mostly aims at the realizations of freeform shapes by meshes
with planar faces [Glymph et al. 2002; Schober 2003; Cutler and
Whiting 2007; Liu et al. 2006]. The latter paper introduced con-
ical meshes which have planar faces and possess offset meshes at
constant face-face distance from the base mesh. They can serve as
the basis of multi-layer constructions, and so for the first time the
problem of multilayered realization of a freeform surface by means
of planar parts was solved in principle.

Until now the wealth of interesting geometry relevant to the con-
struction of freeform structures in architecture has been explored
only to a small extent. It is the aim of the present paper to show
how the local structure of single- and multi-layer constructions can
be analyzed with mesh parallelism as the main tool. This con-
cept allows us to encode the existence of node axes and offsets
in a discrete Gauss image, and to define discrete curvatures in a
natural way. Optimization in the linear space of meshes parallel
to a given mesh yields a modeling tool. A particularly important
and interesting type of meshes are those possessing edge offsets.

4



Sources of Geometry
• Acquired real-world objects

3D Scanning

5



Sources of Geometry
• Digital 3D modeling
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Geometry Representations
• Considerations

– Storage
– Acquisition of shapes
– Creation of shapes
– Editing shapes
– Rendering shapes
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Geometry Representations
• Parametric curves & surfaces

f : X ! Y,X ✓ Rm, Y ✓ Rn
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Geometry Representations
• Parametric curves & surfaces

f : X ! Y,X ✓ Rm, Y ✓ Rn m = 1, n = 2

Planar Curves

s(t) = (x(t), y(t))
t = 0

t = 0.5

t = 0.75

t = 1
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Geometry Representations
• Parametric curves & surfaces

p : R! R2

t 7! p(t) = (x(t), y(t))

p(t) = r (cos(t), sin(t)) t 2 [0, 2�)

Circle
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Geometry Representations
• Parametric curves & surfaces

s(t) =
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i=0

piB
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Bezier Curves
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Geometry Representations
• Parametric curves & surfaces

f : X ! Y,X ✓ Rm, Y ✓ Rn

m = 1, n = 3
s(t) = (x(t), y(t), z(t))

Space Curves in 3D
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Geometry Representations
• Parametric curves & surfaces

Surfaces
f : X ! Y,X ✓ Rm, Y ✓ Rn m = 2, n = 3

s(u, v) = (x(u, v), y(u, v), z(u, v))
v

u

s(u, v) = (x(u, v), y(u, v), z(u, v))
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Geometry Representations
• Parametric curves & surfaces

s : R2 ! R3

(u, v) 2 [0, 2�)⇥ [��/2,�/2]

s(u, v) = r (cos(u) cos(v), sin(u) cos(v), sin(v))

Sphere
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Geometry Representations
• Parametric curves & surfaces

Bezier Surfaces

s(u, v) =
mX

i=0

nX

j=0

pi,jB
m
i (u)Bn

j (v)
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Geometry Representations
• Parametric curves & surfaces

su =
�s(u, v)

�u
sv =

�s(u, v)

�v

n =
su ⇥ sv
ksu ⇥ svk

n
su sv

s(u, v)

Normal and Tangent plane
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Geometry Representations
• Parametric curves & surfaces

f : X ! Y,X ✓ Rm, Y ✓ Rn

Volumetric Representations
m = 3, n = 1

Bruckner et al.
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Geometry Representations
• Parametric curves & surfaces

+ Easy to generate points on a curve/surface
+ Easy point-wise differential properties
+ Easy to control by hand
− Hard to determine inside/outside
− Hard to determine if a point is on a curve/surface
− Hard to generate by reverse engineering

18



Geometry Representations
• Polygonal Meshes
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Geometry Representations
• Polygonal Meshes

Piecewise linear approximation
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Geometry Representations
• Triangle Meshes
V = {v1, . . . , vn}

E = {e1, . . . , ek}, ei ⇥ V � V

F = {f1, . . . , fm}, fi ⇥ V � V � V

P = {p1, . . . ,pn}, pi � R3

vi
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Geometry Representations
• Implicit surfaces
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Geometry Representations
• Implicit curves & surfaces

f : Rm ! R

S = {x � R2|f(x) = 0}
Planar Curves Surfaces in 3D

S = {x � R3|f(x) = 0}
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Geometry Representations
• Implicit curves & surfaces

Outside
Curve/Surface

Inside

{x � Rm|f(x) > 0}
{x � Rm|f(x) = 0}
{x � Rm|f(x) < 0}

f(x) > 0

f(x) < 0
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Geometry Representations
• Implicit curves & surfaces

f(x, y) = x2 + y2 � r2

r

Circle
f(x, y, z) = x2 + y2 + z2 � r2

Sphere
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Geometry Representations
• Implicit curves & surfaces

rf(x, y, z) =

✓
�f

�x
,
�f

�y
,
�f

�z

◆T

Surface Normal

f(x, y, z) = x2 + y2 + z2 � r2

rf(x, y, z) = (2x, 2y, 2z)T

Sphere
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Geometry Representations
• Implicit curves & surfaces

+ Easy to determine inside/outside
+ Easy to determine if a point is on a curve/surface
+ Easy to combine
− Hard to generate points on a curve/surface
− Limited set of surfaces
− Does not lend itself to (real-time) rendering
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Geometry Representations
• Point Set Surfaces
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Geometry Representations
• Point Set Surfaces

Only point-wise attributes
Approximation methods
Smooth surfaces
Works on acquired data

29



Geometry Representations
• Point Set Surfaces

Local fitting

Query Point
Sample Points

x

Neighborhood
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Geometry Representations
• Point Set Surfaces

– Implicit representation & fast projection

Sample Pointsx

f(x) = 0
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Geometry Representations
• Point Set Surfaces

– Robust to noise
– Direct rendering
– Conversion to meshes
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Geometry Representations
• Point Set Surfaces

+ Easy to determine inside/outside
+ Easy to determine if a point is on the curve/surface
+ Easy to generate points on the curve/surface
+ Suitable for reconstruction from general data
+ Direct real-time rendering
− Not efficient to use in some modeling tasks
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