Economics, Law and Ethics Part IB CST 75\%, Part II CST 50\% 2021-22

Alice Hutchings, Richard Clayton
with many thanks to Ross Anderson

Overview

- Introduction:
- Aims and objectives
- Outline
- Assessment
- Resources
- Roadmap
- Classical economics:
- Prices and markets
- Basic consumer theory
- Supply and demand
- Efficiency, welfare and justice

Why do you think Economics, Law, and Ethics is important to you, as a computer scientist?

Why teach this course?

- Systems: economics used in protocol design, congestion control, mechanisms like blockchain...
- Theory: the combinatorial auction is now seen as the archetypal complexity-theory problem
- Professional: over half of you will become entrepreneurs or go into consultancy, management
- Law: what can make you liable online?
- Ethics: how can you navigate the many grey areas?
- Course accreditation: requirement for CS

Aims and Objectives

Aims: introduce you to basic concepts in economics, law and ethics

Objectives: On completion of this course, students

 should be able to:- Reflect on and discuss professional, economic, social, environmental, moral and ethical issues relating to computer science
- Define and explain economic and legal terminology and arguments
- Apply the philosophies and theories covered to computer science problems and scenarios
- Reflect on the main constraints that market, legislation and ethics place on firms dealing in information goods and services

Outline

- Classical economics and consumer theory
- How information markets are different
- Market failures and behavioural economics
- Auction theory and game theory
- Principles of law
- Law and the Internet (Richard Clayton)
- Ethics
- Contemporary ethical issues

Assessment

- Summative assessment:
- Two examination questions in Paper 7
- Essay style
- https://www.cl.cam.ac.uk/teaching/exams/pastp apers/t-EconomicsLawandEthics.html
- Formative assessment:
- Supervisions
- Interacting with your peers

Moodle

- Platform for dialogue with me, and with each other
- Place to ask questions and engage with the material

Interactive sessions

- Session 1: 10-11am, Tuesday 16 November
- Prepare by watching lectures 1-4
- Session 2: 10-11am, Tuesday 30 November
- Prepare by watching lectures 5-8
- Zoom link to be sent out beforehand

Resources

- Shapiro and Varian "Information Rules"
- Varian "Intermediate Microeconomics"
- Course website, plus as further reading:
- Adam Smith, "The Wealth of Nations"
- Richard Thaler, "Misbehaving"
- JK Galbraith, "A History of Economics"
- William Poundstone, "Prisoners' Dilemma"
- Steven Pinker, "The Better Angels of our Nature"
- Nuffield Bioethics Council report on biodata

Studying a humanities subject

- It's not like learning to prove theorems or program in Java, which gives a testable skill
- Wide reading is important - ideas become clearer when approached from several perspectives
- College libraries are a good place to start
- Dig into some subproblem that interests you
- Work out different viewpoints: how would a socialist / Keynsian / environmentalist / libertarian approach a problem of interest?

Roadmap

- Economics as a subject is traditionally made up of macroeconomics, microeconomics and specialised topics
- 'Macro' is about the performance and structure of the global economy or a nation or region. It's about models of employment, inflation, growth, investment, trade, savings, credit, tax, GNP...
- We will touch on this only occasionally

Roadmap (2)

- Microeconomics or 'micro' is about how individuals and firms react to incentives, how market mechanisms establish prices, and the circumstances in which markets can fail
- Many topics of interest to computer scientists \& engineers include game theory, the economics of information, the economics of dependability, and behavioural economics (economics + psychology)
- Our tools range from mathematical models to empirical social science

Classical economics

- Interlocking models of consumption, production, labour, finance, etc., in a world of free competition

Prices and markets

- As an introduction to theories of prices, consumers and markets, consider an idealised market for flats in Cambridge
- Simplify to two types - one-bed flats in town, or house-shares in Cherry Hinton. People who can afford flats will rent them, and those who can't will cycle to distant house-shares instead
- Assume that there are 1000 flats to rent, and that people vary in their ability / willingness to pay

Accommodation market

- So there might be 1 person prepared to pay $£ 2000,300$ prepared to pay $£ 1000,1000$ prepared to pay $£ 500 \ldots$
- With 1000 flats to let, the market equilibrium price p^{*} is where the supply and demand curves cross, i.e. $£ 500$

Monopoly

- If the market is rigged, the cartel might restrict supply 800 flats at $£ 700$ pm can earn more than 1000 at $£ 500$ pm
- This is inefficient! (there are empty flats which people would pay to rent)
- How can we formalise this?

Efficiency

- A monopolist might leave some flats empty despite people being prepared to pay for them
- Definitions
- A Pareto improvement is a way to make some people better off without making anyone worse off
- A Pareto efficient allocation is such that no Pareto improvement is possible
- This is weak: pure monarchy and pure communism are both Pareto efficient!
- Anyway, is there any way for the monopolist to find a Pareto efficient allocation?

Discriminating monopolist

- If you know what everyone can pay, charge them just that!
- This arrangement is Pareto efficient!
- The monopolist captures all the consumer surplus ...

Consumer surplus

- Consumer surplus is the total amount people saved on their reservation price
- Ordinary monopoly: green area left to consumers
- The monopolist diminished surplus by A and B
- The discriminating monopolist gets the lot!

Basic consumer theory

- Examines mechanisms of choice
- Consumers choose 'best' bundle of goods they can afford
- Most of the time, two goods are enough - say books versus everything else
- Assuming a budget constraint $\mathrm{m}, \mathrm{p}_{1} \mathrm{x}_{1}+\mathrm{p}_{2} \mathrm{x}_{2} \leq \mathrm{m}$
- This gives a line on which choices must lie

Preferences

- We draw 'indifference curves' or 'isoquants' joining mutually indifferent points - that is, where the consumer prefers bundle $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ equally to $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$
- We assume they're well behaved - the curves don't cross. I.e. if $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is preferred when $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ is affordable, then when $\left(y_{1}, y_{2}\right)$ is preferred, $\left(x_{1}, x_{2}\right)$ is not affordable (the 'weak axiom of revealed preference')

Perfect Substitutes

- Sometimes I just don't care at all whether I have good 1 or good 2
- E.g.: Tesco's sugar or Sainsbury's sugar
- Such goods are called perfect substitutes

Perfect Complements

- Sometimes I want exactly the same quantity of good 1 and good 2
- E.g. left shoes and right shoes
- Such goods are called perfect complements

Bads

- There are some goods I'd rather avoid!
- But sometimes I have to consume some of a bad in order to enjoy some of a good

Marginal rate of substitution

- The tangent to an isoquant gives the marginal rate of substitution (MRS)
- This is the exchange rate at which the consumer will trade the two: MRS $=\Delta \mathrm{x}_{1} / \Delta \mathrm{x}_{2}$
- Convex curves: you're more likely to trade the good if you have more of it

Diminishing MRS

- The more you have of x_{1} relative to x_{2}, the more likely you are to trade x_{1} for x_{2}, in the strictly convex case
- i.e. you become less willing to pay for 'one more'

Utility

- Often indifference curves can be parametrised
- Marginal utility $\mathrm{MU}_{1}=\mathrm{dU} / \mathrm{dx}_{1}$
- Then $\mathrm{MRS}=-\mathrm{MU}_{1} / \mathrm{MU}_{2}$
- Utility functions can be useful for describing consumer choices
- They can often be inferred from shopping behaviour, and answer questions about the value of better / faster / ...

The marginalist revolution

- Until 1871, no-one had a good theory of supply and demand. Why are essentials like water cheap, while diamonds are expensive?
- Solution: the value of the last and least wanted addition to your consumption of a good sets its value to you (Karl Menger, Stanley Jevons, 1871)
- Shifted thinking from costs of production to demand, and led to 'classical synthesis' of Marshall and others - interlocking models of consumption, production, labour, finance etc in a world of free competition

Concrete example

- Suppose a local coal market in 1840 had three typical suppliers / customers

Sea coal gathering 8 s	Blacksmiths	15 s
Small deep mine 5 s	Households	8 s
Open-cast mine 2s	Export	3 s

- The market price determines who produces and who consumes
- It's determined by the marginal transaction
- It fluctuates with demand (weather) and can evolve in the long term with tech, investment...

Demand $\xrightarrow{+}$

- Assuming functions well-behaved, we can get a consumer's demand from their utility or vice versa
- Market demand is the sum of demand over consumers
- In general a price change will have a substitution effect (if beer goes up, drink more wine) and an income effect (if rent goes up, you're poorer)
- At the level of this course, we can ignore this...

Elasticity

- Given a market demand curve, elasticity measures the effect on demand of a small change in price
- Formally, $\varepsilon(p)=(\Delta q / q) /(\Delta p / p)=p \Delta q / q \Delta p$
- Elasticity $=1$ means there are likely to be substitutes
- Revenue R = pq, so
$\Delta R / \Delta p=q+p \Delta q / \Delta p$

$$
=\mathrm{q}(1+\varepsilon(\mathrm{p}))=\mathrm{q}(1-|\varepsilon(\mathrm{p})|)
$$

- Key fact: price increases boost revenue iff $|\varepsilon(p)|<1$

Supply

- Firms typically have fixed costs and variable costs, so the average cost of goods initially falls with output
- The variable costs typically rise at some point (overtime etc) and eventually rise sharply due to capacity constraints
- Thus the supply curve typically takes the above convex shape, at least in the short run (static analysis)

Cost evolution

- In the long run, firms can fix capacity constraints by building more factories
- This gives nearly constant fixed costs and thus constant returns to scale as the firm / industry expands

Firm supply

- In a competitive market, firms are price takers
- The demand curve faced by each firm is in black - at any price above p^{*}, demand is zero, while at any price below p^{*}, the firm would face all the demand
- The firm's profit is maximised when it sets output so that its marginal cost equals the price p^{*}

Putting it all together

- In the classical synthesis, prices are set where supply and demand curves intersect in competitive markets
- Key: p^{*} will be the marginal cost of the marginal supplier
- Similar models apply in markets for labour etc
- Intrinsic advantages of non-marginal suppliers (e.g. easily mined coal, good farmland) get built into rental values
- By 100 years ago, people thought they understood the 'invisible hand' and just had to guard against monopoly

Equilibrium

- Studying supply and demand for one good is 'partial equilibrium analysis'. ‘General equilibrium analysis' adds in labour, capital etc
- First theorem of welfare economics: market equilibrium is Pareto optimal
- Second theorem: any Pareto optimal allocation can be achieved by market forces provided preferences are convex
- Arrow and DeBreu, 1948. Technical conditions include rational actors, property rights, complete information, no transaction costs ... (more later)

Efficiency, welfare and justice

- Efficiency does not imply justice! Giving the king all the money is Pareto efficient
- Different theories of justice are consistent with different welfare functions
$-\mathrm{W}=\sum \mathrm{U}_{\mathrm{i}}$ is classical utilitarian welfare
- $\mathrm{W}=\min \mathrm{U}_{\mathrm{i}}$ is Rawlsian welfare - that of the most miserable citizen
- Pigou: diminishing marginal utility of money means that transferring $£ 1$ from a rich man to a poor one will generally increase welfare
- But - there's a methodological problem!

Efficiency, welfare and justice (2)

- Composing utilities into welfare is hard!

	A	B	C
First	X	Y	Z
Second	Y	Z	X
Third	Z	X	Y

- Arrow's impossibility theorem says there is no perfect way to aggregate personal choices into social welfare that's consistent with democracy

Transaction costs

- Trades are not free! Time \& effort; commissions; search; bargaining; policing and enforcement
- Ronald Coase (1937): why do some sectors have large companies, and others small ones? External transaction costs higher than internal ones
- Jensen-Mockling (1976): agency costs within firms also matter hugely
- Oliver Williamson (1980s-90s): incomplete contracts: frequency, specificity, uncertainty, limited rationality, opportunistic behavior
- So should tech make firms smaller on average?

