Slides for Part IA CST 2021/22

Discrete Mathematics

<www.cl.cam.ac.uk/teaching/2122/DiscMath>

Prof Marcelo Fiore

Marcelo.Fiore@cl.cam.ac.uk

What are we up to?

- ► Learn to read and write, and also work with, mathematical arguments.
- ▶ Doing some basic discrete mathematics.
- ► Getting a taste of computer science applications.

What is it that we do?

In general:

Build mathematical models and apply methods to analyse problems that arise in computer science.

In particular:

Make and study mathematical constructions by means of definitions and theorems. We aim at understanding their properties and limitations.

Lecture plan

- I. Proofs.
- II. Numbers.
- III. Sets.
- IV. Regular languages and finite automata.

Proofs

Objectives

- ► To develop techniques for analysing and understanding mathematical statements.
- ► To be able to present logical arguments that establish mathematical statements in the form of clear proofs.
- ► To prove Fermat's Little Theorem, a basic result in the theory of numbers that has many applications in computer science.

Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage. For instance, it presupposes that you know:

- what a statement is;
- what the integers (...,-1,0,1,...) are, and that amongst them there is a class of odd ones (...,-3,-1,1,3,...);
- what the product of two integers is, and that this is in turn an integer.

More precisely put, we may write:

If m and n are odd integers then so is $m \cdot n$.

which further presupposes that you know:

- what variables are;
- ▶ what

if ...then ...

statements are, and how one goes about proving them;

► that the symbol "·" is commonly used to denote the product operation.

Even more precisely, we should write

For all integers m and n, if m and n are odd then so is $m \cdot n$.

which now additionally presupposes that you know:

what

for all ...

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement, we are assuming quite a lot of *mathematical jargon* that one needs to learn and practice with to make it a useful, and in fact very powerful, tool.

Some mathematical jargon

Statement

A sentence that is either true or false — but not both.

Example 1

$$e^{i\pi} + 1 = 0$$

Non-example

'This statement is false'

Predicate

A statement whose truth depends on the value of one or more variables.

Example 2

$$e^{ix} = \cos x + i \sin x'$$

2. 'the function f is differentiable'

Theorem

A very important true statement.

Proposition

A less important but nonetheless interesting true statement.

Lemma

A true statement used in proving other true statements.

Corollary

A true statement that is a simple deduction from a theorem or proposition.

Example 3

1. Fermat's Last Theorem

2. The Pumping Lemma

Conjecture

A statement believed to be true, but for which we have no proof.

Example 4

1. Goldbach's Conjecture

2. The Riemann Hypothesis

Proof

Logical explanation of why a statement is true; a method for establishing truth.

Logic

The study of methods and principles used to distinguish good (correct) from bad (incorrect) reasoning.

Example 5

1. Classical predicate logic

2. Hoare logic

3. Temporal logic

Axiom

A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be proved (just to get us going in a subject) or they can be used in definitions.

Example 6

1. Euclidean Geometry

2. Riemannian Geometry

3. Hyperbolic Geometry

Definition

An explanation of the mathematical meaning of a word (or phrase).

The word (or phrase) is generally defined in terms of properties.

Warning: It is vitally important that you can recall definitions precisely. A common problem is not to be able to advance in some problem because the definition of a word is unknown.

Definition, theorem, intuition, proof in practice

Definition 7 An integer is said to be odd whenever it is of the form $2 \cdot i + 1$ for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so is $m \cdot n$.

 $m_1 n = (2iH)(2fH) = --- = 2(--) + 1$

Intuition:

2j+1		
U		
ì	Ī	1

M= 2if1

PROOF OF Proposition 8:

Let mand n be odd inte gers. That is, m = 2 i+1 for some int. i, and n=2j+1 for some int. () Consider $m \cdot n = (2iH) \cdot (2jH)$ = Uij + 2i + 2j + 1

 $= \frac{4ij+2i+2j+1}{2(2ij+i+j)+1}$

Hence min is of the form 2kH for & the

the integer 2 ijtitj ded 80 odd. B

Simple and composite statements

A statement is <u>simple</u> (or <u>atomic</u>) when it cannot be broken into other statements, and it is <u>composite</u> when it is built by using several (simple or composite statements) connected by <u>logical</u> expressions (e.g., if...then...; ...implies ...; ...if and only if ...; ...and...; either ...or ...; it is not the case that ...; for all ...; there exists ...; etc.)

Examples:

'2 is a prime number'

'for all integers m and n, if $m \cdot n$ is even then either n or m are even'

Implication

Theorems can usually be written in the form

if a collection of assumptions holds,then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of *hypotheses* \implies some *conclusion*

NB Identifying precisely what the assumptions and conclusions are is the first goal in dealing with a theorem.

The main proof strategy for implication:

To prove a goal of the form

$$P \implies Q$$

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to the same thing as adding it to your list of hypotheses.

Proof pattern:

In order to prove that

$$P \implies Q$$

- 1. Write: Assume P.
- 2. Show that Q logically follows.

Scratch work:

Before using the strategy

Assumptions

Goal

 $\mathsf{P} \implies \mathsf{Q}$

i

After using the strategy

Assumptions

Goal

Q

i

P

Proposition 8 If m and n are odd integers, then so is $m \cdot n$.

PROOF:

Assume mandn are odd integers. 27P. m.n. is an integer. Som= 2i+1 for int i n= 2j+1 for int. j

An alternative proof strategy for implication:

To prove an implication, prove instead the equivalent statement given by its contrapositive.

Definition:

the *contrapositive* of 'P implies Q' is 'not Q implies not P'

Proof pattern:

In order to prove that

$$P \implies Q$$

- 1. Write: We prove the contrapositive; that is, ... and state the contrapositive.
- 2. Write: Assume 'the negation of Q'.
- 3. Show that 'the negation of P' logically follows.

Scratch work:

Before using the strategy

Assumptions

Goal

 $P \implies Q$

i

After using the strategy

Assumptions

Goal

not P

i

not Q

Definition 9 A real number is:

- ► rational if it is of the form m/n for a pair of integers m and n; otherwise it is irrational.
- ▶ positive if it is greater than 0, and negative if it is smaller than 0.
- ► nonnegative if it is greater than or equal 0, and nonpositive if it is smaller than or equal 0.
- natural if it is a nonnegative integer.

Proposition 10 Let x be a positive real number. If x is irrational then so is \sqrt{x} .

Proof: Assume z is irrational z is wt of 2TP: 12 is itrah small mandn

By The contrapositive, are need show Va rational => a rational Asome To rational) That is, of the form P/g for intepens pandq. RTP: 2 rational. that is, I the form m/n for int. mandn.

Sna 12= 8/9

and we ore done. Then x = p²/q2

X

Logical Deduction — Modus Ponens —

A main rule of *logical deduction* is that of *Modus Ponens*:

From the statements P and P \Longrightarrow Q, the statement Q follows.

or, in other words,

If P and P \Longrightarrow Q hold then so does Q.

or, in symbols,

$$\frac{P \qquad P \Longrightarrow Q}{Q}$$

The use of implications:

To use an assumption of the form $P \implies Q$, aim at establishing P.

Once this is done, by Modus Ponens, one can conclude Q and so further assume it.

Theorem 11 Let P_1 , P_2 , and P_3 be statements. If $P_1 \implies P_2$ and $P_2 \implies P_3$ then $P_1 \implies P_3$.

PROOF:

ASSUME (P1=) P2 and (P2=) P3

RTP: P1=) P3:

ASSUME: P1

RTP: P3

From (1) and (3), by MP, we have 3 as required of

Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q

P iff Q

or, in symbols,

$$P \iff Q$$
 $-58-$

Proof pattern:

In order to prove that

$$P \iff Q$$

- 1. Write: (\Longrightarrow) and give a proof of $P \Longrightarrow Q$.
- 2. Write: (\longleftarrow) and give a proof of $Q \implies P$.

Proposition 12 Suppose that n is an integer. Then, n is even iff n^2 is even.

PROOF: Let n be an integer.

(=>) RTP: n even => n² even Assume h even; That is, of The form 2i

for In wa per i.

RTP: n2 even

We have $n^2 - (2i)^2 = 2(2i^2)$

ond 80 12 is even.

(=) n² even => n even Equivalently, by the whapvithe, we Show $nodd \Rightarrow n^2 odd$. This is so as a corollary of The establish Bet That i, j sold =) i j odd

B

Divisibility
a predicate, not an operation. a dindes 5 and write a | b Hay b=a.k for some mt.k