6. On relations

6.1. Basic exercises

1. Let \(A = \{1, 2, 3, 4\} \), \(B = \{a, b, c, d\} \) and \(C = \{x, y, z\} \).
Let \(R = \{(1, a), (2, d), (3, a), (3, b), (3, d)\} : A \rightarrow B \)
and \(S = \{(b, x), (b, y), (c, y), (d, z)\} : B \rightarrow C \).

Draw the internal diagrams of the relations. What is the composition \(S \circ R : A \rightarrow C \)?

2. Prove that relational composition is associative and has the identity relation as the neutral element.

3. For a relation \(R : A \rightarrow B \), let its opposite, or dual relation, \(R^\text{op} : B \rightarrow A \) be defined by:
\[
b R^\text{op} a \iff a R b
\]
For \(R, S : A \rightarrow B \) and \(T : B \rightarrow C \), prove that:
 a) \(R \subseteq S \implies R^\text{op} \subseteq S^\text{op} \)
 b) \((R \cap S)^\text{op} = R^\text{op} \cap S^\text{op} \)
 c) \((R \cup S)^\text{op} = R^\text{op} \cup S^\text{op} \)
 d) \((T \circ S)^\text{op} = S^\text{op} \circ T^\text{op} \)

6.2. Core exercises

1. Let \(R, R' \subseteq A \times B \) and \(S, S' \subseteq B \times C \) be two pairs of relations and assume \(R \subseteq R' \) and \(S \subseteq S' \). Prove that \(S \circ R \subseteq S' \circ R' \).

2. Let \(\mathcal{F} \subseteq \mathcal{P}(A \times B) \) and \(\mathcal{G} \subseteq \mathcal{P}(B \times C) \) be two collections of relations from \(A \) to \(B \) and from \(B \) to \(C \), respectively. Prove that
\[
\left(\bigcup \mathcal{G} \right) \circ \left(\bigcup \mathcal{F} \right) = \bigcup \{ S \circ R | R \in \mathcal{F}, S \in \mathcal{G} \} : A \rightarrow C
\]
Recall that the notation \(\{ S \circ R : A \rightarrow C | R \in \mathcal{F}, S \in \mathcal{G} \} \) is common syntactic sugar for the formal definition \(\{ T \in \mathcal{P}(A \times C) | \exists R \in \mathcal{F}. \exists S \in \mathcal{G}. T = S \circ R \} \). Hence,
\[
T \in \{ S \circ R : A \rightarrow C | R \in \mathcal{F}, S \in \mathcal{G} \} \iff \exists R \in \mathcal{F}. \exists S \in \mathcal{G}. T = S \circ R
\]
What happens in the case of big intersections?

3. Suppose \(R \) is a relation on a set \(A \). Prove that
 a) \(R \) is reflexive iff \(\text{id}_A \subseteq R \)
 b) \(R \) is symmetric iff \(R = R^\text{op} \)
c) R is transitive iff $R \circ R \subseteq R$

d) R is antisymmetric iff $R \cap R^\text{op} \subseteq \text{id}_A$

4. Let R be an arbitrary relation on a set A, for example, representing an undirected graph. We are interested in constructing the smallest transitive relation (graph) containing R, called the transitive closure of R.

a) We define the family of relations which are transitive supersets of R:

$$ T_R \triangleq \{ Q : A \to A \mid R \subseteq Q \text{ and } Q \text{ is transitive} \} $$

R is not necessarily going to be an element of this family, as it might not be transitive. However, R is a lower bound for T_R, as it is a subset of every element of the family.

Prove that the set $\bigcap T_R$ is the transitive closure for R.

b) $\bigcap T_R$ is the intersection of an infinite number of relations so it's difficult to compute the transitive closure this way. A better approach is to start with R, and keep adding the missing connections until we get a transitive graph. This can be done by repeatedly composing R with itself: after n compositions, all paths of length n in the graph represented by R will have a transitive connection between their endpoints.

Prove that the (at least once) iterated composition $R^{+} \triangleq R \circ R^{+}$ is the transitive closure for R, i.e. it coincides with the greatest lower bound of T_R: $R^{+} = \bigcap T_R$. Hint: show that R^{+} is both an element and a lower bound of T_R.

7. On partial functions

7.1. Basic exercises

1. Let $A_2 = \{1, 2\}$ and $A_3 = \{a, b, c\}$. List the elements of the sets $\text{PFun}(A_i, A_j)$ for $i, j \in \{2, 3\}$.

 Hint: there may be quite a few, so you can think of ways of characterising all of them without giving an explicit listing.

2. Prove that a relation $R : A \leftrightarrow B$ is a partial function iff $R \circ R^\text{op} \subseteq \text{id}_B$.

3. Prove that the identity relation is a partial function, and that the composition of partial functions is a partial function.

7.2. Core exercises

1. Show that $(\text{PFun}(A, B), \subseteq)$ is a partial order. What is its least element, if it exists?

2. Let $\mathcal{F} \subseteq \text{PFun}(A, B)$ be a non-empty collection of partial functions from A to B.

 a) Show that $\bigcap \mathcal{F}$ is a partial function.

 b) Show that $\bigcup \mathcal{F}$ need not be a partial function by defining two partial functions $f, g : A \to B$ such that $f \cup g : A \to B$ is a non-functional relation.

 c) Let $h : A \to B$ be a partial function. Show that if every element of \mathcal{F} is below h then $\bigcup \mathcal{F}$ is a partial function.
Consider a set \(A \).

Optional advanced exercise

Say that a relation \(R \).

Basic exercises

1. Let \(A_2 = \{1, 2\} \) and \(A_3 = \{a, b, c\} \). List the elements of the sets \(\text{Fun}(A_i, A_j) \) for \(i, j \in \{2, 3\} \).
2. Prove that the identity partial function is a function, and the composition of functions yields a function.
3. Prove or disprove that \((\text{Fun}(A, B), \subseteq) \) is a partial order.
4. Find endofunctions \(f, g : A \to A \) such that \(f \circ g \neq g \circ f \).

Core exercises

1. A relation \(R : A \leftrightarrow B \) is said to be total if \(\forall a \in A. \exists b \in B. a R b \). Prove that this is equivalent to \(\text{id}_A \subseteq R \circ \text{id}_B \). Conclude that a relation \(R : A \leftrightarrow B \) is a function iff \(R \circ \text{id}_B \subseteq \text{id}_A \).
2. Let \(\chi : \mathcal{P}(U) \to (U \Rightarrow [2]) \) be the function mapping subsets \(S \subseteq U \) to their characteristic functions \(\chi_S : U \to [2] \).
 a) Prove that for all \(x \in U \),
 \[
 \chi_{A \cup B}(x) = (\chi_A(x) \lor \chi_B(x)) = \max(\chi_A(x), \chi_B(x))
 \]
 \[
 \chi_{A \cap B}(x) = (\chi_A(x) \land \chi_B(x)) = \min(\chi_A(x), \chi_B(x))
 \]
 \[
 \chi_A(x) = \neg(\chi_A(x)) = (1 - \chi_A(x))
 \]
 b) For what construction \(A?B \) on sets \(A \) and \(B \) does it hold that
 \[
 \chi_{A?B}(x) = (\chi_A(x) \boxplus \chi_B(x)) = (\chi_A(x) + \chi_B(x))
 \]
 for all \(x \in U \), where \(\boxplus \) is the exclusive or operator? Prove your claim.

Optional advanced exercise

Consider a set \(A \) together with an element \(a \in A \) and an endofunction \(f : A \to A \).

Say that a relation \(R : \mathbb{N} \leftrightarrow A \) is \((a, f)\)-closed whenever
\[
R(0, a) \quad \text{and} \quad \forall n \in \mathbb{N}, x \in A. R(n, x) \implies R(n + 1, f(x))
\]

Define the relation \(F : \mathbb{N} \leftrightarrow A \) as
\[
F \triangleq \bigcap \{ R : \mathbb{N} \leftrightarrow A \mid R \text{ is \((a, f)\)-closed} \}
\]

a) Prove that \(F \) is \((a, f)\)-closed.

b) Prove that \(F \) is total, that is: \(\forall n \in \mathbb{N}. \exists y \in A. F(n, y) \).

c) Prove that \(F \) is a function \(\mathbb{N} \to A \), that is: \(\forall n \in \mathbb{N}. \exists! y \in A. F(n, y) \).

Hint: Proceed by induction. Observe that, in view of the previous item, to show that \(\exists! y \in A. F(k, y) \) it suffices to exhibit an \((a, f)\)-closed relation \(R_k \) such that \(\exists! y \in A. R_k(k, y) \). (Why?) For instance, as the relation \(R_0 = \{(m, y) \in \mathbb{N} \times A \mid m = 0 \implies y = a\} \) is \((a, f)\)-closed one has that \(F(0, y) \implies R_0(0, y) \implies y = a \).
d) Show that if \(h \) is a function \(\mathbb{N} \to A \) with \(h(0) = a \) and \(\forall n \in \mathbb{N}. \ h(n + 1) = f(h(n)) \) then \(h = F \).

Thus, for every set \(A \) together with an element \(a \in A \) and an endofunction \(f : A \to A \) there exists a unique function \(F : \mathbb{N} \to A \), typically said to be \textit{inductively defined}, satisfying the recurrence relation

\[
F(n) = \begin{cases}
 a & \text{for } n = 0 \\
 f(F(n-1)) & \text{for } n \geq 1
\end{cases}
\]