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Digital Electronics:

Sequential Logic

Synchronous State Machines 1

Introduction

• We have seen how we can use FFs (D-types 

in particular) to design synchronous counters

• We will now investigate how these principles 

can be extended to the design of synchronous 

state machines (of which counters are a 

subset)

• We will begin with some definitions and then 

introduce two popular types of machines
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Definitions

• Finite State Machine (FSM) – a deterministic 

machine (circuit) that produces outputs which 

depend on its internal state and external inputs

• States – the set of internal memorised values, 

shown as circles on the state diagram

• Inputs – External stimuli, labelled as arcs on the 

state diagram

• Outputs – Results from the FSM

Types of State Machines

• Two types of state machines are in 

general use, namely Moore machines 

and Mealy machines

• We will see that the state diagrams (and 

associated state tables) corresponding 

with the 2 types of machine are slightly 

different
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Machine Schematics
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Moore vs. Mealy Machines

• Outputs from Mealy Machines depend upon 

the timing of the inputs

• Outputs from Moore machines come directly 

from clocked FFs so:

– They have guaranteed timing characteristics

– They are glitch free

• Any Mealy machine can be converted to a 

Moore machine and vice versa, though their 

timing properties will be different
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Moore Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs e and r, and 

output s
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In this case the 

output s is given 

by s1, i.e., s=s1

• See inputs only appear on transitions between states, i.e., 

next state is given by current state and current inputs

• Outputs determined from current state via combinational 

logic (if required) 

Mealy Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs x and y, and 

output s
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• Inputs and outputs appear on transitions between states, 

i.e., next state is given by current state and current inputs

• Output determined from current state and inputs via 

combinational logic 
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Moore Machine - Example

• We will design a Moore Machine to implement 

a traffic light controller

• In order to visualise the problem it is often 

helpful to draw the state transition diagram

• This is used to generate the state transition 

table

• The state transition table is used to generate

– The next state combinational logic

– The output combinational logic (if required)

Example – Traffic Light Controller

R

R

G

AA

See we have 4 states

So in theory we could 

use a minimum of 2 FFs

However, by using 3 FFs 

we will see that we do not 

need to use any output 

combinational logic

So, we will only use 4 of 

the 8 possible states

In general, state assignment is a 

difficult problem and the optimum 

choice is not always obvious
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Example – Traffic Light Controller
By using 3 FFs (we will use 

D-types), we can assign one 

to each of the required 

outputs (R, A, G), eliminating 

the need for output logic
State 

010

R

R

G

AA

State 

100

State 

001

State 

110

We now need to write down 

the state transition table

We will label the FF outputs 

R, A and G

Remember we do not need to 

explicitly include columns for FF 

excitation since if we use D-types 

these are identical to the next state

Example – Traffic Light Controller
Current 

state

GAR

001

01

011
100

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next 

stateR

R

G

AA

State 

100

State 

001

State 

110

State 

010

Unused states, 000, 011, 101 and 

111. Since these states will never 

occur, we don’t care what output 

the next state combinational logic  

gives for these inputs. These don’t 

care conditions can be used to 

simplify the required next state 

combinational logic
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Example – Traffic Light Controller

Current 

state

GAR

001
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011
100

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next 

state

Unused states, 000, 

011, 101 and 111.

We now need to determine the next 

state combinational logic

For the R FF, we need to determine DR

To do this we will use a K-map

A G
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Example – Traffic Light Controller

Current 

state

GAR

001

01

011
100

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next 

state

Unused states, 000, 

011, 101 and 111.

By inspection we can also see:

ADA 

and,

ARDG .
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Example – Traffic Light Controller
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FSM Problems

• Consider what could happen on power-up

• The state of the FFs could by chance be in 

one of the unused states

– This could potentially cause the machine to 

become stuck in some unanticipated sequence of 

states which never goes back to a used state
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FSM Problems

• What can be done?

– Check to see if the FSM can eventually 

enter a known state from any of the 

unused states

– If not, add additional logic to do this, i.e., 

include unused states in the state transition 

table along with a valid next state

– Alternatively use asynchronous Clear and 

Preset FF inputs to set a known (used) 

state at power up

Example – Traffic Light Controller

• Does the example FSM self-start?

• Check what the next state logic outputs 

if we begin in any of the unused states

• Turns out:

Start 

state

Next state 

logic output

000 010
011 100
101 110
111 001

Which are all 

valid states

So it does 

self start
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Example 2

• We extend Example 1 so that the traffic 
signals spend extra time for the R and G
lights

• Essentially, we need 2 additional states, i.e., 
6 in total.

• In theory, the 3 FF machine gives us the 
potential for sufficient states

• However, to make the machine combinational 
logic easier, it is more convenient to add 
another FF (labelled S), making 4 in total

Example 2

FF labels

R A G S

R

G

R

AA

State 

1000

State 

0010

State 

1100

State 

0101

R

G

State 

1001

State 

0011

See that new FF 

toggles which 

makes the next 

state logic easier

As before, the first 

step is to write 

down the state 

transition table
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Example 2

FF 

labels

R A G S

R

G

R

AA

State 

1000

State 

0010

State 

1100

State 

0101

R

G

State 

1001

State 

0011

Current 

state

AR G 'G'A'R

Next 

state

S

01 0 0010

'S

1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

Clearly a lot of unused states. 

When plotting k-maps to determine 

the next state logic it is probably 

easier to plot 0s and 1s in the map 

and then mark the unused states

Example 2

We will now use k-maps to determine 

the next state combinational logic

Current 

state

AR G 'G'A'R

Next 

state

S

01 0 0010

'S

1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

For the R FF, we need to determine DR

1100 01 10

00

01

11

10

AR 
SG 

1
R

A

G

S

1

0

1

AR.

AR.

0 0

XX

XXX

XXX

XX

ARARARDR  ..
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Example 2

We can plot k-maps for DA and DG

to give:

Current 

state

AR G 'G'A'R

Next 

state

S

01 0 0010

'S

1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

By inspection we can also see:

SGSRDA ..  or

SRSRSRDA  ..

SGARDG ..  or

SASGDG .. 

SDS 


