
26/08/2020

1

Digital Electronics:

Sequential Logic

Synchronous State Machines 1

Introduction

• We have seen how we can use FFs (D-types

in particular) to design synchronous counters

• We will now investigate how these principles

can be extended to the design of synchronous

state machines (of which counters are a

subset)

• We will begin with some definitions and then

introduce two popular types of machines

26/08/2020

2

Definitions

• Finite State Machine (FSM) – a deterministic

machine (circuit) that produces outputs which

depend on its internal state and external inputs

• States – the set of internal memorised values,

shown as circles on the state diagram

• Inputs – External stimuli, labelled as arcs on the

state diagram

• Outputs – Results from the FSM

Types of State Machines

• Two types of state machines are in

general use, namely Moore machines

and Mealy machines

• We will see that the state diagrams (and

associated state tables) corresponding

with the 2 types of machine are slightly

different

26/08/2020

3

Machine Schematics

Outputs
Next state

combinational

logic m

CLK

Optional

combinational

logic
D

Q

Q

m
Inputs

n

Current stateMoore

Machine

Mealy

Machine

Next state

combinational

logic
D

Q

Q

m

CLK

combinational

logicm
Inputs

n

Current state

Outputs

Moore vs. Mealy Machines

• Outputs from Mealy Machines depend upon

the timing of the inputs

• Outputs from Moore machines come directly

from clocked FFs so:

– They have guaranteed timing characteristics

– They are glitch free

• Any Mealy machine can be converted to a

Moore machine and vice versa, though their

timing properties will be different

26/08/2020

4

Moore Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs e and r, and

output s

[s1 s0]

FF labels

A B

C

[10] [00]

[01]

r

r

re.

re.

re. re.

e

e

In this case the

output s is given

by s1, i.e., s=s1

• See inputs only appear on transitions between states, i.e.,

next state is given by current state and current inputs

• Outputs determined from current state via combinational

logic (if required)

Mealy Machine State Diagram
• Example FSM has 3 states (A, B and C), inputs x and y, and

output s

[s1 s0]

Transition labels:

Inputs/Output

FF labels:

A B

C

[10] [00]

[01]

sy /

sy /

syx /.

syx /.

syx /.

sx /

• Inputs and outputs appear on transitions between states,

i.e., next state is given by current state and current inputs

• Output determined from current state and inputs via

combinational logic

26/08/2020

5

Moore Machine - Example

• We will design a Moore Machine to implement

a traffic light controller

• In order to visualise the problem it is often

helpful to draw the state transition diagram

• This is used to generate the state transition

table

• The state transition table is used to generate

– The next state combinational logic

– The output combinational logic (if required)

Example – Traffic Light Controller

R

R

G

AA

See we have 4 states

So in theory we could

use a minimum of 2 FFs

However, by using 3 FFs

we will see that we do not

need to use any output

combinational logic

So, we will only use 4 of

the 8 possible states

In general, state assignment is a

difficult problem and the optimum

choice is not always obvious

26/08/2020

6

Example – Traffic Light Controller
By using 3 FFs (we will use

D-types), we can assign one

to each of the required

outputs (R, A, G), eliminating

the need for output logic
State

010

R

R

G

AA

State

100

State

001

State

110

We now need to write down

the state transition table

We will label the FF outputs

R, A and G

Remember we do not need to

explicitly include columns for FF

excitation since if we use D-types

these are identical to the next state

Example – Traffic Light Controller
Current

state

GAR

001

01

011
100

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

stateR

R

G

AA

State

100

State

001

State

110

State

010

Unused states, 000, 011, 101 and

111. Since these states will never

occur, we don’t care what output

the next state combinational logic

gives for these inputs. These don’t

care conditions can be used to

simplify the required next state

combinational logic

26/08/2020

7

Example – Traffic Light Controller

Current

state

GAR

001

01

011
100

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state

Unused states, 000,

011, 101 and 111.

We now need to determine the next

state combinational logic

For the R FF, we need to determine DR

To do this we will use a K-map

A G
1100 01 10

0

1

1

1 X

AR.

R

R

G

A

X

X

X

AR.

ARARARDR  ..

Example – Traffic Light Controller

Current

state

GAR

001

01

011
100

0

'G'A'R

0
1
0

0

1
0
1

0

1
0
0

1

Next

state

Unused states, 000,

011, 101 and 111.

By inspection we can also see:

ADA 

and,

ARDG .

26/08/2020

8

Example – Traffic Light Controller

D

Q

Q

CLK

A

AD
D

Q

Q

R

RD
D

Q

Q

G

GD

FSM Problems

• Consider what could happen on power-up

• The state of the FFs could by chance be in

one of the unused states

– This could potentially cause the machine to

become stuck in some unanticipated sequence of

states which never goes back to a used state

26/08/2020

9

FSM Problems

• What can be done?

– Check to see if the FSM can eventually

enter a known state from any of the

unused states

– If not, add additional logic to do this, i.e.,

include unused states in the state transition

table along with a valid next state

– Alternatively use asynchronous Clear and

Preset FF inputs to set a known (used)

state at power up

Example – Traffic Light Controller

• Does the example FSM self-start?

• Check what the next state logic outputs

if we begin in any of the unused states

• Turns out:

Start

state

Next state

logic output

000 010
011 100
101 110
111 001

Which are all

valid states

So it does

self start

26/08/2020

10

Example 2

• We extend Example 1 so that the traffic
signals spend extra time for the R and G
lights

• Essentially, we need 2 additional states, i.e.,
6 in total.

• In theory, the 3 FF machine gives us the
potential for sufficient states

• However, to make the machine combinational
logic easier, it is more convenient to add
another FF (labelled S), making 4 in total

Example 2

FF labels

R A G S

R

G

R

AA

State

1000

State

0010

State

1100

State

0101

R

G

State

1001

State

0011

See that new FF

toggles which

makes the next

state logic easier

As before, the first

step is to write

down the state

transition table

26/08/2020

11

Example 2

FF

labels

R A G S

R

G

R

AA

State

1000

State

0010

State

1100

State

0101

R

G

State

1001

State

0011

Current

state

AR G 'G'A'R

Next

state

S

01 0 0010

'S

1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

Clearly a lot of unused states.

When plotting k-maps to determine

the next state logic it is probably

easier to plot 0s and 1s in the map

and then mark the unused states

Example 2

We will now use k-maps to determine

the next state combinational logic

Current

state

AR G 'G'A'R

Next

state

S

01 0 0010

'S

1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

For the R FF, we need to determine DR

1100 01 10

00

01

11

10

AR
SG

1
R

A

G

S

1

0

1

AR.

AR.

0 0

XX

XXX

XXX

XX

ARARARDR  ..

26/08/2020

12

Example 2

We can plot k-maps for DA and DG

to give:

Current

state

AR G 'G'A'R

Next

state

S

01 0 0010

'S

1

011 1000

010 0011 0

1
100 1001 0

01 0 0111 0

100 0100 1

By inspection we can also see:

SGSRDA ..  or

SRSRSRDA  ..

SGARDG ..  or

SASGDG .. 

SDS 

