Digital Electronics:
Combinational Logic

Logic Minimisation

Introduction

» Any Boolean function can be implemented
directly using combinational logic (gates)

» However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:

— Algebraic manipulation (as seen in examples)

— Karnaugh (K) mapping (a visual approach)

— Tabular approaches (usually implemented by
computer, e.g., Quine-McCluskey)

« K mapping is the preferred technique for up to
about 5 variables

26/08/2020

26/08/2020

Truth Tables
 f is defined by the following truth table
* A minterm must contain

X'y z|f| minterms all variables (in either
000|1| XYz complement or

8 (1) (1) i §:¥:§ uncomplementgd form)
011(1]| XYz Note variables in a
100]|0 minterm are ANDed
10110 together (conjunction)

% % (1) (1) X.y.z * One minterm for each

term of f thatis TRUE
* SO x.y.z IS a minterm but y.z is not

Disjunctive Normal Form

» A Boolean function expressed as the
disjunction (ORing) of its minterms is said

to be in the Disjunctive Normal Form (DNF)
f =Xy.Z4+XY.Z+XY.Z+X.Y.Z+X.Y.Z

« A Boolean function expressed as the
ORIing of ANDed variables (not necessarily
minterms) is often said to be in Sum of
Products (SOP) form, e.qg.,
f =x+vy.z Note functions have the same truth table

26/08/2020

Maxterms

« A maxterm of n Boolean variables is the
disjunction (ORing) of all the variables either
in complemented or uncomplemented form.

— Referring back to the truth table for f, we can
write,
f =XYy.Z+XYy.Z+XY.Z

Applying De Morgan (and complementing) gives
f=(X+y+2).(X+y+2).(X+y+2)
So it can be seen that the maxterms of f are

effectively the minterms of f with each variable
complemented

Conjunctive Normal Form

» A Boolean function expressed as the
conjunction (ANDing) of its maxterms is said
to be in the Conjunctive Normal Form (CNF)

f=(X+y+2).(X+y+2).(X+Yy+2)

» A Boolean function expressed as the ANDing
of ORed variables (not necessarily maxterms)
is often said to be in Product of Sums (POS)
form, e.g.,

f=(x+Yy).(x+2)

26/08/2020

Logic Simplification

» As we have seen previously, Boolean
algebra can be used to simplify logical
expressions. This results in easier
implementation
Note: The DNF and CNF forms are not

simplified.

* However, it is often easier to use a
technique known as Karnaugh mapping

Karnaugh Maps

« Karnaugh Maps (or K-maps) are a
powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

* The K-map is a rectangular array of
cells

— Each possible state of the input variables
corresponds uniquely to one of the cells

— The corresponding output state is written in
each cell

Xyz

PRPRPRPPRPOOOO
PRPOORFRFLOO

POFRPOPRFRPORFRO

K-maps example

* From truth table to K-map

I—‘OOOI—‘I—‘I—‘I—‘l—h

x| 1

yZ

z

XN\ 00 01 11 10

of 1

1111

1

y

Note that the logical state of the
variables follows a Gray code, i.e.,
only one of them changes at a time

The exact assignment of variables in
terms of their position on the map is
not important

yzZ
X

K-maps example
» Having plotted the minterms, how do we

use the map to give a simplified
expression?

z

00 01 11 10

0

1|

1

x| 1

lEs
Y

X

y.Z

y

* Group terms

So, the simplified func. is,

f=x+yz

as before

Having size equal to a power of
2,e0.,2,4,8,etc.

Large groups best since they
contain fewer variables

Groups can wrap around edges
and corners

26/08/2020

K-maps — 4 variables

« K maps from Boolean expressions
—Plot f=ab+bcd

2%00 01 11 10
00
011|111
11
10

C

d
« See in a 4 variable map:
— 1 variable term occupies 8 cells
— 2 variable terms occupy 4 cells
— 3 variable terms occupy 2 cells, etc.

K-maps — 4 variables

» For example, plot

C d C

cd c

ab\ 00 01 11 10 ab\ 00 01 11 10

ool1l1]1]1 00 1 1
01 ‘b 01
.| 11 .| 11

wol1l1]1]1 101 1

d d

26/08/2020

K-maps — 4 variables

« Simplify, f =ab.d +b.cd+abc.d+cd
C

cd
ab\ 00 01 11 10

00)
01 1]
11 1
10 \1/
ab d d

So, the simplified func. is,
f=ab+cd

POS Simplification

* Note that the previous examples have
yielded simplified expressions in the
SOP form
— Suitable for implementations using AND

followed by OR gates, or only NAND gates
(using DeMorgans to transform the result —
see previous Bubble logic slides)

* However, sometimes we may wish to
get a simplified expression in POS form

— Suitable for implementations using OR
followed by AND gates, or only NOR gates

26/08/2020

POS Simplification

» To do this we group the zeros in the map
—i.e., we simplify the complement of the function
« Then we apply DeMorgans and
complement

« Use ‘bubble’ logic if NOR only
implementation is required

a

POS Example
« Simplify f =ab+bc.d into POS form.
d : g
ab~(00 01 11 10 00 01 11 10,
00 e 00 f\olalolo/
01 1fafa]], =roup 1afaf1]],
11 Z€r0s a 111 1¢0
10 10 /0 Y
_ \
b ad d ac

f=b+ac+ad

26/08/2020

« Applying DeMorgans to

a

]

o 9 o

POS Example

o o

f =b+ac+ad
gives,

f =b.(a+c).(a+d)
f =b.(a+c).(a+d)

Qo

—
a o T
—

Q| o

o

Expression in POS form

« Apply DeMorgans and take

complement, i.e., f is now in SOP form
Fill in zeros in table, i.e., plot f

Fill remaining cells with ones, i.e., plot f
Simplify in usual way by grouping ones
to simplify f

26/08/2020

Don’t Care Conditions

* Sometimes we do not care about the
output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don't care conditions.

* In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.

— For example, in a K-map they are entered
as Xs

Don’t Care Conditions - Example

« Simplify the function f =ab.d+a.cd+acd
With don’t care conditions,a.b.cd,ab.cd,abcd

c
cd
ab\ 00 01 11 10

See only need to include

00 1]/ Xs if they assist in making

o1 | [{1 ‘b a bigger group, otherwise
al ¢ u can ignore.

a.é T d o

f=ab+cd or, f=ad+cd

26/08/2020

10

Some Definitions

* Cover — A term is said to cover a minterm if that
minterm is part of that term

* Prime Implicant — a term that cannot be further
combined

» Essential Prime Implicant — a prime implicant
that covers a minterm that no other prime
implicant covers

» Covering Set — a minimum set of prime
implicants which includes all essential terms plus
any other prime implicants required to cover all
minterms

Some Definitions - Example

C

Cdoo 01 11 10 —

ab
00

Prime implicants

. Essential prime
/ |mpI|cants

@ Covering set

01

11
10

26/08/2020

11

Tabular Simplification

« Except in special cases or for sparse truth
tables, the K-map method is not practical
beyond 6 variables

» A systematic approach known as the Quine-
McCluskey (Q-M) Method finds the minimised
representation of any Boolean expression

* Itis a tabular method that ensures all the
prime implicants are found and can be
automated for use on a computer

Q-M Method

* The Q-M Method has 2 steps:

— First a table, known as the QM implication table, is
used to find all the prime implicants;

— Next the minimum cover set is found using the
prime implicant chart.
» We will use a 4 variable example to show the
method in operation:
— Minterms are: 4,5,6,8,9,10,13
— Don't cares are: 0,7,15.

26/08/2020

12

Q-M Method

» The first step is to list all the minterms and
don’t cares in terms of their minterm indices
represented as a binary number

— Note the entries are grouped according to the
number of 1s in the binary representation

— The 15t column contains the minterms

— After applying the method, the 2" column will

contain 3 variable terms. Similarly for subsequent
columns.

Q-M Method

* The method begins by listing groups of
minterms and don’t cares in groups
containing ascending numbers of 1s with a
blank line between the groups

— Thus the first group has zero ones, the second
group has a single 1 and the third has two 1s and
so on

* We next apply the so called uniting theorem
iteratively as follows

26/08/2020

13

Q-M Method — Uniting Theorem

— Compare elements in the 15t group (no 1s) with all
elements in the 2" group. If they differ by a single
bit, it means the terms are adjacent (think K-map)

— Adjacent terms are placed in the 2" column with
the single bit that differs replaced by a dash (-).
Terms in the 15t column that contribute to a term in
the second are ticked, i.e., they are not prime
implicants.

— Now repeat for the groups in the 2" column

— As before groups must differ only by a single bit
but they must also have a — in the same position
— Groups in 2" column that do not contribute to the

34 column are marked with an asterix (*), i.e., they
are prime implicants

Q-M — Implication Table

— Minterms are: 4,5,6,8,9,10,13
— Don’t cares are: 0,7,15.

Column 1 Column 2 Column 3

oooov 0-00* 01--*
_ *

01007 000 1.1+

1000V 010-\;

v 01-0

01987 100 -

10017 32‘2/

1010 1 01v

0111v 011-v

1101V 1-01*

1111V -111v
11-1v

26/08/2020

14

K-map view of Q-M example

C
¢cd 00 01 11 10 J— Col. 2 adjacent
ab N\ DY o > O 2ad]
00 Iix minterms
01" Col. 2 * adjacent
b > minterms, i.e.,
11

prime implicants

1 O:KES < | Col. 3 prime

implicants

Q-M — Finding Min Cover

— The second step is to find the lowest number of
prime implicants that cover the function — this is
achieved using the prime implicant chart

— This chart is organised as follows:

+ Label columns with the minterm indices (don’t include
don’t cares)

+ Label rows with minterms covered by a given prime
implicant. To do this dashes (-) in a prime implicant are
replaced by all combinations of Os and 1s

» Place an X in the (row, column) location if the minterm
represented by the column index is covered by the prime
implicant associated with the row

* The next slide shows the initial prime implicant chart

26/08/2020

15

Q-M — Prime Implicant Chart

0,4(0-00)

~0,8(-000)

* Terms in 8,9(100 -)
Implication , .

Table 8,10(10-0)

9,13(1-01)

45,6,7(01- -)

5,7,13,15(- 1-1)

456891013

X I
X Minterms (exc.
X X don’t cares)
X X
X X
XXX
X X

Now we look for the essential prime implicants —
These are indicated when there is only a single X in
any column, i.e., This means there is a minterm
covered by one and only prime implicant

Q-M — Prime Implicant Chart

* The essential terms must be included in the final cover

— Draw lines in the column and row that have a X associated with
an essential prime implicant and draw a box around the prime

— These minterms are already covered by the essential primes

4568091013
0,4(0-00)[X
0,8(-000) X
8,9(100 -) X X
8,10(10-0) X (K)
9,13(1-01) X i X
4,5,6,7(01- -)x-X%X%)
5,7,13,15(- 1-1)[X X

26/08/2020

16

Q-M — Prime Implicant Chart

» The essential prime implicants usually cover additional
minterms.

— We must also cross out any columns that have an X in a row
associated with an essential prime since these minterms are
already covered by the essential primes

456891013
0,4(0-00)|X
0,8(-000)|!
8,9(100-)
8,10(10-0)}

< ¢ - = -
X

e

9,13(1-01)
4,5,6,7(01-)X
5,7,13,15(- 1-1)|, X

X
X

Q-M — Prime Implicant Chart

* We see 2 minterms are still uncovered (cols. 9 and 13)

— The final step is to find as few primes as possible to cover the
remaining minterms

— We see the single prime implicant 1-01 covers both of them
— The boxed terms show the final covering set

4568091013
04(0-00)x ' i i
08(-000)! | x| !
8,9(100-) ! | x§|< :
[8,10(L0-O)tovvie KoK
[9I8@-0D)r T 1%~ -
[4,5,6,7 (0L Y- K3t
5713,15(-1-1)! X i I 1 | X

26/08/2020

17

Final K-Map view of Q-M Example

C

Cc’PO] 01 11 10

ab
00 PN Essential prime
implicant

Selected prime
CERER implicant to _
- complete covering
set

26/08/2020

18

