Topic 7

Relating Denotational and Operational Semantics

For any closed PCF terms M and V of *ground* type $\gamma \in \{nat, bool\}$ with V a value

$$\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \gamma \rrbracket \implies M \Downarrow_{\gamma} V.$$

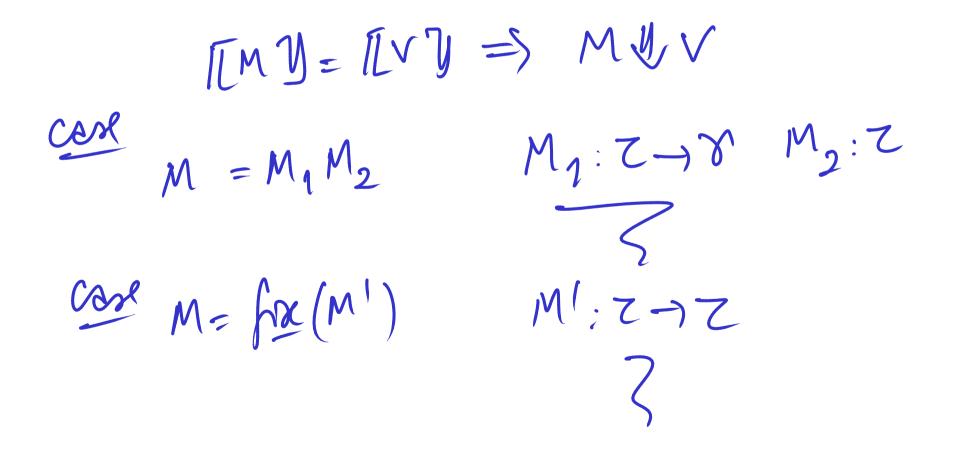
NB. Adequacy does not hold at function types:

$$\llbracket \mathbf{fn} \ x : \tau. \ (\mathbf{fn} \ y : \tau. \ y) \ x \rrbracket = \llbracket \mathbf{fn} \ x : \tau. \ x \rrbracket \quad : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

 $\mathbf{fn} \ x:\tau. \left(\mathbf{fn} \ y:\tau. \ y\right) x \not \downarrow_{\tau \to \tau} \mathbf{fn} \ x:\tau. \ x$

- 1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.
 - ► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.



1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

• Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

● Define { \Z ⊆ [[Z]] × PCFZ }ZE Types.

• Prove for all types Z, and Terms M of type Z IMJ JZ M

• From IMY Jy M (nEEnst, bool 3) we will deduce Adequecy.

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

► Consider M to be $M_1 M_2$, $\mathbf{fix}(M')$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

 $\llbracket M
rbracket \lhd_{ au} M$ for all types au and all $M \in \operatorname{PCF}_{ au}$

where the *formal approximation relations*

 $\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}$

are *logically* chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in \{nat, bool\}$,

Definition of $d \triangleleft_{\gamma} M$ $(d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma})$ for $\gamma \in \{nat, bool\}$

$$n \triangleleft_{nat} M \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \left(n \in \mathbb{N} \Rightarrow M \Downarrow_{nat} \operatorname{succ}^{n}(\mathbf{0}) \right)$$

$$b \triangleleft_{bool} M \stackrel{\text{def}}{\Leftrightarrow} (b = true \Rightarrow M \Downarrow_{bool} \mathbf{true})$$
$$\& (b = false \Rightarrow M \Downarrow_{bool} \mathbf{false})$$

NB: LJnot M. LSbool M.

Proof of: $\llbracket M \rrbracket \lhd_{\gamma} M$ implies adequacy

```
\begin{split} \mathbf{Case} \ \gamma &= nat. \\ \llbracket M \rrbracket = \llbracket V \rrbracket \\ &\implies \llbracket M \rrbracket = \llbracket \mathbf{succ}^n(\mathbf{0}) \rrbracket & \text{ for some } n \in \mathbb{N} \\ &\implies n = \llbracket M \rrbracket \triangleleft_{\gamma} M \\ &\implies M \Downarrow \mathbf{succ}^n(\mathbf{0}) & \text{ by definition of } \triangleleft_{nat} \end{split}
```

Case $\gamma = bool$ is similar.

It remains to define $A_{G \rightarrow Z} \subseteq (I \cap Y \rightarrow I Z Y) \times PCF_{G \rightarrow Z}$ It makes sense to do so composible in terms of $J_G \subseteq I[GY \times PCF_G]$ and $J_G \subseteq I[GY \times PCF_G]$ Jz G [[] × P(Fz

But how?

We will proceed "logocally" and shape The definition by understanding what is needed from it to be able to prove [M] I z M by structural induction on M.

Requirements on the formal approximation relations, II

We want to be able to proceed by induction.

• Consider the case $M = M_1 M_2$.

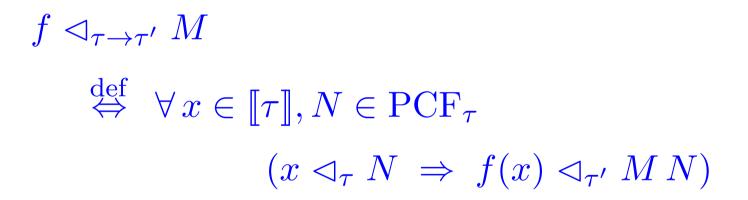
→ *logical* definition

 $RTP: II M_1 M_2 Y < M_1 M_2$

M1: 0-17 M2:0

 $\begin{bmatrix} M_1 & M_1 & ? \\ \sigma & ? \\ M_2 & M_2 & & & \\ M_2 & M_2 & & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_1 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_1 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M_1 & M_2 & M_2 & \\ M_2 & M_2 & M_2 & \\ M$ Def fAGNZM THAM HAAGN. f(d)AZM(N) (Logral)

Definition of $f \lhd_{\tau \to \tau'} M \ (f \in (\llbracket \tau \rrbracket \to \llbracket \tau' \rrbracket), M \in \mathrm{PCF}_{\tau \to \tau'})$



Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

• Consider the case $M = \mathbf{fix}(M')$.

→ *admissibility* property

 $\prod fix(m')] d_{\tau} fix(m').$

[for (m')] J ~ fra (m') fia (TM'I) Lemma Ed don z is 20 mussible. $d \operatorname{Az} fix(m') \stackrel{?}{=} I[M'](d) \operatorname{A} fix(M')$ fre(Mm'B) sz fre(M')

 $d \leq f_{\mathcal{X}}(m') \xrightarrow{?} [[m']](d) \leq f_{\mathcal{X}}(m')$ Lemma (NIV =) N'UV) $=) \qquad 2 \leq N \Rightarrow x \leq N'$

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set $\{ d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} M \}$

is an admissible subset of $\llbracket \tau \rrbracket$.

Further properties

Lemma. For all types τ , elements $d, d' \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \text{PCF}_{\tau}$,

1. If $d \sqsubseteq d'$ and $d' \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.

2. If $d \triangleleft_{\tau} M$ and $\forall V (M \Downarrow_{\tau} V \implies N \Downarrow_{\tau} V)$ then $d \triangleleft_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

• Consider the case $M = \operatorname{fn} x : \tau \cdot M'$.

 \sim substitutivity property for open terms

RTV [[fnx: 7. M]] J7-10 fnz: 7. M]

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \ldots, d_n \triangleleft_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket [x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M [M_1 / x_1, \dots, M_n / x_n].$ Cose n=0 IT MM SM UH Cose z= de Enot, boolz ll Adequacy.

Fundamental property

Theorem. For all $\Gamma = \langle x_1 \mapsto \tau_1, \dots, x_n \mapsto \tau_n \rangle$ and all $\Gamma \vdash M : \tau$, if $d_1 \triangleleft_{\tau_1} M_1, \dots, d_n \triangleleft_{\tau_n} M_n$ then $\llbracket \Gamma \vdash M \rrbracket [x_1 \mapsto d_1, \dots, x_n \mapsto d_n] \triangleleft_{\tau} M [M_1/x_1, \dots, M_n/x_n]$.

NB. The case $\Gamma = \emptyset$ reduces to

 $\llbracket M \rrbracket \lhd_{\tau} M$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M : \tau$ is a valid PCF typing, then for all Γ -environments ρ and all Γ -substitutions σ

 $\rho \triangleleft_{\Gamma} \sigma \; \Rightarrow \; \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in dom(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in dom(\Gamma)$.

Implucations to Contextual Equivalence

Given PCF terms M_1, M_2 , PCF type τ , and a type environment Γ , the relation $\Gamma \vdash M_1 \leq_{\text{ctx}} M_2 : \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold.
- For all PCF contexts C for which $C[M_1]$ and $C[M_2]$ are closed terms of type γ , where $\gamma = nat \text{ or } \gamma = bool$, and for all values $V \in PCF_{\gamma}$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \implies \mathcal{C}[M_2] \Downarrow_{\gamma} V$$
.

Proposition For all PCF types and all closed PCF terms M1, M2 of type Z,

Misch M2: Ciff [[Mi]] J-M2

At a ground type $\gamma \in \{bool, nat\},\$ $M_1 \leq_{\mathrm{ctx}} M_2 : \gamma$ holds if and only if $\forall V \in \operatorname{PCF}_{\gamma} (M_1 \Downarrow_{\gamma} V \Longrightarrow M_2 \Downarrow_{\gamma} V) .$ a function type $\tau \to \tau'$, $M_1 \leq_{\operatorname{ctx}} M_2 : \tau \to \tau' \text{ holds if and only if}$ At a function type $\tau \rightarrow \tau'$, $\forall M \in \mathrm{PCF}_{\tau} (M_1 M \leq_{\mathrm{ctx}} M_2 M : \tau') .$