Intuitively, two program phrases are contextually equivalent whenever there is no observable computational difference between running either of them within any given complete program.
the idea of contextual equivalence

$$
M_{1} \cong c c_{x} M_{2}
$$

of
for all program contexts
running
and running \square
is computationally indistinguis table

Contextual equivalence

Two phrases of a programming language are contextually
equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.

Contextual equivalence of PCF terms

Given PCF terms M_{1}, M_{2}, PCF type τ, and a type environment Γ, the relation $\Gamma \vdash M_{1} \cong{ }_{c t x} M_{2}: \tau$
is defined to hold iff

- Both the typings $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}\left[M_{1}\right]$ and $\mathcal{C}\left[M_{2}\right]$ are closed terms of type γ, where $\gamma=$ nat or $\gamma=$ bool, and for all values $V: \gamma$,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\gamma} V .
$$

PCF denotational semantics - aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.

Denotations of open terms will be continuous functions.

- Compositionality.

In particular: $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket=\llbracket \mathcal{C}\left[M^{\prime}\right] \rrbracket$.

- Soundness.

For any type $\tau, M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket=\llbracket V \rrbracket$.

- Adequacy.

For $\tau=$ bool or nat, $\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \tau \rrbracket \Longrightarrow M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_{1}, M_{2} \in \mathrm{PCF}_{\tau}$, if $\llbracket M_{1} \rrbracket$ and $\llbracket M_{2} \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_{1} \cong_{c t x} M_{2}: \tau$.

Proof.

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\text {nat }} V \Rightarrow \llbracket \mathcal{C}\left[M_{1}\right] \rrbracket=\llbracket V \rrbracket \quad \text { (soundness) }
$$

$$
\begin{array}{ll}
\Rightarrow \llbracket C\left[M_{2}\right] \rrbracket=\llbracket V \rrbracket & \text { (compositionality } \\
& \text { on } \left.\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket\right)
\end{array}
$$

$$
\Rightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\text {nat }} V \quad \text { (adequacy) }
$$

and symmetrically.

To prove

$$
M_{1} \cong_{\operatorname{ctx}} M_{2}: \tau
$$

it suffices to establish

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket
$$

Example

$$
\begin{aligned}
& \text { le pred }(0) \rrbracket=1=\llbracket \Omega_{\text {nat } y} \\
& \Rightarrow \quad \text { pred }(0) \cong c b x \Omega_{\text {net }}
\end{aligned}
$$

Proof principle

To prove

$$
M_{1} \cong{ }_{c t x} M_{2}: \tau
$$

it suffices to establish

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket
$$

? The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$
\Gamma \vdash M: \tau
$$

we associate a continuous function

$$
\llbracket \Gamma \vdash M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

between domains.

$$
\begin{aligned}
& \text { M aterpect type enc ronneits } \\
& \text { as domains. }
\end{aligned}
$$

Denotational semantics of PCF types

$$
\begin{array}{cc}
\llbracket n a t \rrbracket \stackrel{\text { def }}{=} \mathbb{N}_{\perp} & \text { (flat domain) } \\
\llbracket b o o l \rrbracket \stackrel{\text { def }}{=} \mathbb{B}_{\perp} & \text { (flat domain) } \\
\mathbb{N}_{\perp}= & B_{\perp}= \\
1 / 2 \cdots n & \text { true ale }
\end{array}
$$

where $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{B}=\{$ true, false $\}$.

Denotational semantics of PCF types

$$
\begin{array}{cc}
\llbracket n a t \rrbracket \stackrel{\text { def }}{=} \mathbb{N}_{\perp} & \text { (flat domain) } \\
\llbracket b o o l \rrbracket \stackrel{\text { def }}{=} \mathbb{B}_{\perp} & \text { (flat domain) } \\
\llbracket \tau \rightarrow \tau^{\prime} \rrbracket \stackrel{\text { def }}{=} \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket & \text { (function domain). } \\
\text { where } \mathbb{N}=\{0,1,2, \ldots\} \text { and } \mathbb{B}=\{\text { true, false }\} .
\end{array}
$$

$$
\begin{aligned}
& \llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad \text { (} \Gamma \text {-environments) } \\
\Gamma & {\left[x_{1} \mapsto \zeta_{1}, \ldots, z_{n} \mapsto \tau_{n}\right] }
\end{aligned}
$$

Wehare $\left.\llbracket \tau_{i}\right] i=1, \ldots, n$ domains, and define $\Pi \Gamma Y$ again a domain.

11 def

$$
\prod_{i=1 \ldots n}^{\left.\left.\| z_{i} \rrbracket \rightarrow\left(d_{1}, d_{2}, \ldots, d_{n}\right) \quad m^{t} t_{h} \quad d_{i} \in \mathbb{\pi} \tilde{Z}_{i}\right\}\right]}
$$

$$
\begin{aligned}
& \llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad \text { (} \Gamma \text {-environments) } \\
& =\text { the domain of partial functions } \rho \text { from variables } \\
& \text { to domains such that } \operatorname{dom}(\rho)=\operatorname{dom}(\Gamma) \text { and } \\
& \rho(x) \in \llbracket \Gamma(x) \rrbracket \text { for all } x \in \operatorname{dom}(\Gamma) \\
& \left\{\begin{array}{l}
\rho \in \llbracket \Gamma \eta \\
x \in \operatorname{dom}(\Gamma) \longmapsto \rho(x) \in \mathbb{\Gamma}(x)]
\end{array}\right. \\
& \text { Ebaple } n=\left[n H Z, \ldots, u_{n} H Z_{n}\right] \\
& \left.\rho \in \pi \vec{V} \sim x_{i} \mapsto \rho\left(x_{i}\right) \in \llbracket z_{i}\right\}
\end{aligned}
$$

Denotational semantics of PCF type environments

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad(\Gamma \text {-environments) }
$$

$=$ the domain of partial functions ρ from variables to domains such that $\operatorname{dom}(\rho)=\operatorname{dom}(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in \operatorname{dom}(\Gamma)$

Example:

$$
N B: \sqrt{1 r}+M: \tau y
$$

1. For the empty type environment \emptyset,
$: \pi \Gamma y \rightarrow \pi z y$

$$
\llbracket \varnothing]=\{\perp\} \quad \overline{\pi \phi} \vdash M: \tau y
$$

where \perp denotes the unique partial function with : $[\phi] \rightarrow[\llbracket]$ $\operatorname{dom}(\perp)=\emptyset$.

$$
\text { So } \pi M y=\pi \phi 1-M: Z y(1) \in \llbracket z \rrbracket
$$

2. $\llbracket\langle x \mapsto \tau\rangle \rrbracket=(\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$
3.

$$
\begin{aligned}
& \llbracket\left\langle x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\rangle \rrbracket \\
& \cong\left(\left\{x_{1}\right\} \rightarrow \llbracket \tau_{1} \rrbracket\right) \times \ldots \times\left(\left\{x_{n}\right\} \rightarrow \llbracket \tau_{n} \rrbracket\right) \\
& \cong \llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
\end{aligned}
$$

Denotational Semantics of terms Recall that for $\Gamma \vdash M: \tau$ we aim to compositionally define a contimous function $[\Gamma+M]: \llbracket \Gamma y \rightarrow \llbracket[\rrbracket]$.
We proceed by induction on the structure of terms, giving

$$
\llbracket \Gamma+M \rrbracket(\rho) \in \llbracket \tau \rrbracket \quad \text { for } \rho \in \mathbb{\Gamma}\}
$$

Denotational semantics of PCF terms, I

$$
\begin{aligned}
& \llbracket \Gamma \vdash 0 \bigvee=\lambda \rho \in \llbracket \Gamma \rrbracket \cdot 0 \\
& \llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text { def }}{=} 0 \in \llbracket n a t \rrbracket \quad: \llbracket \cap Y \rightarrow \mathbb{N}_{\perp} \\
& \llbracket \Gamma \vdash \text { true } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } \in \llbracket b o o l \rrbracket \\
& \llbracket \Gamma \vdash \text { false } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } \in \llbracket b o o l \rrbracket
\end{aligned}
$$

Denotational semantics of PCF terms, I

$$
\begin{aligned}
& D_{1} \times \ldots \times D_{n} \longrightarrow D_{i} \\
& \llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text { def }}{=} 0 \in \llbracket n a t \rrbracket \quad\left(d_{1}, \ldots, d_{n}\right) \stackrel{\pi_{i}}{\longmapsto} d_{i} \\
& \llbracket \Gamma \vdash \operatorname{true} \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } \in \llbracket b o o l \rrbracket \\
& \llbracket \Gamma \vdash \mathbf{f a l s e} \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } \in \llbracket b o o l \rrbracket \\
& \llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text { def }}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \quad / /(x \in \operatorname{dom}(\Gamma)) \\
& {\left[x_{1}: \tau_{1}, \ldots, r_{n}: z_{n}+x_{i}: z_{i} y: \sqrt{\pi_{j=1}^{n} \pi r_{j} y} \longrightarrow \pi z_{i}\right]} \\
& \| \pi_{i} \\
& { }^{\prime}\left(d_{1}, \ldots d_{n}\right) \longmapsto d_{i_{78}}
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho) \\
& \quad \stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases} \\
& \Gamma+M: n a t \\
& \text { ITo } M: \text { nat } Y: \llbracket \Gamma Y \rightarrow N_{\perp} \\
& {[\Gamma+\operatorname{succ}(M): \text { nat }]:[\Gamma] \rightarrow N_{1}} \\
& 11 \text { def } \\
& s \text { o [r }- \text { Minot }] \\
& \| \begin{aligned}
S: \mathbb{N}_{\perp} & \longrightarrow \mathbb{N}_{\perp} \\
n \in \mathbb{N} & \longmapsto n+1 \\
\perp & \longmapsto \perp
\end{aligned}
\end{aligned}
$$

Denotational semantics of PCF terms, II

$$
\begin{aligned}
& \llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho) \\
& \qquad \stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
\end{aligned}
$$

$\llbracket \Gamma \vdash \operatorname{pred}(M) \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)-1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0, \perp\end{cases}
$$

$\pi r \operatorname{Hped}(M) y=\operatorname{def} \quad p$ o $[r+M V$

$$
p: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp}
$$

$$
1,0 \longmapsto \perp
$$

$$
(n \in \mathbb{N}) n+1 \longmapsto n
$$

Denotational semantics of PCF terms, II

$$
\begin{aligned}
& \llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho) \\
& \stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
\end{aligned}
$$

$\llbracket \Gamma \vdash \operatorname{pred}(M) \rrbracket(\rho)$

$$
\begin{gathered}
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)-1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0, \perp\end{cases} \\
\llbracket \Gamma \vdash \operatorname{zero}(M) \rrbracket(\rho) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0 \\
\text { false } & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
\end{gathered}
$$

Denotational semantics of PCF terms, III

$\llbracket \Gamma \vdash$ if M_{1} then M_{2} else $M_{3} \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M_{2} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { true } \\ \llbracket \Gamma \vdash M_{3} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { false } \\ \perp & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\perp\end{cases}
$$

$$
\llbracket \Gamma \vdash M_{1} M_{2} \rrbracket(\rho) \stackrel{\text { def }}{=}\left(\llbracket \Gamma \vdash M_{1} \rrbracket(\rho)\right)\left(\llbracket \Gamma \vdash M_{2} \rrbracket(\rho)\right) \quad \rho \in \llbracket \Gamma \rrbracket
$$

$$
M_{1}: Z \rightarrow \sigma \quad M_{2}: Z
$$

$$
\pi \mu_{1} \rrbracket: \pi\left[\rrbracket y \rightarrow(\pi z y \rightarrow \pi \sigma y) \quad \pi \mu_{2} \rrbracket:(\pi \Gamma) \rightarrow \pi z \rrbracket\right.
$$

$$
\begin{aligned}
& \llbracket \Gamma+M_{1}: z \rightarrow \sigma y: \llbracket \Gamma y \rightarrow(\pi z \rrbracket \rightarrow \pi \sigma U) \\
& \pi \Gamma+M_{2}: \tau y: \pi r \| \rightarrow \pi r y
\end{aligned}
$$

(1) Pair $\left[M_{1}\right]$ and $\left.\mathbb{I} M_{2}\right]$:
$D \xrightarrow{f_{1}} D_{1}$

$$
\underset{\text { exerul }}{\text { cont. }} \underset{\text { cont. }}{\| \xrightarrow[f_{2}]{ } D_{2}} \frac{\left.D f_{1}, f_{2}\right\rangle}{} D_{1} \times D_{2}
$$

$$
\left\langle\pi M_{1} y_{1}, \pi \mu_{2} y\right\rangle, \quad d \longmapsto\left(f_{1}(d), f_{2}(d)\right)
$$

$$
: \pi \Gamma y \rightarrow(\pi z y \rightarrow \pi \sigma y) \times \pi z y
$$

(2)

$$
(D \rightarrow E) \times D \xrightarrow{\text { add }} E \text { continous. }
$$

$$
f, d \longmapsto f(d)
$$

$$
\operatorname{evd} \stackrel{d f}{=} \lambda(f, d) \cdot f(d)
$$

$$
\| M_{1} M_{2} y=\text { eval } 0\left\langle\mathbb{M}_{1} y, \pi M_{2} y\right\rangle
$$

$$
\begin{aligned}
& \left.\pi M_{1} M_{2}\right]=\llbracket \Gamma y \\
& \longrightarrow\{\sigma\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Gamma[x \mapsto r] \vdash M: \sigma}{\Gamma \vdash f(x: z: M: \tau \rightarrow \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \pi \Gamma \vdash \text { fux } x \cdot m: z \rightarrow \sigma y: \pi n y \rightarrow(\pi z y \rightarrow \pi \sigma \|) \\
& \text { curry }([\Gamma[x \mapsto z] \vdash-M]) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& C \times D \xrightarrow{f} E \text { cont } \text { Curry }^{\text {Exerok }} . \\
& C \xrightarrow{\text { curry }(f)(c)=\lambda d \in D . f(c, d)} .
\end{aligned}
$$

Denotational semantics of PCF terms, IV

$$
\begin{aligned}
& \llbracket \Gamma \vdash \mathbf{f n} x: \tau . M \rrbracket(\rho) \\
& \stackrel{\text { def }}{=} \lambda d \in \llbracket \tau \rrbracket . \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket(\rho[x \mapsto d]) \quad(x \notin \operatorname{dom}(\Gamma))
\end{aligned}
$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ.
$\pi \Gamma+M: z \rightarrow z y: \pi r y \rightarrow(\pi r y \rightarrow \pi z y)$

$$
\begin{aligned}
& \llbracket \Gamma \vdash f \mathbf{i x}(M) \rrbracket(\rho) \stackrel{\text { def }}{=} f i x(\llbracket \Gamma \vdash M \rrbracket(\rho)) \\
& \llbracket \Gamma \vdash f x(M) \rrbracket=f i x \circ \llbracket \Gamma \vdash M \rrbracket]
\end{aligned}
$$

Recall that fix is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M: \tau$, the denotation

$$
\llbracket \Gamma \vdash M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

is a well-defined continous function.

