Continuity and strictness

- If D and E are cpo's, the function f is continuous iff

1. it is monotone, and
2. it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E .
$$

- If D and E have least elements, then the function f is strict iff $f(\perp)=\perp$.

Domdin of streans
Stroon(N) elenats $n_{0}, n_{1}, n_{2}, \ldots$

$$
n_{k}=\perp \Rightarrow n_{k+1}=1
$$

order $\vec{n} E \vec{m}$
Ifaf $\forall i, n_{i} E m_{i}$
lubs $\quad \vec{n}_{0} 巨 \overrightarrow{n_{1}} \subseteq \overrightarrow{n_{2}} \subseteq \ldots 5 \vec{n}_{R} E$

$$
\left(\bigcup_{k} \overrightarrow{n_{k}}\right)_{i}=\bigcup_{k}\left(n_{k}\right)_{i}
$$

botton $\vec{I}=1,1, \ldots, 1, \ldots$

$$
\begin{aligned}
& f: \operatorname{Stresu}(N) \rightarrow \mathbb{N}_{1} \\
& \text { (1/ } \\
& k \in \mathbb{N} \\
& f^{\prime \prime}\left(n_{0}, n_{1}, n_{2}, \ldots, n_{i}, \ldots\right) \\
& =\int\left(U \left[(\perp, \perp, 1 \ldots, \perp, \ldots) \Sigma\left(n_{0}, 1 \perp \ldots \perp\right)\right.\right. \\
& \Sigma\left(n_{0}, n_{1}, \perp \ldots \perp\right) E\left(n_{0}, n_{1}, n_{2}, \perp \ldots \perp \ldots\right) \\
& \text { E...]) } \\
& =\sqcup\left[f(\perp, 1 \ldots \perp) \sqsubseteq f\left(n_{0} \perp \perp \ldots \perp \ldots\right) \subseteq f\left(n_{0}, n_{1} \perp \ldots\right)\right. \\
& \left.\underline{I f}\left(n_{0} n_{1} n_{2} \perp \ldots \perp \ldots\right) \leq \ldots\right]
\end{aligned}
$$

$$
\begin{aligned}
& R=L[f(11 \ldots) \\
& \text { If }\left(n_{0}+\ldots 1\right) \\
& \text { af(} \left.n_{0} n_{1} 1 \ldots 1 \ldots\right) \\
& {[\cdots]} \\
& f\left(n_{0} m_{\ldots} \ldots n_{i} \perp \ldots \downarrow . .\right) \in\{\downarrow, k\} \quad 0 \quad 1 \ldots k^{k \mathbb{N}} \\
& \| \\
& f\left(n_{0} n_{1} \ldots n_{l} 1 \ldots+. .\right)=k \text { for sine } l \in \mathbb{N} \text {. }
\end{aligned}
$$

Tarski's Fixed Point Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

- f possesses a least pre-fixed point, given by

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

- Moreover, $f i x(f)$ is a fixed point of f, i.e. satisfies $f(f i x(f))=f i x(f)$, and hence is the least fixed point of f.
$f: D \rightarrow D$ contimons
$\perp \pm f(\perp) \Rightarrow f(1) 上 f^{2}(1)$

$$
\begin{aligned}
& \Rightarrow \perp E f(1) 5 f^{2}(1) \leq \cdots t f^{u}(1) \varepsilon \cdots i n d \\
& L\left(\perp t f(1) \leftarrow \ldots t f^{\prime}(1) 5 \cdots\right) \\
& =U_{n} f^{n}(1) \text { is a fixed point. } \\
& f\left(U_{n} f^{n}(1)\right)=U_{n} f^{\prime}\left(f^{n}(1)\right)=L_{n} f^{n+1}(1) \\
& =U\left(f(t) \subseteq f^{2}(1) 5 \ldots 5 f^{n}(4) 5 \ldots\right)=\sqcup_{n} f^{n}(1)
\end{aligned}
$$

LEAST

$$
\begin{aligned}
& \qquad f(d) \subseteq d \Rightarrow \bigsqcup_{n} f^{n}(-1) \subseteq d \\
& \pm \subseteq d \checkmark \Rightarrow f(1) \subseteq f(d) \leq d \\
& f(1) \subseteq d \checkmark
\end{aligned}
$$

$f^{2}(1) \leq d$

$$
\frac{\operatorname{tn} \frac{\sqrt{f^{n}(1) 上 d}}{U_{n} f^{n}(1) 5 d}}{\text { (1) }}
$$

\llbracket while B do $C \rrbracket: S$ babe $>$ S tote

$$
\begin{aligned}
& \llbracket \text { while } B \text { do } C \rrbracket \\
= & f_{i x}\left(f_{\llbracket B \rrbracket, \llbracket C \rrbracket}\right) \\
= & \bigsqcup_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}{ }^{n}(\perp)
\end{aligned}
$$

friml, $\pi c y:(S b t e-s b a t)$ $\}_{\text {cont hin }} \rightarrow($ Stet $t \rightarrow$ Shat $)$

$=\lambda s \in$ State .

$$
\begin{cases}\llbracket C \rrbracket^{k}(s) & \text { if } k \geq 0 \text { is such that } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{k}(s)\right)=\text { false } \\ & \text { and } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true for all } 0 \leq i<k \\ \text { undefined } & \text { if } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true for all } i \geq 0\end{cases}
$$

Topic 3
Constructions on Domains

$$
\text { Models for datatype } \sum_{\substack{* * \beta \\ \alpha \rightarrow \beta}}
$$

Discrete cpo's and flat domains

For any set X, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.
Let $X_{\perp} \stackrel{\text { def }}{=} X \cup\{\perp\}$, where \perp is some element not in X. Then

$$
d \sqsubseteq d^{\prime} \stackrel{\text { def }}{\Leftrightarrow}\left(d=d^{\prime}\right) \vee(d=\perp) \quad\left(d, d^{\prime} \in X_{\perp}\right)
$$

makes $\left(X_{\perp}, \sqsubseteq\right)$ into a domain (with least element \perp), called the
flat domain determined by X.
Example
N_{\perp}, \{true, flee $\}_{\perp}$

Binary product of cpo's and domains

The product of two cpo's $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \& d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \& d_{2} \sqsubseteq_{2} d_{2}^{\prime} .
$$

$$
\frac{\left(x_{1}, x_{2}\right) \sqsubseteq\left(y_{1}, y_{2}\right)}{\sqsubseteq_{1} y_{1} \quad x_{2} \sqsubseteq_{2} y_{2}} }
$$

Given
D_{1}, D_{2} domains
turn

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1}, d_{2} \in D_{2}\right\}
$$

into a domain

$$
\left(x_{1}, x_{2}\right) \frac{E}{D_{1} x_{2}}\left(y_{1}, y_{2}\right)
$$

is a poetise order
If of $x_{1} \Sigma_{D_{1}} y_{1}$ and $x_{2} \Sigma_{D_{2}} y_{2}$

$$
\perp_{D_{\times D_{2}}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)
$$

$$
\begin{aligned}
& \text { If } \begin{array}{l}
\left(x_{0}, y_{0}\right) \subseteq\left(x_{1}, y_{1}\right) \subseteq \ldots t\left(x_{1}, y_{n}\right) \subseteq \ldots \quad \text { in } D_{1} \times D_{2} \\
x_{0} 5 x_{1} \in \ldots \sin 5 \ldots \quad \text { in } D_{1} \\
\text { dt } y_{0} 5 y_{1} \leq \ldots 5 y_{n} \leq \ldots \text { in } D_{2}
\end{array}
\end{aligned}
$$

Courster $U_{n} x_{n}$ in D_{1} and $L_{m} y_{u}$ in D_{2}
so that
Cleim

$$
\left(U_{n} x_{n}, U_{m} y_{n}\right) \in D_{1} \times X_{2}
$$

$$
L_{R}\left(x_{k}, y_{k}\right)
$$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right) .
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ are domains so is $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ and $\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)$.

Continuous functions of two arguments

Proposition. Let D, E, F be cpo's. A function
$f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$
\begin{aligned}
& f\left(\bigsqcup_{m \geq 0} d_{m}, e\right)=\bigsqcup_{m \geq 0} f\left(d_{m}, e\right) \\
& f\left(d, \bigsqcup_{n \geq 0} e_{n}\right)=\bigsqcup_{n \geq 0} f\left(d, e_{n}\right)
\end{aligned}
$$

$f:(D \times E) \rightarrow F \quad$ for D, E, F donains. contimions.
iff

$$
\begin{aligned}
f(d,-) & : E \rightarrow F \\
& e \mapsto f(d, e)
\end{aligned} \quad d \in D
$$

and

$$
\begin{array}{rlrl}
f(-, e): & D & \rightarrow F & e \in E \\
& d \mapsto f(d, e) &
\end{array}
$$

contimens.
$\underline{N B}(1) f\left(L_{m}\left(x_{m}, y_{m}\right)\right)=L_{m} f\left(x_{m}, y_{m}\right)$
11

- A couple of derived rules:

$$
\frac{x \sqsubseteq x^{\prime} \quad y \sqsubseteq y^{\prime}}{f(x, y) \sqsubseteq f\left(x^{\prime}, y^{\prime}\right)} \quad(f \text { monotone })
$$

f cont in the list arg

$$
\begin{aligned}
f\left(\Delta_{m} x_{m}, \Delta_{n} y_{n}\right) & =L_{m} f\left(x_{m}, \Delta_{n} y_{n}\right) \\
& =\bigsqcup_{m} \bigsqcup_{n} f\left(x_{m}, y_{n}\right) \\
& =\bigsqcup_{k} f\left(x_{k}, y_{k}\right)
\end{aligned}
$$

Function cpo's and domains
Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo ($D \rightarrow E, \sqsubseteq$) has underlying set

$$
(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E \text { is a continuous function }\}
$$

and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq E f^{\prime}(d)$.

$$
\begin{aligned}
& f=f \\
& f 5 g \wedge g 5 f \Rightarrow f=g \\
& f 5 g \wedge g 5 h \Rightarrow f t h
\end{aligned}
$$

$$
\perp(D \rightarrow E)=\lambda d \in D \cdot \perp_{E}
$$

is continuous.

$$
f_{0} \text { Ef } 5 \text {... } 5 f_{n} E \cdots \text { in }(D \rightarrow E)
$$

Depue $U_{n} f_{n} \in(D \rightarrow E)$

$$
\left(\nu_{n} f_{n}\right)(d)^{d e f}=L_{n}\left(f_{n}(d)\right)
$$

fo(x)t fielt...

RTP $U_{n} f_{n}$ in continous from D to E.

$$
\begin{aligned}
& \left(U_{n} f_{n}\right)(x) 5\left(U_{n} f_{n}\right)(y) \quad \forall 25 y \text { Exarnd } \\
& \left(U_{n} f_{n}\right)\left(U_{k} x_{k}\right)=U_{k}\left(U_{n} f_{n}\right)\left(x_{k}\right)
\end{aligned}
$$

