
Continuity and strictness

� If D and E are cpo’s, the function f is continuous iff

1. it is monotone, and

2. it preserves lubs of chains, i.e. for all chains

d0 ⊑ d1 ⊑ . . . in D, it is the case that

f(
G

n≥0

dn) =
G

n≥0

f(dn) in E.

� If D and E have least elements, then the function f is strict

iff f(⊥) = ⊥.
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Tarski’s Fixed Point Theorem

Let f : D →D be a continuous function on a domain D. Then

• f possesses a least pre-fixed point, given by

fix (f) =
G

n≥0

fn(⊥).

• Moreover, fix (f) is a fixed point of f , i.e. satisfies

f
�
fix (f)

�
= fix (f), and hence is the least fixed point of f .
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[[while B do C]]

[[while B do C]]

= fix (f[[B]],[[C]])

=
F

n≥0 f[[B]],[[C]]
n(⊥)

= λs ∈ State.






[[C]]k(s) if k ≥ 0 is such that [[B]]([[C]]k(s)) = false

and [[B]]([[C]]i(s)) = true for all 0 ≤ i < k

undefined if [[B]]([[C]]i(s)) = true for all i ≥ 0
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Topic 3

Constructions on Domains
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Discrete cpo’s and flat domains

For any set X , the relation of equality

x ⊑ x′
def
⇔ x = x′ (x, x′ ∈ X)

makes (X,⊑) into a cpo, called the discrete cpo with underlying

set X .

Let X⊥
def
= X ∪ {⊥}, where ⊥ is some element not in X . Then

d ⊑ d′
def
⇔ (d = d′) ∨ (d = ⊥) (d, d′ ∈ X⊥)

makes (X⊥,⊑) into a domain (with least element ⊥), called the

flat domain determined by X .
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Binary product of cpo’s and domains

The product of two cpo’s (D1,⊑1) and (D2,⊑2) has underlying

set

D1 ×D2 = {(d1, d2) | d1 ∈ D1 & d2 ∈ D2}

and partial order ⊑ defined by

(d1, d2) ⊑ (d′1, d
′
2)

def
⇔ d1 ⊑1 d

′
1 & d2 ⊑2 d

′
2 .

(x1, x2) ⊑ (y1, y2)

x1 ⊑1 y1 x2 ⊑2 y2
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Lubs of chains are calculated componentwise:

G

n≥0

(d1,n, d2,n) = (
G

i≥0

d1,i,
G

j≥0

d2,j) .

If (D1,⊑1) and (D2,⊑2) are domains so is (D1 ×D2,⊑)
and ⊥D1×D2

= (⊥D1
,⊥D2

).
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Continuous functions of two arguments

Proposition. Let D, E, F be cpo’s. A function

f : (D × E)→ F is monotone if and only if it is monotone in

each argument separately:

∀d, d′ ∈ D, e ∈ E. d ⊑ d′ ⇒ f(d, e) ⊑ f(d′, e)

∀d ∈ D, e, e′ ∈ E. e ⊑ e′ ⇒ f(d, e) ⊑ f(d, e′).

Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:

f(
G

m≥0

dm , e) =
G

m≥0

f(dm, e)

f(d ,
G

n≥0

en) =
G

n≥0

f(d, en).
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� A couple of derived rules:

x ⊑ x′ y ⊑ y′

f(x, y) ⊑ f(x′, y′)
(f monotone)

f(
F

m xm,
F

n yn) =
F

k f(xk, yk)
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Function cpo’s and domains

Given cpo’s (D,⊑D) and (E,⊑E), the function cpo

(D →E,⊑) has underlying set

(D→ E)
def
= {f | f : D→ E is a continuous function}

and partial order: f ⊑ f ′ def
⇔ ∀d ∈ D . f(d) ⊑E f ′(d).
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