Denotational Semantics

Lectures for Part II CST 2021/22
Prof Marcelo Fiore
Course web page:
http://www.cl.cam.ac.uk/teaching/2122/DenotSem/

Topic 1

Introduction

What is this course about?

- General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

- Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

Why do we care?

- Rigour.
... specification of programming languages
... justification of program transformations

Why do we care?

- Rigour.
... specification of programming languages
... justification of program transformations
- Insight.
... generalisations of notions computability
... higher-order functions
... data structures
- Feedback into language design.
... continuations
... monads
- Feedback into language design.
... continuations
... monads
- Reasoning principles.
... Scott induction
... Logical relations
... Co-induction

Styles of formal semantics

Operational.

Axiomatic.

Denotational.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps of computation they can take during program execution.

Axiomatic.

Denotational.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the $a x$ ioms and rules of some logic of program properties.

Denotational.

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the steps of computation they can take during program execution.

Axiomatic.
Meanings for program phrases defined indirectly via the $a x$ ioms and rules of some logic of program properties.

Denotational.

Concerned with giving mathematical models of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics
$P \quad \mapsto \quad \llbracket P \rrbracket$

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics
Recursive program $\quad \mapsto \quad$ Partial recursive function
$$
P \quad \mapsto \quad \llbracket P \rrbracket
$$

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics
Recursive program $\quad \mapsto \quad$ Partial recursive function
Boolean circuit $\quad \mapsto \quad$ Boolean function
$P \quad \mapsto \quad \llbracket P \rrbracket$

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent). \rightsquigarrow Lectures 2, 3 and 4.

Basic idea of denotational semantics

Concerns:

- Abstract models (i.e. implementation/machine independent). \rightsquigarrow Lectures 2, 3 and 4.
- Compositionality.
\rightsquigarrow Lectures 5 and 6.

Basic idea of denotational semantics

Syntax $\xrightarrow{\llbracket-\rrbracket}$ Semantics
Recursive program $\quad \mapsto \quad$ Partial recursive function
Boolean circuit $\quad \mapsto \quad$ Boolean function

$$
P \quad \mapsto \quad \llbracket P \rrbracket
$$

Concerns:

- Abstract models (i.e. implementation/machine independent). \rightsquigarrow Lectures 2, 3 and 4.
- Compositionality.
\rightsquigarrow Lectures 5 and 6.
- Relationship to computation (e.g. operational semantics). \rightsquigarrow Lectures 7 and 8 .

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation, $\llbracket P \rrbracket$ - a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

$$
\mathrm{IMP}^{-} \text {syntax }
$$

Arithmetic expressions

$$
\begin{aligned}
A \in \operatorname{Aexp}::= & \underline{n}|L| A+A \mid \ldots \\
& \text { where } n \text { ranges over integers and } \\
& L \text { over a specified set of locations } \mathbb{L}
\end{aligned}
$$

Boolean expressions

$$
\begin{aligned}
B \in \operatorname{Bexp}: & := \\
& \text { true } \mid \text { false }|A=A| \ldots \\
& \neg B \mid \ldots
\end{aligned}
$$

Commands

$$
\begin{array}{cc}
C \in \mathbf{C o m m} & ::=\text { skip }|L:=A| C ; C \\
& \mid \quad \text { if } B \text { then } C \text { else } C
\end{array}
$$

Basic example of denotational semantics (II)

Semantic functions

$$
\mathcal{A}: \quad \operatorname{Aexp} \rightarrow(\text { State } \rightarrow \mathbb{Z})
$$

where

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\text { State } & =(\mathbb{L} \rightarrow \mathbb{Z})
\end{aligned}
$$

Basic example of denotational semantics (II)

Semantic functions

$$
\begin{array}{ll}
\mathcal{A}: & \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
\mathcal{B}: & \text { Bexp } \rightarrow(\text { State } \rightarrow \mathbb{B})
\end{array}
$$

where

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\} \\
\text { State } & =(\mathbb{L} \rightarrow \mathbb{Z})
\end{aligned}
$$

Basic example of denotational semantics (II)

Semantic functions

$$
\begin{aligned}
\mathcal{A}: & \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
\mathcal{B}: & \text { Bexp } \rightarrow(\text { State } \rightarrow \mathbb{B}) \\
\mathcal{C}: & \text { Comm } \rightarrow(\text { State } \longrightarrow \text { State })
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\} \\
\text { State } & =(\mathbb{L} \rightarrow \mathbb{Z})
\end{aligned}
$$

Basic example of denotational semantics (III)

Semantic function \mathcal{A}

$$
\begin{aligned}
& \mathcal{A} \llbracket \underline{n} \rrbracket=\lambda s \in \text { State. } n \\
& \mathcal{A} \llbracket L \rrbracket=\lambda s \in \text { State. } s(L) \\
& \mathcal{A} \llbracket A_{1}+A_{2} \rrbracket=\lambda s \in \text { State. } \mathcal{A} \llbracket A_{1} \rrbracket(s)+\mathcal{A} \llbracket A_{2} \rrbracket(s)
\end{aligned}
$$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$
\begin{aligned}
\mathcal{B} \llbracket \text { true } \rrbracket= & \lambda s \in \text { State.true } \\
\mathcal{B} \llbracket \text { false } \rrbracket= & \lambda s \in \text { State.false } \\
\mathcal{B} \llbracket A_{1}=A_{2} \rrbracket= & \lambda s \in \text { State. eq }\left(\mathcal{A} \llbracket A_{1} \rrbracket(s), \mathcal{A} \llbracket A_{2} \rrbracket(s)\right) \\
& \text { where } e q\left(a, a^{\prime}\right)= \begin{cases}\text { true } & \text { if } a=a^{\prime} \\
\text { false } & \text { if } a \neq a^{\prime}\end{cases}
\end{aligned}
$$

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

$$
\llbracket \mathbf{s k i p} \rrbracket=\lambda s \in \text { State. } s
$$

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State \rightharpoonup State and a function $\llbracket B \rrbracket:$ State $\rightarrow\{$ true, false $\}$, we can define
\llbracket if B then C else $C^{\prime} \rrbracket=$

$$
\lambda s \in \text { State. if }\left(\llbracket B \rrbracket(s), \llbracket C \rrbracket(s), \llbracket C^{\prime} \rrbracket(s)\right)
$$

where

$$
\text { if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\ x^{\prime} & \text { if } b=\text { false }\end{cases}
$$

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$
\llbracket L:=A \rrbracket=\lambda s \in \text { State. } \lambda \ell \in \mathbb{L} . \text { if }(\ell=L, \llbracket A \rrbracket(s), s(\ell))
$$

Denotational semantics of sequential composition

Denotation of sequential composition $C ; C^{\prime}$ of two commands

$$
\llbracket C ; C^{\prime} \rrbracket=\llbracket C^{\prime} \rrbracket \circ \llbracket C \rrbracket=\lambda s \in \text { State } . \llbracket C^{\prime} \rrbracket(\llbracket C \rrbracket(s))
$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State \rightharpoonup State which are the denotations of the commands.

Denotational semantics of sequential composition

Denotation of sequential composition $C ; C^{\prime}$ of two commands

$$
\llbracket C ; C^{\prime} \rrbracket=\llbracket C^{\prime} \rrbracket \circ \llbracket C \rrbracket=\lambda s \in \text { State } \llbracket C^{\prime} \rrbracket(\llbracket C \rrbracket(s))
$$

given by composition of the partial functions from states to states $\llbracket C \rrbracket, \llbracket C^{\prime} \rrbracket:$ State - State which are the denotations of the commands.

Cf. operational semantics of sequential composition:

$$
\frac{C, s \Downarrow s^{\prime} C^{\prime}, s^{\prime} \Downarrow s^{\prime \prime}}{C ; C^{\prime}, s \Downarrow s^{\prime \prime}}
$$

【while B do $C \rrbracket$

Fixed point property of【while B do $C \rrbracket$

\llbracket while B do $C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket$ while B do $C \rrbracket)$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and
$c:$ State \rightharpoonup State, we define
$\quad f_{b, c}:($ State \rightharpoonup State $) \rightarrow($ State \rightharpoonup State $)$
as
$f_{b, c}=\lambda w \in($ State - State $) . \lambda s \in$ State. if $(b(s), w(c(s)), s)$.

Fixed point property of \llbracket while B do $C \rrbracket$

\llbracket while B do $C \rrbracket=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket$ while B do $C \rrbracket)$

where, for each $b:$ State $\rightarrow\{$ true, false $\}$ and
$c:$ State \rightharpoonup State, we define

$$
\begin{aligned}
& \text { as } \quad f_{b, c}:(\text { State } \rightharpoonup \text { State }) \rightarrow(\text { State } \rightharpoonup \text { State }) \\
& f_{b, c}=\lambda w \in(\text { State } \rightharpoonup \text { State }) . \lambda s \in \text { State. if }(b(s), w(c(s)), s) .
\end{aligned}
$$

- Why does $w=f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions-which one do we take to be \llbracket while B do $C \rrbracket$?

Approximating 【while B do $C \rrbracket$

Approximating 【while B do $C \rrbracket$

$$
\begin{aligned}
& f_{\llbracket B \rrbracket, \llbracket C \rrbracket}{ }^{n}(\perp) \\
& \quad=\lambda s \in \text { State. } \\
& \qquad \begin{cases}\llbracket C \rrbracket^{k}(s) & \text { if } \exists 0 \leq k<n \cdot \llbracket B \rrbracket\left(\llbracket C \rrbracket^{k}(s)\right)=\text { false } \\
\uparrow & \text { and } \forall 0 \leq i<k \cdot \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true } \\
\uparrow & \text { if } \forall 0 \leq i<n \cdot \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true }\end{cases}
\end{aligned}
$$

$$
D \stackrel{\text { def }}{=}(\text { State } \rightharpoonup \text { State })
$$

- Partial order \sqsubseteq on D :
$w \sqsubseteq w^{\prime} \quad$ iff \quad for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
iff the graph of w is included in the graph of w^{\prime}.
- Least element $\perp \in D$ w.r.t. \sqsubseteq :
$\perp=$ totally undefined partial function
$=$ partial function with empty graph
(satisfies $\perp \sqsubseteq w$, for all $w \in D$).

Topic 2

Least Fixed Points

Thesis

All domains of computation are partial orders with a least element.

Thesis

All domains of computation are partial orders with a least element.

All computable functions are monotonic.

Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is
reflexive: $\forall d \in D . d \sqsubseteq d$
transitive: $\forall d, d^{\prime}, d^{\prime \prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d^{\prime \prime} \Rightarrow d \sqsubseteq d^{\prime \prime}$
anti-symmetric: $\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d \Rightarrow d=d^{\prime}$.
Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.

$$
\overline{x \sqsubseteq x}
$$

Domain of partial functions, $X \rightharpoonup Y$

Domain of partial functions, $X \rightharpoonup Y$
Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) \cdot f(x)=g(x) \\
& \text { iff } & g r a p h(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

Monotonicity

- A function $f: D \rightarrow E$ between posets is monotone iff

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)
$$

$$
\frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)} \quad(f \text { monotone })
$$

Least Elements

Suppose that D is a poset and that S is a subset of D.
An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x
$$

- Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a poset may not have least element.

Pre-fixed points

Let D be a poset and $f: D \rightarrow D$ be a function.
An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
\begin{array}{|l|}
\hline f i x(f) \\
\hline
\end{array}
$$

It is thus (uniquely) specified by the two properties:

$$
\begin{align*}
& f(f i x(f)) \sqsubseteq f i x(f) \tag{lfp1}\\
& \forall d \in D . f(d) \sqsubseteq d \Rightarrow f i x(f) \sqsubseteq d . \tag{lfp2}
\end{align*}
$$

Proof principle

2. Let D be a poset and let $f: D \rightarrow D$ be a function with a least pre-fixed point $f i x(f) \in D$.
For all $x \in D$, to prove that $f i x(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

Proof principle

2. Let D be a poset and let $f: D \rightarrow D$ be a function with a least pre-fixed point $f i x(f) \in D$.
For all $x \in D$, to prove that $f i x(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$
\frac{f(x) \sqsubseteq x}{f i x(f) \sqsubseteq x}
$$

Proof principle

1.

$$
f(f i x(f)) \sqsubseteq f i x(f)
$$

2. Let D be a poset and let $f: D \rightarrow D$ be a function with a least pre-fixed point $f i x(f) \in D$.
For all $x \in D$, to prove that $f i x(f) \sqsubseteq x$ it is enough to establish that $f(x) \sqsubseteq x$.

$$
\frac{f(x) \sqsubseteq x}{f i x(f) \sqsubseteq x}
$$

Least pre-fixed points are fixed points

If it exists, the least pre-fixed point of a mononote function on a partial order is necessarily a fixed point.

Thesis*

All domains of computation are complete partial orders with a least element.

Thesis*

All domains of computation are complete partial orders with a least element.

All computable functions are continuous.

Cpo's and domains

A chain complete poset, or cpo for short, is a poset (D, \sqsubseteq) in which all countable increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ have least upper bounds, $\bigsqcup_{n \geq 0} d_{n}$:

$$
\begin{align*}
& \forall m \geq 0 . d_{m} \sqsubseteq \bigsqcup_{n \geq 0} d_{n} \tag{lub1}\\
& \forall d \in D .\left(\forall m \geq 0 . d_{m} \sqsubseteq d\right) \Rightarrow \bigsqcup_{n \geq 0} d_{n} \sqsubseteq d .
\end{align*}
$$

(lub2)

A domain is a cpo that possesses a least element, \perp :

$$
\forall d \in D . \perp \sqsubseteq d
$$

$\perp \sqsubseteq x$

$\overline{x_{i} \sqsubseteq \bigsqcup_{n \geq 0} x_{n}} \quad\left(i \geq 0\right.$ and $\left\langle x_{n}\right\rangle$ a chain $)$

$$
\frac{\forall n \geq 0 . x_{n} \sqsubseteq x}{\bigsqcup_{n \geq 0} x_{n} \sqsubseteq x} \quad\left(\left\langle x_{i}\right\rangle \text { a chain }\right)
$$

Domain of partial functions, $X \rightharpoonup Y$

Domain of partial functions, $X \rightharpoonup Y$
Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) . f(x)=g(x) \\
& \text { iff } & \operatorname{graph}(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) . f(x)=g(x) \\
& \text { iff } & g r a p h(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

Lub of chain $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ is the partial function f with $\operatorname{dom}(f)=\bigcup_{n \geq 0} \operatorname{dom}\left(f_{n}\right)$ and

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right), \text { some } n \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y.

Partial order:

$$
\begin{array}{rll}
f \sqsubseteq g & \text { iff } & \operatorname{dom}(f) \subseteq \operatorname{dom}(g) \text { and } \\
& \forall x \in \operatorname{dom}(f) . f(x)=g(x) \\
& \text { iff } & g r a p h(f) \subseteq \operatorname{graph}(g)
\end{array}
$$

Lub of chain $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ is the partial function f with

$$
\begin{aligned}
\operatorname{dom}(f) & =\bigcup_{n \geq 0} \operatorname{dom}\left(f_{n}\right) \text { and } \\
\qquad f(x) & = \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right), \text { some } n \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

Least element \perp is the totally undefined partial function.

Some properties of lubs of chains

Let D be a cpo.

1. For $d \in D, \bigsqcup_{n} d=d$.
2. For every chain $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{n} \sqsubseteq \ldots$ in D,

$$
\bigsqcup_{n} d_{n}=\bigsqcup_{n} d_{N+n}
$$

for all $N \in \mathbb{N}$.
3. For every pair of chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{n} \sqsubseteq \ldots$ and $e_{0} \sqsubseteq e_{1} \sqsubseteq \ldots \sqsubseteq e_{n} \sqsubseteq \ldots$ in D,
if $d_{n} \sqsubseteq e_{n}$ for all $n \in \mathbb{N}$ then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.
3. For every pair of chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots \sqsubseteq d_{n} \sqsubseteq \ldots$ and $e_{0} \sqsubseteq e_{1} \sqsubseteq \ldots \sqsubseteq e_{n} \sqsubseteq \ldots$ in D, if $d_{n} \sqsubseteq e_{n}$ for all $n \in \mathbb{N}$ then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

$$
\frac{\forall n \geq 0 . x_{n} \sqsubseteq y_{n}}{\bigsqcup_{n} x_{n} \sqsubseteq \bigsqcup_{n} y_{n}} \quad\left(\left\langle x_{n}\right\rangle \text { and }\left\langle y_{n}\right\rangle \text { chains }\right)
$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \& n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 3} \sqsubseteq \ldots
$$

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose that the doubly-indexed family of elements $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \& n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 3} \sqsubseteq \ldots
$$

Moreover

$$
\bigsqcup_{m \geq 0}\left(\bigsqcup_{n \geq 0} d_{m, n}\right)=\bigsqcup_{k \geq 0} d_{k, k}=\bigsqcup_{n \geq 0}\left(\bigsqcup_{m \geq 0} d_{m, n}\right)
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff

1. it is monotone, and
2. it preserves lubs of chains, i.e. for all chains
$d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E .
$$

Continuity and strictness

- If D and E are cpo's, the function f is continuous iff

1. it is monotone, and
2. it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, it is the case that

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) \quad \text { in } E .
$$

- If D and E have least elements, then the function f is strict iff $f(\perp)=\perp$.

Tarski's Fixed Point Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then

- f possesses a least pre-fixed point, given by

$$
f i x(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

- Moreover, $f x(f)$ is a fixed point of f, i.e. satisfies $f(f i x(f))=f i x(f)$, and hence is the least fixed point of f.

\llbracket while B do $C \rrbracket$

\llbracket while B do $C \rrbracket$

$$
\begin{aligned}
& =f i x\left(f_{\llbracket B \rrbracket, \llbracket C \rrbracket}\right) \\
& =\bigsqcup_{n \geq 0} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}{ }^{n}(\perp)
\end{aligned}
$$

$=\lambda s \in$ State.

$$
\begin{cases}\llbracket C \rrbracket^{k}(s) & \text { if } k \geq 0 \text { is such that } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{k}(s)\right)=\text { false } \\ & \text { and } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true for all } 0 \leq i<k \\ \text { undefined } & \text { if } \llbracket B \rrbracket\left(\llbracket C \rrbracket^{i}(s)\right)=\text { true for all } i \geq 0\end{cases}
$$

Topic 3

Constructions on Domains

Discrete cpo's and flat domains

For any set X, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.

Discrete cpo's and flat domains

For any set X, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes (X, \sqsubseteq) into a cpo, called the discrete cpo with underlying set X.
Let $X_{\perp} \stackrel{\text { def }}{=} X \cup\{\perp\}$, where \perp is some element not in X. Then

$$
d \sqsubseteq d^{\prime} \stackrel{\text { def }}{\Leftrightarrow}\left(d=d^{\prime}\right) \vee(d=\perp) \quad\left(d, d^{\prime} \in X_{\perp}\right)
$$

makes $\left(X_{\perp}, \sqsubseteq\right)$ into a domain (with least element \perp), called the flat domain determined by X.

Binary product of cpo's and domains

The product of two cpo's $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \& d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \& d_{2} \sqsubseteq_{2} d_{2}^{\prime} .
$$

$$
\frac{\left(x_{1}, x_{2}\right) \sqsubseteq\left(y_{1}, y_{2}\right)}{x_{1} \sqsubseteq_{1} y_{1} \quad x_{2} \sqsubseteq_{2} y_{2}}
$$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right) .
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ are domains so is $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ and $\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)$.

Continuous functions of two arguments

Proposition. Let D, E, F be cpo's. A function
$f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$
\begin{aligned}
f\left(\bigsqcup_{m \geq 0} d_{m}, e\right) & =\bigsqcup_{m \geq 0} f\left(d_{m}, e\right) \\
f\left(d, \bigsqcup_{n \geq 0} e_{n}\right) & =\bigsqcup_{n \geq 0} f\left(d, e_{n}\right)
\end{aligned}
$$

- A couple of derived rules:

$$
\frac{x \sqsubseteq x^{\prime} \quad y \sqsubseteq y^{\prime}}{f(x, y) \sqsubseteq f\left(x^{\prime}, y^{\prime}\right)} \quad(f \text { monotone })
$$

$$
f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right)=\bigsqcup_{k} f\left(x_{k}, y_{k}\right)
$$

Function cpo's and domains

Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo ($D \rightarrow E, \sqsubseteq$) has underlying set

$$
(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E \text { is a continuous function }\}
$$

and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$.

Function cpo's and domains

Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo
($D \rightarrow E, \sqsubseteq$) has underlying set

$$
(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E \text { is a continuous function }\}
$$

and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$.

- A derived rule:

$$
\frac{f \sqsubseteq_{(D \rightarrow E)} g \quad x \sqsubseteq_{D} y}{f(x) \sqsubseteq g(y)}
$$

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$
\bigsqcup_{n \geq 0} f_{n}=\lambda d \in D . \bigsqcup_{n \geq 0} f_{n}(d)
$$

If E is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d)=\perp_{E}$, all $d \in D$.

Lubs of chains are calculated 'argumentwise' (using lubs in E):

$$
\bigsqcup_{n \geq 0} f_{n}=\lambda d \in D \cdot \bigsqcup_{n \geq 0} f_{n}(d)
$$

- A derived rule:

$$
\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right)=\bigsqcup_{k} f_{k}\left(x_{k}\right)
$$

If E is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d)=\perp_{E}$, all $d \in D$.

Continuity of composition

For cpo's D, E, F, the composition function

$$
\circ:((E \rightarrow F) \times(D \rightarrow E)) \longrightarrow(D \rightarrow F)
$$

defined by setting, for all $f \in(D \rightarrow E)$ and $g \in(E \rightarrow F)$,

$$
g \circ f=\lambda d \in D \cdot g(f(d))
$$

is continuous.

Continuity of the fixpoint operator

Let D be a domain.
By Tarski's Fixed Point Theorem we know that each
continuous function $f \in(D \rightarrow D)$ possesses a least fixed point, $f i x(f) \in D$.

Proposition. The function

$$
f i x:(D \rightarrow D) \rightarrow D
$$

is continuous.

Topic 4

Scott Induction

Scott's Fixed Point Induction Principle

Let $f: D \rightarrow D$ be a continuous function on a domain D.
For any admissible subset $S \subseteq D$, to prove that the least fixed point of f is in S, i.e. that

$$
f i x(f) \in S,
$$

it suffices to prove

$$
\forall d \in D(d \in S \Rightarrow f(d) \in S)
$$

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ in D

$$
\left(\forall n \geq 0 . d_{n} \in S\right) \Rightarrow\left(\bigsqcup_{n \geq 0} d_{n}\right) \in S
$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\perp \in S$.

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ in D

$$
\left(\forall n \geq 0 . d_{n} \in S\right) \Rightarrow\left(\bigsqcup_{n \geq 0} d_{n}\right) \in S
$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\perp \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called chain-closed (resp. admissible) iff $\{d \in D \mid \Phi(d)\}$ is a chain-closed (resp. admissible) subset of D.

Let D, E be cpos.

Basic relations:

- For every $d \in D$, the subset

$$
\downarrow(d) \stackrel{\text { def }}{=}\{x \in D \mid x \sqsubseteq d\}
$$

of D is chain-closed.

Let D, E be cpos.

Basic relations:

- For every $d \in D$, the subset

$$
\downarrow(d) \stackrel{\text { def }}{=}\{x \in D \mid x \sqsubseteq d\}
$$

of D is chain-closed.

- The subsets

$$
\text { and } \begin{array}{ll}
& \{(x, y) \in D \times D \mid x \sqsubseteq y\} \\
& \{(x, y) \in D \times D \mid x=y\}
\end{array}
$$

of $D \times D$ are chain-closed.

Example (I): Least pre-fixed point property

Let D be a domain and let $f: D \rightarrow D$ be a continuous function.

$$
\forall d \in D . f(d) \sqsubseteq d \Longrightarrow f i x(f) \sqsubseteq d
$$

Example (I): Least pre-fixed point property

Let D be a domain and let $f: D \rightarrow D$ be a continuous function.

$$
\forall d \in D . f(d) \sqsubseteq d \Longrightarrow f i x(f) \sqsubseteq d
$$

Proof by Scott induction.
Let $d \in D$ be a pre-fixed point of f. Then,

$$
\begin{aligned}
x \in \downarrow(d) & \Longrightarrow x \sqsubseteq d \\
& \Longrightarrow f(x) \sqsubseteq f(d) \\
& \Longrightarrow f(x) \sqsubseteq d \\
& \Longrightarrow f(x) \in \downarrow(d)
\end{aligned}
$$

Hence,

$$
f i x(f) \in \downarrow(d) .
$$

Building chain-closed subsets (II)

Inverse image:
Let $f: D \rightarrow E$ be a continuous function.
If S is a chain-closed subset of E then the inverse image

$$
f^{-1} S=\{x \in D \mid f(x) \in S\}
$$

is an chain-closed subset of D.

Example (II)

Let D be a domain and let $f, g: D \rightarrow D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$
f(\perp) \sqsubseteq g(\perp) \Longrightarrow f i x(f) \sqsubseteq f i x(g) .
$$

Let D be a domain and let $f, g: D \rightarrow D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$
f(\perp) \sqsubseteq g(\perp) \Longrightarrow f i x(f) \sqsubseteq f i x(g) .
$$

Proof by Scott induction.
Consider the admissible property $\Phi(x) \equiv(f(x) \sqsubseteq g(x))$
of D.
Since
$f(x) \sqsubseteq g(x) \Rightarrow g(f(x)) \sqsubseteq g(g(x)) \Rightarrow f(g(x)) \sqsubseteq g(g(x))$
we have that

$$
f(f i x(g)) \sqsubseteq g(f i x(g))
$$

Building chain-closed subsets (III)

Logical operations:

- If $S, T \subseteq D$ are chain-closed subsets of D then

$$
S \cup T \quad \text { and } \quad S \cap T
$$

are chain-closed subsets of D.

- If $\left\{S_{i}\right\}_{i \in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i \in I} S_{i}$ is a chain-closed subset of D.
- If a property $P(x, y)$ determines a chain-closed subset of $D \times E$, then the property $\forall x \in D . P(x, y)$ determines a chain-closed subset of E.

Example (III): Partial correctness

Let $\mathcal{F}:$ State \rightharpoonup State be the denotation of

$$
\text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) .
$$

For all $x, y \geq 0$,

$$
\begin{aligned}
& \mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow \\
& \quad \Longrightarrow \mathcal{F}[X \mapsto x, Y \mapsto y]=[X \mapsto 0, Y \mapsto x!\cdot y] .
\end{aligned}
$$

Recall that

$$
\mathcal{F}=f i x(f)
$$

where $f:($ State \rightharpoonup State $) \rightarrow($ State \rightharpoonup State $)$ is given by

$$
f(w)=\lambda(x, y) \in \text { State. } \begin{cases}(x, y) & \text { if } x \leq 0 \\ w(x-1, x \cdot y) & \text { if } x>0\end{cases}
$$

Proof by Scott induction.

We consider the admissible subset of (State \rightharpoonup State) given by

$$
S=\left\{\begin{array}{l|l}
w & \begin{array}{c}
\forall x, y \geq 0 \\
w[X \mapsto x, Y \mapsto y] \downarrow \\
\Rightarrow w[X \mapsto x, Y \mapsto y]=[X \mapsto 0, Y \mapsto x!\cdot y]
\end{array}
\end{array}\right\}
$$

and show that

$$
w \in S \Longrightarrow f(w) \in S
$$

Topic 5

PCF

PCF syntax

Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

PCF syntax

Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Expressions

$$
M::=0|\operatorname{succ}(M)| \operatorname{pred}(M)
$$

PCF syntax

Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Expressions

$$
\begin{aligned}
M::= & 0|\operatorname{succ}(M)| \operatorname{pred}(M) \\
& \mid \text { true } \mid \text { false } \mid \operatorname{zero}(M)
\end{aligned}
$$

PCF syntax

Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Expressions

$$
\begin{aligned}
M::= & 0|\operatorname{succ}(M)| \operatorname{pred}(M) \\
& \text { true } \mid \text { false } \mid \operatorname{zero}(M) \\
& x \mid \text { if } M \text { then } M \text { else } M
\end{aligned}
$$

PCF syntax

Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Expressions

$$
\begin{aligned}
& M::=0|\operatorname{succ}(M)| \operatorname{pred}(M) \\
& \mid \text { true } \mid \text { false } \mid \operatorname{zero}(M) \\
& x \mid \text { if } M \text { then } M \text { else } M \\
&|\operatorname{fn} x: \tau . M| M M \mid \operatorname{fix}(M)
\end{aligned}
$$

where $x \in \mathbb{V}$, an infinite set of variables.

PCF syntax

Types

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Expressions

$$
\begin{aligned}
M::= & 0|\operatorname{succ}(M)| \operatorname{pred}(M) \\
\mid & \text { true } \mid \text { false } \mid \operatorname{zero}(M) \\
\mid & x \mid \text { if } M \text { then } M \text { else } M \\
\mid & \operatorname{fn} x: \tau . M|M M| \operatorname{fix}(M)
\end{aligned}
$$

where $x \in \mathbb{V}$, an infinite set of variables.
Technicality: We identify expressions up to α-conversion of bound variables (created by the fn expression-former): by definition a PCF term is an α-equivalence class of expressions.

PCF typing relation, $\Gamma \vdash M: \tau$

- Γ is a type environment, i.e. a finite partial function mapping variables to types (whose domain of definition is denoted $\operatorname{dom}(\Gamma))$
- M is a term
- τ is a type.

PCF typing relation, $\Gamma \vdash M: \tau$

- Γ is a type environment, i.e. a finite partial function mapping variables to types (whose domain of definition is denoted $\operatorname{dom}(\Gamma))$
- M is a term
- τ is a type.

Notation:

$M: \tau$ means M is closed and $\emptyset \vdash M: \tau$ holds.
$\mathrm{PCF}_{\tau} \stackrel{\text { def }}{=}\{M \mid M: \tau\}$.

PCF typing relation (sample rules)

$\left(: \mathrm{fn}_{\mathrm{n}}\right) \frac{\Gamma[x \mapsto \tau] \vdash M: \tau^{\prime}}{\Gamma \vdash \mathrm{fn} x: \tau . M: \tau \rightarrow \tau^{\prime}}$ if $x \notin \operatorname{dom}(\Gamma)$

PCF typing relation (sample rules)

$$
\begin{gathered}
(: \mathrm{fn}) \frac{\Gamma[x \mapsto \tau] \vdash M: \tau^{\prime}}{\Gamma \vdash \mathbf{f n} x: \tau \cdot M: \tau \rightarrow \tau^{\prime}} \text { if } x \notin \operatorname{dom}(\Gamma) \\
\left(:_{\mathrm{app}}\right) \frac{\Gamma \vdash M_{1}: \tau \rightarrow \tau^{\prime} \quad \Gamma \vdash M_{2}: \tau}{\Gamma \vdash M_{1} M_{2}: \tau^{\prime}}
\end{gathered}
$$

PCF typing relation (sample rules)

$$
\begin{gathered}
\left(:_{\text {fn }}\right) \frac{\Gamma[x \mapsto \tau] \vdash M: \tau^{\prime}}{\Gamma \vdash \mathbf{f n} x: \tau \cdot M: \tau \rightarrow \tau^{\prime}} \text { if } x \notin \operatorname{dom}(\Gamma) \\
\left(:_{\text {app }}\right) \frac{\Gamma \vdash M_{1}: \tau \rightarrow \tau^{\prime} \Gamma \vdash M_{2}: \tau}{\Gamma \vdash M_{1} M_{2}: \tau^{\prime}} \\
\left(:_{\text {fix }}\right) \frac{\Gamma \vdash M: \tau \rightarrow \tau}{\Gamma \vdash \mathrm{fix}(M): \tau}
\end{gathered}
$$

Partial recursive functions in PCF

- Primitive recursion.

$$
\left\{\begin{array}{l}
h(x, 0)=f(x) \\
h(x, y+1)=g(x, y, h(x, y))
\end{array}\right.
$$

Partial recursive functions in PCF

- Primitive recursion.

$$
\left\{\begin{array}{l}
h(x, 0)=f(x) \\
h(x, y+1)=g(x, y, h(x, y))
\end{array}\right.
$$

- Minimisation.

$$
m(x)=\text { the least } y \geq 0 \text { such that } k(x, y)=0
$$

PCF evaluation relation

takes the form

$$
M \Downarrow_{\tau} V
$$

where

- τ is a PCF type
- $M, V \in \mathrm{PCF}_{\tau}$ are closed PCF terms of type τ
- V is a value,

$$
V::=\mathbf{0}|\operatorname{succ}(V)| \text { true } \mid \text { false } \mid \mathbf{f n} x: \tau . M
$$

PCF evaluation (sample rules)

$$
\left(\Downarrow_{\text {val }}\right) \quad V \Downarrow_{\tau} V \quad(V \text { a value of type } \tau)
$$

PCF evaluation (sample rules)

$$
\left(\Downarrow_{\text {val }}\right) \quad V \Downarrow_{\tau} V \quad(V \text { a value of type } \tau)
$$

$\left(\Downarrow_{\mathrm{cbn}}\right) \frac{M_{1} \Downarrow_{\tau \rightarrow \tau^{\prime}} \mathrm{fn} x: \tau \cdot M_{1}^{\prime} \quad M_{1}^{\prime}\left[M_{2} / x\right] \Downarrow_{\tau^{\prime}} V}{M_{1} M_{2} \Downarrow_{\tau^{\prime}} V}$

PCF evaluation (sample rules)

$$
\left(\Downarrow_{\text {val }}\right) \quad V \Downarrow_{\tau} V \quad(V \text { a value of type } \tau)
$$

$\left(\Downarrow_{\mathrm{cbn}}\right) \frac{M_{1} \Downarrow_{\tau \rightarrow \tau^{\prime}} \mathrm{fn} x: \tau \cdot M_{1}^{\prime} \quad M_{1}^{\prime}\left[M_{2} / x\right] \Downarrow_{\tau^{\prime}} V}{M_{1} M_{2} \Downarrow_{\tau^{\prime}} V}$

$$
\left(\Downarrow_{\mathrm{fix}}\right) \frac{M \mathrm{fix}(M) \Downarrow_{\tau} V}{\operatorname{fix}(M) \Downarrow_{\tau} V}
$$

Contextual equivalence

Two phrases of a programming language are contextually
equivalent if any occurrences of the first phrase in a
complete program can be replaced by the second phrase without affecting the observable results of executing the program.

Contextual equivalence of PCF terms

Given PCF terms M_{1}, M_{2}, PCF type τ, and a type
environment Γ, the relation $\Gamma \vdash M_{1} \cong{ }_{c t x} M_{2}: \tau$
is defined to hold iff

- Both the typings $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}\left[M_{1}\right]$ and $\mathcal{C}\left[M_{2}\right]$ are closed terms of type γ, where $\gamma=$ nat or $\gamma=$ bool, and for all values $V: \gamma$,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\gamma} V \Leftrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\gamma} V .
$$

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.

PCF denotational semantics - aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality. In particular: $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket=\llbracket \mathcal{C}\left[M^{\prime}\right] \rrbracket$.

PCF denotational semantics - aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality. In particular: $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket=\llbracket \mathcal{C}\left[M^{\prime}\right] \rrbracket$.
- Soundness.

For any type $\tau, M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket=\llbracket V \rrbracket$.

PCF denotational semantics - aims

- PCF types $\tau \mapsto$ domains $\llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto$ elements $\llbracket M \rrbracket \in \llbracket \tau \rrbracket$.

Denotations of open terms will be continuous functions.

- Compositionality.

In particular: $\llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket=\llbracket \mathcal{C}\left[M^{\prime}\right] \rrbracket$.

- Soundness.

For any type $\tau, M \Downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket=\llbracket V \rrbracket$.

- Adequacy.

For $\tau=$ bool or nat, $\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \tau \rrbracket \Longrightarrow M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_{1}, M_{2} \in \mathrm{PCF}_{\tau}$, if $\llbracket M_{1} \rrbracket$ and $\llbracket M_{2} \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_{1} \cong_{c t x} M_{2}: \tau$.

Theorem. For all types τ and closed terms $M_{1}, M_{2} \in \mathrm{PCF}_{\tau}$, if $\llbracket M_{1} \rrbracket$ and $\llbracket M_{2} \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_{1} \cong_{c t x} M_{2}: \tau$.

Proof.

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\text {nat }} V \Rightarrow \llbracket \mathcal{C}\left[M_{1}\right] \rrbracket=\llbracket V \rrbracket \quad \text { (soundness) }
$$

$$
\begin{array}{ll}
\Rightarrow \llbracket \mathcal{C}\left[M_{2}\right] \rrbracket=\llbracket V \rrbracket & \text { (compositionality } \\
& \text { on } \left.\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket\right)
\end{array}
$$

$$
\Rightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{n a t} V \quad \text { (adequacy) }
$$

and symmetrically.

Proof principle

To prove

$$
M_{1} \cong_{c t x} M_{2}: \tau
$$

it suffices to establish

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket
$$

Proof principle

To prove

$$
M_{1} \cong_{c t x} M_{2}: \tau
$$

it suffices to establish

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket
$$

? The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

Denotational semantics of PCF

To every typing judgement

$$
\Gamma \vdash M: \tau
$$

we associate a continuous function

$$
\llbracket \Gamma \vdash M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

between domains.

Denotational semantics of PCF types

$$
\begin{array}{ll}
\llbracket n a t \rrbracket \stackrel{\text { def }}{=} \mathbb{N}_{\perp} & \text { (flat domain) } \\
\llbracket b o o l \rrbracket \stackrel{\text { def }}{=} \mathbb{B}_{\perp} & \text { (flat domain) }
\end{array}
$$

where $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{B}=\{$ true, false $\}$.

Denotational semantics of PCF types

$$
\begin{array}{cc}
\llbracket n a t \rrbracket \stackrel{\text { def }}{=} \mathbb{N}_{\perp} & \text { (flat domain) } \\
\llbracket b o o l \rrbracket \stackrel{\text { def }}{=} \mathbb{B}_{\perp} & \text { (flat domain) } \\
\llbracket \tau \rightarrow \tau^{\prime} \rrbracket \stackrel{\text { def }}{=} \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket & \text { (function domain). } \\
\text { where } \mathbb{N}=\{0,1,2, \ldots\} \text { and } \mathbb{B}=\{\text { true, false }\} .
\end{array}
$$

Denotational semantics of PCF type environments

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad(\Gamma \text {-environments })
$$

Denotational semantics of PCF type environments

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad(\Gamma \text {-environments })
$$

$=$ the domain of partial functions ρ from variables to domains such that $\operatorname{dom}(\rho)=\operatorname{dom}(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in \operatorname{dom}(\Gamma)$

Denotational semantics of PCF type environments

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad(\Gamma \text {-environments) }
$$

$=$ the domain of partial functions ρ from variables to domains such that $\operatorname{dom}(\rho)=\operatorname{dom}(\Gamma)$ and $\rho(x) \in \llbracket \Gamma(x) \rrbracket$ for all $x \in \operatorname{dom}(\Gamma)$

Example:

1. For the empty type environment \emptyset,

$$
\llbracket \emptyset \rrbracket=\{\perp\}
$$

where \perp denotes the unique partial function with
$\operatorname{dom}(\perp)=\emptyset$.
2. $\llbracket\langle x \mapsto \tau\rangle \rrbracket=(\{x\} \rightarrow \llbracket \tau \rrbracket)$

$$
\text { 2. } \llbracket\langle x \mapsto \tau\rangle \rrbracket=(\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket
$$

2. $\llbracket\langle x \mapsto \tau\rangle \rrbracket=(\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$
3.

$$
\begin{aligned}
& \llbracket\left\langle x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\rangle \rrbracket \\
& \cong\left(\left\{x_{1}\right\} \rightarrow \llbracket \tau_{1} \rrbracket\right) \times \ldots \times\left(\left\{x_{n}\right\} \rightarrow \llbracket \tau_{n} \rrbracket\right) \\
& \cong \llbracket \tau_{1} \rrbracket \times \ldots \times \llbracket \tau_{n} \rrbracket
\end{aligned}
$$

Denotational semantics of PCF terms, I

$$
\begin{gathered}
\llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text { def }}{=} 0 \in \llbracket n a t \rrbracket \\
\llbracket \Gamma \vdash \text { true } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } \in \llbracket b o o l \rrbracket \\
\llbracket \Gamma \vdash \text { false } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } \in \llbracket b o o l \rrbracket
\end{gathered}
$$

Denotational semantics of PCF terms, I

$$
\begin{aligned}
& \quad \llbracket \Gamma \vdash \mathbf{0} \rrbracket(\rho) \stackrel{\text { def }}{=} 0 \in \llbracket n a t \rrbracket \\
& \llbracket \Gamma \vdash \text { true } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } \in \llbracket b o o l \rrbracket \\
& \llbracket \Gamma \vdash \text { false } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } \in \llbracket b o o l \rrbracket \\
& \\
& \quad \llbracket \Gamma \vdash x \rrbracket(\rho) \stackrel{\text { def }}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket \quad(x \in \operatorname{dom}(\Gamma))
\end{aligned}
$$

Denotational semantics of PCF terms, II

$$
\begin{aligned}
& \llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho) \\
& \quad \stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
\end{aligned}
$$

Denotational semantics of PCF terms, II

$\llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
$$

$\llbracket \Gamma \vdash \operatorname{pred}(M) \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)-1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0, \perp\end{cases}
$$

Denotational semantics of PCF terms, II

$\llbracket \Gamma \vdash \operatorname{succ}(M) \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)+1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho) \neq \perp \\ \perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
$$

$\llbracket \Gamma \vdash \operatorname{pred}(M) \rrbracket(\rho)$

$$
\begin{gathered}
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M \rrbracket(\rho)-1 & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0, \perp\end{cases} \\
\llbracket \Gamma \vdash \operatorname{zero}(M) \rrbracket(\rho) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=0 \\
\text { false } & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)>0 \\
\perp & \text { if } \llbracket \Gamma \vdash M \rrbracket(\rho)=\perp\end{cases}
\end{gathered}
$$

Denotational semantics of PCF terms, III

$\llbracket \Gamma \vdash$ if M_{1} then M_{2} else $M_{3} \rrbracket(\rho)$

$$
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M_{2} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { true } \\ \llbracket \Gamma \vdash M_{3} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { false } \\ \perp & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\perp\end{cases}
$$

Denotational semantics of PCF terms, III

$\llbracket \Gamma \vdash$ if M_{1} then M_{2} else $M_{3} \rrbracket(\rho)$

$$
\begin{gathered}
\stackrel{\text { def }}{=} \begin{cases}\llbracket \Gamma \vdash M_{2} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { true } \\
\llbracket \Gamma \vdash M_{3} \rrbracket(\rho) & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\text { false } \\
\perp & \text { if } \llbracket \Gamma \vdash M_{1} \rrbracket(\rho)=\perp\end{cases} \\
\llbracket \Gamma \vdash M_{1} M_{2} \rrbracket(\rho) \stackrel{\text { def }}{=}\left(\llbracket \Gamma \vdash M_{1} \rrbracket(\rho)\right)\left(\llbracket \Gamma \vdash M_{2} \rrbracket(\rho)\right)
\end{gathered}
$$

Denotational semantics of PCF terms, IV

$$
\begin{aligned}
& \llbracket \Gamma \vdash \mathrm{fn} x: \tau . M \rrbracket(\rho) \\
& \stackrel{\text { def }}{=} \lambda d \in \llbracket \tau \rrbracket . \llbracket \Gamma[x \mapsto \tau] \vdash M \rrbracket(\rho[x \mapsto d]) \quad(x \notin \operatorname{dom}(\Gamma))
\end{aligned}
$$

NB: $\rho[x \mapsto d] \in \llbracket \Gamma[x \mapsto \tau] \rrbracket$ is the function mapping x to $d \in \llbracket \tau \rrbracket$ and otherwise acting like ρ.

Denotational semantics of PCF terms, V

$$
\llbracket \Gamma \vdash \mathbf{f i x}(M) \rrbracket(\rho) \stackrel{\text { def }}{=} f i x(\llbracket \Gamma \vdash M \rrbracket(\rho))
$$

Recall that $f i x$ is the function assigning least fixed points to continuous functions.

Denotational semantics of PCF

Proposition. For all typing judgements $\Gamma \vdash M: \tau$, the denotation

$$
\llbracket \Gamma \vdash M \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

is a well-defined continous function.

Denotations of closed terms

For a closed term $M \in \mathrm{PCF}_{\tau}$, we get

$$
\llbracket \emptyset \vdash M \rrbracket: \llbracket \emptyset \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

and, since $\llbracket \emptyset \rrbracket=\{\perp\}$, we have

$$
\llbracket M \rrbracket \stackrel{\text { def }}{=} \llbracket \emptyset \vdash M \rrbracket(\perp) \in \llbracket \tau \rrbracket \quad\left(M \in \mathrm{PCF}_{\tau}\right)
$$

Compositionality

Proposition. For all typing judgements $\Gamma \vdash M: \tau$ and
$\Gamma \vdash M^{\prime}: \tau$, and all contexts $\mathcal{C}[-]$ such that $\Gamma^{\prime} \vdash \mathcal{C}[M]: \tau^{\prime}$ and $\Gamma^{\prime} \vdash \mathcal{C}\left[M^{\prime}\right]: \tau^{\prime}$,

$$
\begin{aligned}
& \text { if } \llbracket \Gamma \vdash M \rrbracket=\llbracket \Gamma \vdash M^{\prime} \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket \\
& \text { then } \llbracket \Gamma^{\prime} \vdash \mathcal{C}[M] \rrbracket=\llbracket \Gamma^{\prime} \vdash \mathcal{C}[M] \rrbracket: \llbracket \Gamma^{\prime} \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket
\end{aligned}
$$

Soundness

Proposition. For all closed terms $M, V \in \mathrm{PCF}_{\tau}$,

$$
\text { if } M \Downarrow_{\tau} V \text { then } \llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \tau \rrbracket .
$$

Substitution property

Proposition. Suppose that $\Gamma \vdash M: \tau$ and that
$\Gamma[x \mapsto \tau] \vdash M^{\prime}: \tau^{\prime}$, so that we also have $\Gamma \vdash M^{\prime}[M / x]: \tau^{\prime}$.
Then,

$$
\begin{aligned}
& \llbracket \Gamma \vdash M^{\prime}[M / x] \rrbracket(\rho) \\
& \quad=\llbracket \Gamma[x \mapsto \tau] \vdash M^{\prime} \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket(\rho)])
\end{aligned}
$$

for all $\rho \in \llbracket \Gamma \rrbracket$.

Substitution property

Proposition. Suppose that $\Gamma \vdash M: \tau$ and that
$\Gamma[x \mapsto \tau] \vdash M^{\prime}: \tau^{\prime}$, so that we also have $\Gamma \vdash M^{\prime}[M / x]: \tau^{\prime}$.
Then,

$$
\begin{aligned}
& \llbracket \Gamma \vdash M^{\prime}[M / x] \rrbracket(\rho) \\
& \quad=\llbracket \Gamma[x \mapsto \tau] \vdash M^{\prime} \rrbracket(\rho[x \mapsto \llbracket \Gamma \vdash M \rrbracket(\rho)])
\end{aligned}
$$

for all $\rho \in \llbracket \Gamma \rrbracket$.

In particular when $\Gamma=\emptyset, \llbracket\langle x \mapsto \tau\rangle \vdash M^{\prime} \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket$ and

$$
\llbracket M^{\prime}[M / x] \rrbracket=\llbracket\langle x \mapsto \tau\rangle \vdash M^{\prime} \rrbracket(\llbracket M \rrbracket)
$$

Topic 7

Relating Denotational and Operational Semantics

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

NB. Adequacy does not hold at function types

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

NB. Adequacy does not hold at function types:

$$
\llbracket \mathbf{f n} x: \tau .(\mathbf{f n} y: \tau . y) x \rrbracket=\llbracket \mathbf{f n} x: \tau . x \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

Adequacy

For any closed PCF terms M and V of ground type
$\gamma \in\{n a t$, bool $\}$ with V a value

$$
\llbracket M \rrbracket=\llbracket V \rrbracket \in \llbracket \gamma \rrbracket \Longrightarrow M \Downarrow_{\gamma} V .
$$

NB. Adequacy does not hold at function types:

$$
\llbracket \mathbf{f n} x: \tau .(\mathbf{f n} y: \tau . y) x \rrbracket=\llbracket \mathbf{f n} x: \tau . x \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket
$$ but

$$
\mathbf{f n} x: \tau .(\mathbf{f n} y: \tau . y) x \psi_{\tau \rightarrow \tau} \mathbf{f n} x: \tau . x
$$

Adequacy proof idea

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}$, $\operatorname{fix}\left(M^{\prime}\right)$.

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}$, $\operatorname{fix}\left(M^{\prime}\right)$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

Adequacy proof idea

1. We cannot proceed to prove the adequacy statement by a straightforward induction on the structure of terms.

- Consider M to be $M_{1} M_{2}$, $\operatorname{fix}\left(M^{\prime}\right)$.

2. So we proceed to prove a stronger statement that applies to terms of arbitrary types and implies adequacy.

This statement roughly takes the form:

$$
\llbracket M \rrbracket \triangleleft_{\tau} M \text { for all types } \tau \text { and all } M \in \mathrm{PCF}_{\tau}
$$

where the formal approximation relations

$$
\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}
$$

are logically chosen to allow a proof by induction.

Requirements on the formal approximation relations, I

We want that, for $\gamma \in\{$ nat, bool $\}$,

$$
\llbracket M \rrbracket \triangleleft_{\gamma} M \text { implies } \underbrace{\forall V\left(\llbracket M \rrbracket=\llbracket V \rrbracket \Longrightarrow M \Downarrow_{\gamma} V\right)}_{\text {adequacy }}
$$

$$
\begin{aligned}
& \text { Definition of } d \triangleleft_{\gamma} M\left(d \in \llbracket \gamma \rrbracket, M \in \mathrm{PCF}_{\gamma}\right) \\
& \text { for } \gamma \in\{\text { nat, bool }\}
\end{aligned}
$$

$$
\begin{aligned}
& n \triangleleft_{\text {nat }} M \stackrel{\text { def }}{\Leftrightarrow} \\
&\left(n \in \mathbb{N} \Rightarrow M \Downarrow_{\text {nat }} \operatorname{succ}^{n}(\mathbf{0})\right) \\
& b \triangleleft_{\text {bool }} M \stackrel{\text { def }}{\Leftrightarrow}\left(b=\text { true } \Rightarrow M \Downarrow_{\text {bool }} \text { true }\right) \\
& \&\left(b=\text { false } \Rightarrow M \Downarrow_{\text {bool }} \text { false }\right)
\end{aligned}
$$

Proof of: $\llbracket M \rrbracket \triangleleft_{\gamma} M$ implies adequacy

Case $\gamma=$ nat.

$$
\begin{array}{rlr}
\llbracket M \rrbracket & =\llbracket V \rrbracket \\
& \Longrightarrow \llbracket M \rrbracket=\llbracket \operatorname{succ}^{n}(\mathbf{0}) \rrbracket & \text { for some } n \in \mathbb{N} \\
& \Longrightarrow n=\llbracket M \rrbracket \triangleleft_{\gamma} M & \\
& \Longrightarrow M \Downarrow \operatorname{succ}^{n}(\mathbf{0}) & \text { by definition of } \triangleleft_{n a t}
\end{array}
$$

Case $\gamma=$ bool is similar.

Requirements on the formal approximation relations, II
We want to be able to proceed by induction.

- Consider the case $M=M_{1} M_{2}$.
\sim logical definition

Definition of

$f \triangleleft_{\tau \rightarrow \tau^{\prime}} M\left(f \in\left(\llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket\right), M \in \mathrm{PCF}_{\tau \rightarrow \tau^{\prime}}\right)$

Definition of

$$
f \triangleleft_{\tau \rightarrow \tau^{\prime}} M\left(f \in\left(\llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket\right), M \in \mathrm{PCF}_{\tau \rightarrow \tau^{\prime}}\right)
$$

$$
\begin{aligned}
& f \triangleleft_{\tau \rightarrow \tau^{\prime}} M \\
& \stackrel{\text { def }}{\Leftrightarrow} \forall x \in \llbracket \tau \rrbracket, N \in \mathrm{PCF}_{\tau} \\
& \left(x \triangleleft_{\tau} N \Rightarrow f(x) \triangleleft_{\tau^{\prime}} M N\right)
\end{aligned}
$$

Requirements on the formal approximation relations, III

We want to be able to proceed by induction.

- Consider the case $M=\mathrm{fix}\left(M^{\prime}\right)$.
$~$ admissibility property

Admissibility property

Lemma. For all types τ and $M \in \mathrm{PCF}_{\tau}$, the set

$$
\left\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} M\right\}
$$

is an admissible subset of $\llbracket \tau \rrbracket$.

Further properties

Lemma. For all types τ, elements $d, d^{\prime} \in \llbracket \tau \rrbracket$, and terms $M, N, V \in \mathrm{PCF}_{\tau}$,

1. If $d \sqsubseteq d^{\prime}$ and $d^{\prime} \triangleleft_{\tau} M$ then $d \triangleleft_{\tau} M$.
2. If $d \triangleleft_{\tau} M$ and $\forall V\left(M \Downarrow_{\tau} V \Longrightarrow N \Downarrow_{\tau} V\right)$ then $d \triangleleft_{\tau} N$.

Requirements on the formal approximation relations, IV

We want to be able to proceed by induction.

- Consider the case $M=\mathbf{f n} x: \tau . M^{\prime}$.
\leadsto substitutivity property for open terms

Fundamental property

Theorem. For all $\Gamma=\left\langle x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\rangle$ and all $\Gamma \vdash M: \tau$, if $d_{1} \triangleleft_{\tau_{1}} M_{1}, \ldots, d_{n} \triangleleft_{\tau_{n}} M_{n}$ then
$\llbracket \Gamma \vdash M \rrbracket\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \triangleleft_{\tau} M\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]$.

Fundamental property

Theorem. For all $\Gamma=\left\langle x_{1} \mapsto \tau_{1}, \ldots, x_{n} \mapsto \tau_{n}\right\rangle$ and all $\Gamma \vdash M: \tau$, if $d_{1} \triangleleft_{\tau_{1}} M_{1}, \ldots, d_{n} \triangleleft_{\tau_{n}} M_{n}$ then $\llbracket \Gamma \vdash M \rrbracket\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \triangleleft_{\tau} M\left[M_{1} / x_{1}, \ldots, M_{n} / x_{n}\right]$.

NB. The case $\Gamma=\emptyset$ reduces to

$$
\llbracket M \rrbracket \triangleleft_{\tau} M
$$

for all $M \in \mathrm{PCF}_{\tau}$.

Fundamental property of the relations \triangleleft_{τ}

Proposition. If $\Gamma \vdash M: \tau$ is a valid PCF typing, then for all
Γ-environments ρ and all Γ-substitutions σ

$$
\rho \triangleleft_{\Gamma} \sigma \Rightarrow \llbracket \Gamma \vdash M \rrbracket(\rho) \triangleleft_{\tau} M[\sigma]
$$

- $\rho \triangleleft_{\Gamma} \sigma$ means that $\rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$ holds for each $x \in \operatorname{dom}(\Gamma)$.
- $M[\sigma]$ is the PCF term resulting from the simultaneous substitution of $\sigma(x)$ for x in M, each $x \in \operatorname{dom}(\Gamma)$.

Contextual preorder between PCF terms

Given PCF terms M_{1}, M_{2}, PCF type τ, and a type environment Γ, the relation $\Gamma \vdash M_{1} \leq_{c t x} M_{2}: \tau$ is defined to hold iff

- Both the typings $\Gamma \vdash M_{1}: \tau$ and $\Gamma \vdash M_{2}: \tau$ hold.
- For all PCF contexts \mathcal{C} for which $\mathcal{C}\left[M_{1}\right]$ and $\mathcal{C}\left[M_{2}\right]$ are closed terms of type γ, where $\gamma=$ nat or $\gamma=$ bool, and for all values $V \in \mathrm{PCF}_{\gamma}$,

$$
\mathcal{C}\left[M_{1}\right] \Downarrow_{\gamma} V \Longrightarrow \mathcal{C}\left[M_{2}\right] \Downarrow_{\gamma} V .
$$

Extensionality properties of $\leq_{\text {ctx }}$

At a ground type $\gamma \in\{b o o l, n a t\}$, $M_{1} \leq_{c t x} M_{2}: \gamma$ holds if and only if

$$
\forall V \in \mathrm{PCF}_{\gamma}\left(M_{1} \Downarrow_{\gamma} V \Longrightarrow M_{2} \Downarrow_{\gamma} V\right)
$$

At a function type $\tau \rightarrow \tau^{\prime}$,
$M_{1} \leq_{\text {ctx }} M_{2}: \tau \rightarrow \tau^{\prime}$ holds if and only if

$$
\forall M \in \mathrm{PCF}_{\tau}\left(M_{1} M \leq_{c t x} M_{2} M: \tau^{\prime}\right)
$$

Topic 8

Full Abstraction

Proof principle

For all types τ and closed terms $M_{1}, M_{2} \in \mathrm{PCF}_{\tau}$,

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket \Longrightarrow M_{1} \cong_{\text {ctx }} M_{2}: \tau .
$$

Hence, to prove

$$
M_{1} \cong_{c t x} M_{2}: \tau
$$

it suffices to establish

$$
\llbracket M_{1} \rrbracket=\llbracket M_{2} \rrbracket \text { in } \llbracket \tau \rrbracket .
$$

Full abstraction

A denotational model is said to be fully abstract whenever denota-
tional equality characterises contextual equivalence.

Full abstraction

A denotational model is said to be fully abstract whenever denotational equality characterises contextual equivalence.

- The domain model of PCF is not fully abstract.

In other words, there are contextually equivalent PCF terms with different denotations.

Failure of full abstraction, idea

We will construct two closed terms

$$
T_{1}, T_{2} \in \mathrm{PCF}_{(\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })) \rightarrow \text { bool }}
$$

such that

$$
T_{1} \cong_{\operatorname{ctx}} T_{2}
$$

and

$$
\llbracket T_{1} \rrbracket \neq \llbracket T_{2} \rrbracket
$$

- We achieve $T_{1} \cong{ }_{\text {ctx }} T_{2}$ by making sure that

$$
\forall M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}\left(T_{1} M \mathbb{H}_{\text {bool }} \& T_{2} M \mathbb{H}_{\text {bool }}\right)
$$

- We achieve $T_{1} \cong{ }_{c t x} T_{2}$ by making sure that

$$
\forall M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}\left(T_{1} M \mathbb{*}_{\text {bool }} \& T_{2} M \mathbb{H}_{\text {bool }}\right)
$$

Hence,

$$
\llbracket T_{1} \rrbracket(\llbracket M \rrbracket)=\perp=\llbracket T_{2} \rrbracket(\llbracket M \rrbracket)
$$

for all $M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}$.

- We achieve $T_{1} \cong{ }_{c t x} T_{2}$ by making sure that

$$
\forall M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}\left(T_{1} M \psi_{\text {bool }} \& T_{2} M \psi_{\text {bool }}\right)
$$

Hence,

$$
\llbracket T_{1} \rrbracket(\llbracket M \rrbracket)=\perp=\llbracket T_{2} \rrbracket(\llbracket M \rrbracket)
$$

for all $M \in \mathrm{PCF}_{\text {bool } \rightarrow(\text { bool } \rightarrow \text { bool })}$.

- We achieve $\llbracket T_{1} \rrbracket \neq \llbracket T_{2} \rrbracket$ by making sure that

$$
\llbracket T_{1} \rrbracket(\text { por }) \neq \llbracket T_{2} \rrbracket(\text { por })
$$

for some non-definable continuous function

$$
\text { por } \in\left(\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)\right)
$$

Parallell-or function

is the unique continuous function por $: \mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)$ such that

$$
\begin{aligned}
& \text { por true } \perp=\text { true } \\
& \text { por } \perp \text { true }=\text { true } \\
& \text { por false false }=\text { false }
\end{aligned}
$$

Parallell-or function

is the unique continuous function por : $\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)$ such that

$$
\begin{array}{ll}
\text { por true } \perp & =\text { true } \\
\text { por } \perp \text { true } & =\text { true } \\
\text { por false false } & =\text { false }
\end{array}
$$

In which case, it necessarily follows by monotonicity that

$$
\begin{array}{llll}
\text { por true true } & =\text { true } & & \text { por false } \perp
\end{array}=\perp
$$

Undefinability of parallel-or

Proposition. There is no closed PCF term

$$
P: \text { bool } \rightarrow(\text { bool } \rightarrow \text { bool })
$$

satisfying

$$
\llbracket P \rrbracket=\text { por }: \mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)
$$

Parallel-or test functions

Parallel-or test functions

For $i=1,2$ define

$$
\begin{gathered}
T_{i} \stackrel{\text { def }}{=} \text { fn } f: \text { bool } \rightarrow(\text { bool } \rightarrow \text { bool }) . \\
\text { if }(f \text { true } \Omega) \text { then } \\
\text { if }(f \Omega \text { true }) \text { then } \\
\text { if }(f \text { false false }) \text { then } \Omega \text { else } B_{i} \\
\text { else } \Omega \\
\text { else } \Omega
\end{gathered}
$$

where $B_{1} \stackrel{\text { def }}{=}$ true, $B_{2} \stackrel{\text { def }}{=}$ false,
and $\Omega \stackrel{\text { def }}{=} \mathbf{f i x}(\mathbf{f n} x:$ bool. $x)$.

Failure of full abstraction

Proposition.

$$
\begin{aligned}
& T_{1} \cong{ }_{\text {ctx }} T_{2}:(\text { bool } \rightarrow(\text { bool } \rightarrow \text { bool })) \rightarrow \text { bool } \\
& \llbracket T_{1} \rrbracket \neq \llbracket T_{2} \rrbracket \in\left(\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)\right) \rightarrow \mathbb{B}_{\perp}
\end{aligned}
$$

PCF+por

Expressions $\quad M::=\cdots \mid \operatorname{por}(M, M)$
Typing
$\frac{\Gamma \vdash M_{1}: \text { bool } \Gamma \vdash M_{2}: \text { bool }}{\Gamma \vdash \operatorname{por}\left(M_{1}, M_{2}\right): \text { bool }}$

Evaluation

$$
\begin{gathered}
\frac{M_{1} \Downarrow_{\text {bool }} \text { true }}{\operatorname{por}\left(M_{1}, M_{2}\right) \Downarrow_{\text {bool }} \text { true }} \\
\frac{M_{2} \Downarrow_{\text {bool }} \text { true }}{\operatorname{por}\left(M_{1}, M_{2}\right) \Downarrow_{\text {bool }} \text { true }} \\
\frac{M_{1} \Downarrow_{\text {bool }} \text { false }}{\operatorname{por}\left(M_{1}, M_{2}\right) \Downarrow_{2} \Downarrow_{\text {bool }} \text { false }}
\end{gathered}
$$

Plotkin's full abstraction result

The denotational semantics of PCF+por is given by extending that of PCF with the clause
$\llbracket \Gamma \vdash \operatorname{por}\left(M_{1}, M_{2}\right) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{por}\left(\llbracket \Gamma \vdash M_{1} \rrbracket(\rho)\right)\left(\llbracket \Gamma \vdash M_{2} \rrbracket(\rho)\right)$

This denotational semantics is fully abstract for contextual equivalence of PCF+por terms:

$$
\Gamma \vdash M_{1} \cong{ }_{c t x} M_{2}: \tau \Leftrightarrow \llbracket \Gamma \vdash M_{1} \rrbracket=\llbracket \Gamma \vdash M_{2} \rrbracket .
$$

