Denotational Semantics Exercise Sheet

§ Topics 1–4

Exercise 1 [2010 Paper 7 Question 8 (b)].

For a partially ordered set (P, \sqsubseteq) , let $(Ch(P), \sqsubseteq_{ptw})$ be the partially ordered set of chains in P ordered pointwise. That is,

$$\operatorname{Ch}(P) = \{ x = \{ x_n \}_{n \in \mathbb{N}} \mid \text{for all } i \leq j \text{ in } \mathbb{N}, \, x_i \sqsubseteq x_j \text{ in } P \}$$

and

$$x \sqsubseteq_{\text{ptw}} y \iff x_n \sqsubseteq y_n \text{ for all } n \in \mathbb{N}$$

Show that if P is a domain then so is Ch(P).

Exercise 2 [2014 Paper 7 Question 6(a)].

For partially ordered sets (P, \sqsubseteq_P) and (Q, \sqsubseteq_Q) , define the set

$$(P \Rightarrow Q) = \{f \mid f \text{ is a monotone function from } (P, \sqsubseteq_P) \text{ to } (Q, \sqsubseteq_Q)\}$$

and, for all $f, g \in (P \Rightarrow Q)$, let

$$f \sqsubseteq_{(P \Rightarrow Q)} g \iff \forall p \in P. \ f(p) \sqsubseteq_Q g(p)$$

- (i) Prove that $((P \Rightarrow Q), \sqsubseteq_{(P \Rightarrow Q)})$ is a partially ordered set.
- (ii) Prove that if (Q, \sqsubseteq_Q) is a domain then so is $((P \Rightarrow Q), \sqsubseteq_{(P \Rightarrow Q)})$.

Exercise 3.

Derive the result of Exercise 1 from that of Exercise 2(ii).

Exercise 4 [2016 Paper 7 Question 7 (a.ii)].

Let $\mathcal{P}(\mathbb{N}^2)$ be the domain of all subsets of pairs of natural numbers ordered by inclusion. Show that the function $f: \mathcal{P}(\mathbb{N}^2) \to \mathcal{P}(\mathbb{N}^2)$ given by

$$f(S) = \{(1,1)\} \cup \{(x+1, x \cdot y) \in \mathbb{N}^2 \mid (x,y) \in S\} \qquad (S \subseteq \mathbb{N}^2)$$

is continuous.

Exercise 5 [2008 Paper 8 Question 14 (c, d, e)].

(i) Let \mathbb{O} be the domain with two elements $\bot \sqsubseteq \top$. For a domain E and $e \in E$, define the function $g_e : E \to \mathbb{O}$ by

$$g_e(x) = \begin{cases} \bot & \text{if } x \sqsubseteq e \\ \top & \text{if } x \not\sqsubseteq e \end{cases}$$

Show that g_e is continuous.

- (ii) As an example of the definition in part (i), let $E = \mathbb{B}_{\perp} \times \mathbb{B}_{\perp}$, where $\mathbb{B} = \{true, false\}$, and consider $g_{(false,false)}: E \to \mathbb{O}$. Show that $g_{(false,false)}(x,y) = \top$ iff x = true or y = true.
- (iii) Let $f: D \to E$ be a function between domains D and E. Show that f is continuous iff $\forall e \in E$. $g_e \circ f$ is continuous.

Exercise 6 [2011 Paper 7 Question 5(a)].

Let Ω be the domain of "vertical natural numbers" pictured in Figure 1 of the lecture notes.

- (i) Is every monotone function from Ω to Ω continuous?
- (ii) Does every monotone function from Ω to Ω have a least prefixed point?

Exercise 7 [2019 Paper 9 Question 7(a)].

Suppose that (D, \sqsubseteq) is a poset which is chain-complete but does not have a least element, and that $f: D \to D$ is a continuous function.

- (i) Give an example of such (D, \sqsubseteq) and f for which f has no fixed point.
- (ii) If $d \in D$ satisfies $d \sqsubseteq f(d)$, prove that there is a least element $e \in D$ satisfying $d \sqsubseteq e = f(e)$.

Exercise 8 [2017 Paper 7 Question 7 (b.ii)].

Give a concrete explicit description of the fixed point $fix(f) \subseteq \mathbb{N}^2$ of the continuous function f in Exercise 4. Justify your answer.

Exercise 9 [2007 Paper 8 Question 15 (e)].

Suppose that D is a domain and $f: D \times D \to D$ is a continuous function satisfying the property $\forall d, e \in D$. f(d, e) = f(e, d). Let $g: D \times D \to D \times D$ be defined by

$$g(d_1, d_2) = (f(d_1, f(d_1, d_2)), f(f(d_1, d_2), d_2))$$

Let $(u_1, u_2) = fix(g)$. Show that $u_1 = u_2$ using Scott induction.

Exercise 10 [2011 Paper 7 Question 5 (b)].

Let D and E be domains and let $f: D \to D$ and $g: E \to E$ be continuous functions.

- (i) Define $f \times g : D \times E \to D \times E$ to be the continuous function given by $(f \times g)(d, e) = (f(d), g(e))$ and let $\pi_1 : D \times E \to D$ and $\pi_2 : D \times E \to E$ respectively denote the first and second projection functions. Show that $fix(f \times g) \sqsubseteq (fix(f), fix(g))$ and that $fix(f) \sqsubseteq \pi_1(fix(f \times g))$ and $fix(g) \sqsubseteq \pi_2(fix(f \times g))$.
- (ii) It follows from part (i) that $fix(f \times g) = (fix(f), fix(g))$. Use this and Scott's Fixed Point Induction Principle to show that, for all strict continuous functions $h: D \to E$,

$$h \circ f = g \circ h \implies h(fix(f)) = fix(g)$$

§ Topics 5–8

Exercise 1 [2009 Paper 9 Question 6 (b.i)].

Define a closed PCF term $H:(nat \to nat \to nat) \to nat \to nat$ such that $\llbracket \mathbf{fix}(H) \rrbracket \in (\mathbb{N}_{\perp} \to (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}))$ satisfies

$$\llbracket \mathbf{fix}(H) \rrbracket (i)(j) = \max(i, j)$$

for all $i, j \in \mathbb{N}$.

Exercise 2 [2017 Paper 9 Question 5 (c.i)].

For every pair of closed PCF expressions M, N of type nat, let $F_{M,N}$ be the closed PCF expression of type $(nat \rightarrow nat) \rightarrow (nat \rightarrow nat)$ given by

fn
$$f: nat \rightarrow nat$$
. fn $n: nat$.
if $zero(n)$ then M
else if $zero(pred(n))$ then N
else $succ(f(pred(n)))$

Give an explicit description of $\llbracket \mathbf{fix}(F_{M,N}) \rrbracket \in (\mathbb{N}_{\perp} \to \mathbb{N}_{\perp})$ in terms of $\llbracket M \rrbracket, \llbracket N \rrbracket \in \mathbb{N}_{\perp}$. Justify your answer.

Exercise 3 [2019 Paper 9 Question 7(b)].

- (i) Define the notion of contextual equivalence for the language PCF.
- (ii) State the *compositionality*, *soundness*, and *adequacy* properties of the denotational semantics of PCF. Explain why they imply that any two closed PCF terms of the same type with equal denotations are contextually equivalent.
- (iii) Give an example of two contextually equivalent PCF terms that have unequal denotations.

Exercise 4 [2017 Paper 9 Question 5 (b.ii)].

Prove or disprove that

(fn
$$n : nat. n$$
) \cong_{ctx} (fn $n : nat. succ(pred(n))) : nat \to nat$

Exercise 5 [2017 Paper 9 Question 5 (c.ii)].

For M, N and $F_{M,N}$ as in Exercise 1, prove or disprove that there are closed PCF expressions M, N of type nat such that

$$\mathbf{fix}(F_{M,N}) \cong_{\mathbf{ctx}} (\mathbf{fn} \ n : nat. \ \mathbf{pred}(n)) : nat \to nat$$

You may use any standard results provided that you state them clearly.

Exercise 6 [2011 Paper 9 Question 3 (b)].

Consider the following two statements for PCF terms M_1 and M_2 for which the typings $\Gamma \vdash M_1 : \tau$ and $\Gamma \vdash M_2 : \tau$ hold for some type environment Γ and type τ .

(1) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}[M_1]$: bool and $\mathcal{C}[M_2]$: bool,

$$C[M_1] \Downarrow_{bool} \iff C[M_2] \Downarrow_{bool}$$

(2) For all PCF contexts $\mathcal{C}[-]$ for which $\mathcal{C}[M_1]$: bool and $\mathcal{C}[M_2]$: bool,

$$\mathcal{C}[M_1] \downarrow_{bool} \mathbf{true} \iff \mathcal{C}[M_2] \downarrow_{bool} \mathbf{true}$$

- (i) Show that (1) implies (2).
- (ii) Show that (2) implies that M_1 and M_2 are contextually equivalent.

Exercise 7 [2010 Paper 9 Question 5 (c)].

Is the following statement true or false, and why?

```
For all closed PCF-terms M_1 and M_2 of type nat \to nat, if M_1 \cong_{\text{ctx}} M_2 : nat \to nat then [\![M_1]\!] = [\![M_2]\!] in \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}.
```

Exercise 8 [2015 Paper 9 Question 4(c)].

Let M be the PCF+por term

fn
$$f: (nat \rightarrow bool) \rightarrow bool.$$

fn $P: nat \rightarrow bool.$
por $(P(\mathbf{0}), f(\mathbf{fn} \ n: nat. \ P(\mathbf{succ}(n))))$

Give an explicit description of $\llbracket \mathbf{fix}(M) \rrbracket \in ((\mathbb{N}_{\perp} \to \mathbb{B}_{\perp}) \to \mathbb{B}_{\perp}).$

Exercise 9 [2021 Paper 9 Question 7].

Say whether the following statements are true or false with justification. You may use standard results provided that you state them clearly.

- (i) For all PCF types τ and terms $M \in PCF_{\tau}$, if $[\![M]\!] = \bot_{[\![\tau]\!]}$ then $M \cong_{\operatorname{ctx}} \Omega_{\tau} : \tau$.
- (ii) For all PCF types τ and terms $M \in PCF_{\tau}$, if $[\![M]\!] = \bot_{[\![\tau]\!]}$ then $M \not \Downarrow_{\tau}$.
- (iii) For all PCF types τ and terms $M \in PCF_{\tau}$, if $M \cong_{ctx} \Omega_{\tau} : \tau$ then $M \not\downarrow_{\tau}$.
- (iv) For all PCF types τ and terms $M \in PCF_{\tau}$, if $M \not\downarrow_{\tau}$ then $M \cong_{ctx} \Omega_{\tau} : \tau$.
- (v) For all PCF types τ and terms $M \in PCF_{\tau}$, if $M \cong_{ctx} \Omega_{\tau} : \tau$ then $[\![M]\!] = \bot_{[\![\tau]\!]}$.

Exercise 10 [1998 Paper 7 Question 5].

Suppose that $lam: (D \to D) \to D$ and $app: D \to (D \to D)$ are continuous functions for a domain D. Use this data to give a denotational semantics for the terms of the untyped λ -calculus by answering Question 5 from Paper 7 of the 1998 CS Tripos.