Topic 4

Scott Induction

Scott's Fixed Point Induction Principle

Let $f: D \to D$ be a continuous function on a domain D.

For any <u>admissible</u> subset $S \subseteq D$, to prove that the least fixed point of f is in S, *i.e.* that

$$fix(f) \in S$$
,

it suffices to prove

$$\forall d \in D \ (d \in S \Rightarrow f(d) \in S) \ .$$

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n > 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

Chain-closed and admissible subsets

Let D be a cpo. A subset $S \subseteq D$ is called chain-closed iff for all chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ in D

$$(\forall n \ge 0 \, . \, d_n \in S) \implies \left(\bigsqcup_{n \ge 0} d_n\right) \in S$$

If D is a domain, $S \subseteq D$ is called admissible iff it is a chain-closed subset of D and $\bot \in S$.

A property $\Phi(d)$ of elements $d \in D$ is called *chain-closed* (resp. *admissible*) iff $\{d \in D \mid \Phi(d)\}$ is a *chain-closed* (resp. *admissible*) subset of D.

Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

Building chain-closed subsets (I)

Let D, E be cpos.

Basic relations:

• For every $d \in D$, the subset

$$\downarrow(d) \stackrel{\mathrm{def}}{=} \{ x \in D \mid x \sqsubseteq d \}$$

of D is chain-closed.

The subsets

$$\{(x,y)\in D\times D\mid x\sqsubseteq y\}$$
 and
$$\{(x,y)\in D\times D\mid x=y\}$$

of $D \times D$ are chain-closed.

Example (I): Least pre-fixed point property

Let D be a domain and let $f:D\to D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$$

Example (I): Least pre-fixed point property

Let D be a domain and let $f:D\to D$ be a continuous function.

$$\forall d \in D. f(d) \sqsubseteq d \implies fix(f) \sqsubseteq d$$

Proof by Scott induction.

Let $d \in D$ be a pre-fixed point of f. Then,

$$x \in \downarrow(d) \implies x \sqsubseteq d$$

$$\implies f(x) \sqsubseteq f(d)$$

$$\implies f(x) \sqsubseteq d$$

$$\implies f(x) \in \downarrow(d)$$

Hence,

$$fix(f) \in \downarrow(d)$$
.

Building chain-closed subsets (II)

Inverse image:

Let $f: D \to E$ be a continuous function.

If S is a chain-closed subset of E then the inverse image

$$f^{-1}S = \{x \in D \mid f(x) \in S\}$$

is an chain-closed subset of D.

Example (II)

Let D be a domain and let $f, g: D \to D$ be continuous functions such that $f \circ g \sqsubseteq g \circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies fix(f) \sqsubseteq fix(g)$$
.

Example (II)

Let D be a domain and let $f,g:D\to D$ be continuous functions such that $f\circ g\sqsubseteq g\circ f$. Then,

$$f(\bot) \sqsubseteq g(\bot) \implies fix(f) \sqsubseteq fix(g)$$
.

Proof by Scott induction.

Consider the admissible property $\Phi(x) \equiv \big(f(x) \sqsubseteq g(x)\big)$ of D.

Since

$$f(x) \sqsubseteq g(x) \Rightarrow g(f(x)) \sqsubseteq g(g(x)) \Rightarrow f(g(x)) \sqsubseteq g(g(x))$$

we have that

$$f(fix(g)) \sqsubseteq g(fix(g))$$
.

Building chain-closed subsets (III)

Logical operations:

- If $S,T\subseteq D$ are chain-closed subsets of D then $S\cup T \qquad \text{and} \qquad S\cap T$ are chain-closed subsets of D.
- If $\{S_i\}_{i\in I}$ is a family of chain-closed subsets of D indexed by a set I, then $\bigcap_{i\in I} S_i$ is a chain-closed subset of D.
- If a property P(x, y) determines a chain-closed subset of $D \times E$, then the property $\forall x \in D$. P(x, y) determines a chain-closed subset of E.

Example (III): Partial correctness

Let $\mathcal{F}: State \longrightarrow State$ be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$.

For all $x, y \geq 0$,

$$\mathcal{F}[X \mapsto x, Y \mapsto y] \downarrow$$

$$\Longrightarrow \mathcal{F}[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x! \cdot y].$$

Recall that

$$\mathcal{F} = \mathit{fix}(f)$$
 where $f: (\mathit{State} \rightharpoonup \mathit{State}) \to (\mathit{State} \rightharpoonup \mathit{State})$ is given by
$$f(w) = \lambda(x,y) \in \mathit{State}. \left\{ \begin{array}{l} (x,y) & \text{if } x \leq 0 \\ w(x-1,x \cdot y) & \text{if } x > 0 \end{array} \right.$$

Proof by Scott induction.

We consider the admissible subset of $(State \rightarrow State)$ given by

$$S = \left\{ w \middle| \begin{array}{c} \forall x, y \ge 0. \\ w[X \mapsto x, Y \mapsto y] \downarrow \\ \Rightarrow w[X \mapsto x, Y \mapsto y] = [X \mapsto 0, Y \mapsto x! \cdot y] \end{array} \right\}$$

and show that

$$w \in S \implies f(w) \in S$$
.