## Topic 3

Constructions on Domains

## Discrete cpo's and flat domains

For any set $X$, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes $(X, \sqsubseteq)$ into a cpo, called the discrete cpo with underlying set $X$.

## Discrete cpo's and flat domains

For any set $X$, the relation of equality

$$
x \sqsubseteq x^{\prime} \stackrel{\text { def }}{\Leftrightarrow} x=x^{\prime} \quad\left(x, x^{\prime} \in X\right)
$$

makes $(X, \sqsubseteq)$ into a cpo, called the discrete cpo with underlying set $X$.
Let $X_{\perp} \stackrel{\text { def }}{=} X \cup\{\perp\}$, where $\perp$ is some element not in $X$. Then

$$
d \sqsubseteq d^{\prime} \stackrel{\text { def }}{\Leftrightarrow}\left(d=d^{\prime}\right) \vee(d=\perp) \quad\left(d, d^{\prime} \in X_{\perp}\right)
$$

makes $\left(X_{\perp}, \sqsubseteq\right)$ into a domain (with least element $\perp$ ), called the flat domain determined by $X$.

## Binary product of cpo's and domains

The product of two cpo's $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \& d_{2} \in D_{2}\right\}
$$

and partial order $\sqsubseteq$ defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \& d_{2} \sqsubseteq_{2} d_{2}^{\prime} .
$$

$$
\frac{\left(x_{1}, x_{2}\right) \sqsubseteq\left(y_{1}, y_{2}\right)}{x_{1} \sqsubseteq_{1} y_{1} \quad x_{2} \sqsubseteq_{2} y_{2}}
$$

Lubs of chains are calculated componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right) .
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ are domains so is $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ and $\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)$.

## Continuous functions of two arguments

Proposition. Let $D, E, F$ be cpo's. A function
$f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Moreover, it is continuous if and only if it preserves lubs of chains in each argument separately:

$$
\begin{aligned}
f\left(\bigsqcup_{m \geq 0} d_{m}, e\right) & =\bigsqcup_{m \geq 0} f\left(d_{m}, e\right) \\
f\left(d, \bigsqcup_{n \geq 0} e_{n}\right) & =\bigsqcup_{n \geq 0} f\left(d, e_{n}\right)
\end{aligned}
$$

- A couple of derived rules:

$$
\frac{x \sqsubseteq x^{\prime} \quad y \sqsubseteq y^{\prime}}{f(x, y) \sqsubseteq f\left(x^{\prime}, y^{\prime}\right)} \quad(f \text { monotone })
$$

$$
f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right)=\bigsqcup_{k} f\left(x_{k}, y_{k}\right)
$$

## Function cpo's and domains

Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo ( $D \rightarrow E, \sqsubseteq$ ) has underlying set

$$
(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E \text { is a continuous function }\}
$$

and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$.

## Function cpo's and domains

Given cpo's $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo
( $D \rightarrow E, \sqsubseteq$ ) has underlying set

$$
(D \rightarrow E) \stackrel{\text { def }}{=}\{f \mid f: D \rightarrow E \text { is a continuous function }\}
$$

and partial order: $f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d)$.

- A derived rule:

$$
\frac{f \sqsubseteq_{(D \rightarrow E)} g \quad x \sqsubseteq_{D} y}{f(x) \sqsubseteq g(y)}
$$

Lubs of chains are calculated 'argumentwise' (using lubs in $E$ ):

$$
\bigsqcup_{n \geq 0} f_{n}=\lambda d \in D . \bigsqcup_{n \geq 0} f_{n}(d)
$$

If $E$ is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d)=\perp_{E}$, all $d \in D$.

Lubs of chains are calculated 'argumentwise' (using lubs in $E$ ):

$$
\bigsqcup_{n \geq 0} f_{n}=\lambda d \in D \cdot \bigsqcup_{n \geq 0} f_{n}(d)
$$

- A derived rule:

$$
\left(\bigsqcup_{n} f_{n}\right)\left(\bigsqcup_{m} x_{m}\right)=\bigsqcup_{k} f_{k}\left(x_{k}\right)
$$

If $E$ is a domain, then so is $D \rightarrow E$ and $\perp_{D \rightarrow E}(d)=\perp_{E}$, all $d \in D$.

## Continuity of composition

For cpo's $D, E, F$, the composition function

$$
\circ:((E \rightarrow F) \times(D \rightarrow E)) \longrightarrow(D \rightarrow F)
$$

defined by setting, for all $f \in(D \rightarrow E)$ and $g \in(E \rightarrow F)$,

$$
g \circ f=\lambda d \in D \cdot g(f(d))
$$

is continuous.

## Continuity of the fixpoint operator

Let $D$ be a domain.
By Tarski's Fixed Point Theorem we know that each
continuous function $f \in(D \rightarrow D)$ possesses a least fixed point, $f i x(f) \in D$.

Proposition. The function

$$
f i x:(D \rightarrow D) \rightarrow D
$$

is continuous.

