
Databases

Timothy G. Griffin

Computer Laboratory
University of Cambridge, UK

Michaelmas 2021

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 1 / 154

Lecture 1

What is a Database Management System (DBMS)?
The diverse landscape of database systems.

I Traditional SQL-based systems
I Recent development of “NoSQL” systems

Three data models covered in this course
I Relational
I Document-oriented
I Graph-oriented

Trade-offs imply that no one model/DBMS can solve all problems.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 2 / 154

Abstractions, interfaces, and implementations

An interface liberates application
writers from low level details.
An interface represents an
abstraction of resources/services
used by applications.
In a perfect world, implementations
can change without requiring
changes to applications.
Performance concerns often present
a serious challenge to this idealised
picture!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 3 / 154

This is found everywhere, not just in computing ...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 4 / 154

Evolution worked it out long long ago!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 5 / 154

What is a Database Management System (DBMS)?

This course will present
databases from an application
writer’s point of view. It will stress
data models and query
languages.
We will not cover programming
APIs, network APIs, or low-level
implementation details.
A query engine includes an
optimiser that knows about low-level
details hidden by the interface(s).
The services typically implemented
by a DBMS:

I CRUD operations,
I ACID (or BASE?) transactions.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 6 / 154

CRUD operations

Create: Insert new data items into the database.
Read: Query the database.

Update: Modify objects in the database.
Delete: Remove data from the database.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 7 / 154

ACID transactions for concurrent updates

Atomicity: Either all actions of a transaction are carried out, or none
are (even if the system crashes in the middle of a
transaction).

Consistency: Every transaction applied to a consistent database leave
it in a consistent state.

Isolation: Transactions are isolated, or protected, from the effects of
other concurrently executed transactions.

Durability: If a transactions completes successfully, then its effects
persist.

Implementing ACID transactions is one topic covered in Concurrent
and Distributed Systems (1B).

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 8 / 154

Traditional Relational Databases

Based on SQL standards and ACID transactions. Data normally
resides in secondary storage.

Commercial
Oracle, IBM, and Microsoft together have over 85% of the
commercial market.

Open source or free-ware
HyperSql
MySQL
SQLite
PostgreSQL

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 9 / 154

https://hostingdata.co.uk/nosql-database lists over
250 “NoSQL” Systems

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 10 / 154

NoSQL systems are typically distributed databases

Why distribute data?
Scalability. The data set or the workload can be too large for a
single machine. Data often resides in RAM, rather than secondary
storage.
Fault tolerance. The service can survive the failure of some
machines.
Lower Latency. Data can be located closer to widely distributed
users.

Distributed databases are an important technology supporting cloud
computing.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 11 / 154

How do we distribute the data?

Note: partitions themselves are often replicated.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 12 / 154

Distributed databases pose difficult challenges

CAP concepts
Consistency. All reads return data that is up-to-date.
Availability. All clients can find some replica of the data.
Partition tolerance. The system continues to operate despite
arbitrary message loss or failure of part of the system.

It is very hard (impossible?) to achieve all three in a highly distributed
database.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 13 / 154

CAP principle

In a highly distributed system:
Assume that network partitions and other connectivity problems
will occur.
Implementing ACID transactions is very difficult and slow.
You are left engineering a trade-off between availability and
consistency.

This gives rise to the notion of eventual consistency: if update activity
ceases, then the system will eventually reach a consistent state.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 14 / 154

ACID vs BASE

Many NoSQL systems weaken ACID properties. The result is often
called BASE transactions (pun intended).

BA: Basically Available,
S: Soft state,
E: Eventual consistency.

Exactly what this means may vary from system to system. This is
an area of ongoing research.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 15 / 154

Moving away from monolithic databases?

https://www.slideshare.net/mongodb/webinar-mongodb-and-polyglot-
persistence-architecture

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 16 / 154

Watch this space ...

There is a lot of churn in this area.
Many traditional SQL-based systems are being extended with
NoSQL features.
Many NoSQL systems are being extended with traditional SQL
features.
Think of the current 250+ NoSQL systems as representing
attempts to explore a vast space of trade-offs...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 17 / 154

Trade-offs often change as technology changes

Expect more dramatic changes in the coming decades ...

5 megabytes of RAM in 1956 A modern server

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 18 / 154

This course looks at 3 data models

3 models
Relational Model: Data is stored in tables. SQL is the main query

language. Optimised for high throughput of many
concurrent updates.

Aggregate-oriented Model: Also called document-oriented database.
Optimised for read-oriented databases with few updates.

Graph-oriented Model: Data is stored as a graph (nodes and edges).
Query languages tend to have “path-oriented”
capabilities.

The relational model has been the industry mainstay for the last 45
years. The other two models are representatives of an ongoing
revolution in database systems often described under the “NoSQL”
banner.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 19 / 154

This course uses 3 database systems

HyperSQL A Java-based relational DBMS. Query
language is SQL.

DOCtor Who A bespoke document-oriented collection of
data. Not really a DBMS, just some stored
python dictionaries containing JSON data!
Let’s pretend it is a DBMS!

Neo4j A Java-based graph-oriented DBMS. Query
language is Cypher (named after a character
in The Matrix).

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 20 / 154

IMDb : Our data source

Raw data available from IMDb plain text data files at
http://www.imdb.com/interfaces (snapshot of
26/09/2021).
Extracted from this: 1480 movies made between 2000 and 2021
together with 7583 associated people (actors, directors, etc).
The same data set was used to generate three database
instances: relational, graph, and document-oriented.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 21 / 154

Yes! Only two ticks this year!

date topics
1 07/10 What is a Database Management System (DBMS)?
2 12/10 Entity-Relationship (ER) diagrams
3 14/10 Relational Databases ...
4 19/10 ... and SQL
5 21/10 Some limitations of SQL ...
6 26/10 Document-oriented Database

27/10 Relational DB practical due (“tick 1”)
7 28/11 Graph Database
8 02/11 Graph Database continued

03/10 Document DB practical due (“tick 2”)

Get started NOW on the practicals!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 22 / 154

Recommended Text

Lemahieu, W., Broucke, S. van den, and Baesens, B. Principles of
database management. Cambridge University Press. (2018)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 23 / 154

Guide to relevant material in textbook

1 What is a Database Management System (DBMS)?
I Chapter 2

2 Entity-Relationship (ER) diagrams
I Sections 3.1 and 3.2

3 Relational Databases ...
I Sections 6.1, 6.2.1, 6.2.2, and 6.3

4 ... and SQL
I Sections 7.2 – 7.4

5 Indexes. Some limitations of SQL ...
I 7.5,

6 ... that can be solved with Graph Database
I Sections 11.1 and 11.5

7 Document-oriented Database
I Chapter 10

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 24 / 154

Lecture 2 : Conceptual modeling with
Entity-Relationship (ER) diagrams

Peter Chen

It is very useful to have a
implementation independent
technique to describe the data that
we store in a database.
There are many formalisms for this,
and we will use a popular one —
Entity-Relationship (ER), due to
Peter Chen (1976).
The ER technique grew up around
relational databases systems but it
can help document and clarify
design issues for any data model.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 25 / 154

Entities capture things of interest

Movie

title
year

movie_id Person

birthYear
name

person_id

Entities (squares) represent the nouns of our model
Attributes (ovals) represent properties
A key is an attribute whose value uniquely identifies an entity
instance (here underlined)
The scope of the model is limited — among the vast number of
possible attributes that could be associated with a person, we are
implicitly declaring that our model is concerned with only three.
Very abstract, independent of implementation

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 26 / 154

Entity Sets (instances)
Instances of the Movie entity

movie_id title year
tt1454468 Gravity 2013
tt0440963 The Bourne Ultimatum 2007

Instances of the Person entity
person_id name birthYear

nm2225369 Jennifer Lawrence 1990
nm0000354 Matt Damon 1970

Keys are often automatically generated to be unique. Or they might be
formed from some algorithm, like your CRSID. Q: Might some domains
have natural keys (National Insurance ID)? A: Beware of using keys
that are out of your control. The only safe thing to use as a key is
something that is automatically generated in the database and only
has meaning within that database.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 27 / 154

Relationships

Movie

title
year

movie_id Directed Person

birthYear
name

person_id

Relationships (diamonds) represent the verbs of our domain.
Relationships are between entities.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 28 / 154

Relationship instances

Instances of the Directed relationship (ignoring entity attributes)
Kathryn Bigelow directed The Hurt Locker
Kathryn Bigelow directed Zero Dark Thirty
Paul Greengrass directed The Bourne Ultimatum
Steve McQueen directed 12 Years a Slave
Karen Harley directed Waste Land
Lucy Walker directed Waste Land
João Jardim directed Waste Land

Relationship “Cardinality”
The Directed is an example of a many-to-many relationship.

Every person can direct multiple movies and every movie can
have multiple directors

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 29 / 154

A many-to-many relationship

S R T

Any S can be related to zero or more T ’s
Any T can be related to zero or more S’s

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 30 / 154

Relationships can have attributes

Movie

title
year

movie_id Acted_In

role

Person

birthYear
name

person_id

Attribute role indicates the role played by a person in the movie.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 31 / 154

Instances of the relationship Acted_In

(ignoring entity attributes)
Ben Affleck played Tony Mendez in Argo
Julie Deply played Celine in Before Midnight
Bradley Cooper played Pat in Silver Linings Playbook
Jennifer Lawrence played Tiffany in Silver Linings Playbook
Tim Allan played Buzz Lightyear in Toy Story 3

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 32 / 154

Have we made a mistake?

Note that this model assumes that an actor plays a single role in every
movie. This may not be the case!

Jennifer Lawrence played Raven in X-Men: First Class
Jennifer Lawrence played Mystique in X-Men: First Class
Scarlett Johansson played Black Widow in The Avengers
Scarlett Johansson played Natasha Romanoff in The Avengers

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 33 / 154

Acted_In can be modeled as a Ternary Relationship

Movie

Title
Year

movie_id Acted_In Person

birthYear
name

person_id

Role

description

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 34 / 154

Can a ternary relationship be modeled with multiple
binary relationships?

MovieHasCastingCastingActsInPerson

RequiresRole

Role

Is the Casting entity too artificial?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 35 / 154

Attribute or entity with new relationship?

Movie

title
id

Released MovieRelease

country
date

year

month

day

note

Should the release year be an attribute or an entity?
The answer may depend on the scope of your data model.
If all movies within your scope have at most one release date,
then an attribute will work well.
However, if you scope is global, then a movie can have different
release dates in different countries.
Is there something special about the MovieRelease?
tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 36 / 154

many-to-one relationships

Suppose that every employee is related to at most one department.
We will draw with an arrow:

Employee Works_In Department

Does our movie database have any many-to-one relationships?
Do we need some annotation to indicate that every employee
must be assigned to a department?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 37 / 154

one-to-many and many-to-one relationships, abstractly

Suppose every member of T is related to at most one member of S.
We will draw this as

T R S

The relation R is many-to-one between T and S
The relation R is one-to-many between S and T

If R is both many-to-one between T and S and one-to-many between
S and T , then it is one-to-one between T and S

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 38 / 154

A “one-to-one cardinality” does not mean a "1-to-1
correspondence”

T X

Y

R

U

SZ

W

This database instance is OK
S R T

Z W
z1 w1
z2 w2
z3 w3

Z X U
z1 x2 u1

X Y
x1 y1
x2 y2
x3 y3
x4 y4

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 39 / 154

Diagrams can be annotated with cardinalities in many
strange and wonderful ways ...

Various diagrammatic notations used to indicate a one-to-many
relationship
https://en.wikipedia.org/wiki/Entity-relationship_model).
Note: We will not bother with these notations, but the concept of
a relationship’s cardinality is an important one.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 40 / 154

Weak entities

Movie

Title
movie_id

Year Has_Alternative AlternativeTitle

Title
Country

Language
alt_id

AlternativeTitle is an example of a weak entity
The attribute alt_id is called a discriminator.
The existence of a weak entity depends on the existence of
another entity. In this case, an AlternativeTitle exists only in
relation to an existing movie. (This is what makes MovieRelease
special!)
Discriminators are not keys. To uniquely identify an
AlternativeTitle, we need both a movie_id and an alt_id.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 41 / 154

Entity hierarchy

Sometimes an entity can have “sub-entities”. Here is an example:

Employee

Name employee_id

IsA

Temporary_Employee

hourly_rate

Contract_Employee

contract_id

Sub-entities inherit the attributes (including keys) and relationships of
the parent entity.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 42 / 154

Entity-Relationship Diagrams

Forces you to think clearly about the model you want to implement
in a database without going into database-specific details.
Simple diagrammatic documentation.
Easy to learn.
Can teach it to techno-phobic clients in less than an hour.
Very valuable in developing a model in collaboration with
clients who know nothing about database implementation
details.
With the following slide, imagine you are a data modeler working
with a car sales/repair company. The diagram represents your
current draft data model. What questions might you ask your client
in order to refine this model?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 43 / 154

Employee

Name
Number

IsA

Mechanic SalespersonDoes

RepairJobNumber

Description

CostParts

Work

Repairs Car

License

Model
Year

Manufacturer

Buys

Price

Date

Value

Sells

Date

Value

Commission

Client ID

Name Phone
Address

buyerseller

Example due to Pável Calado, author of the tikz-er2.sty package.
tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 44 / 154

Lecture 3

The relational Model
SQL and the Relational Algebra (RA)
Update anomalies
Avoid redundancy!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 45 / 154

Still the dominant approach : Relational DBMSs

In the 1970s you could not write a
database application without knowing a
great deal about the data’s low-level
representation.
Codd’s radical idea : give users a model of
data and a language for manipulating that
data which is completely independent of
the details of its
representation/implementation. That
model is based on mathematical
relations.
This decouples development of the DBMS
from the development of database
applications.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 46 / 154

Let’s start with mathematical relations

Suppose that S and T are sets. The Cartesian product, S × T , is the
set

S × T = {(s, t) | s ∈ S, t ∈ T}

A (binary) relation over S × T is any set R with

R ⊆ S × T .

Database parlance
S and T are referred to as domains.
We are interested in finite relations R that can be stored!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 47 / 154

n-ary relations
If we have n sets (domains),

S1, S2, . . . ,Sn,

then an n-ary relation R is a set

R ⊆ S1 × S2 × · · · × Sn = {(s1, s2, . . . , sn) | si ∈ Si}

Tabular presentation

1 2 · · · n
x y · · · w
u v · · · s
...

...
...

n m · · · k

All data in a relational database is stored in tables. However, referring
to columns by number can quickly become tedious!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 48 / 154

Mathematical vs. database relations

Use named columns
Associate a name, Ai (called an attribute name) with each domain
Si .
Instead of tuples, use records — sets of pairs each associating an
attribute name Ai with a value in domain Si .

Column order does not matter
A database relation R is a finite set

R ⊆ {{(A1, s1), (A2, s2), . . . , (An, sn)} | si ∈ Si}

We specify R’s schema as R(A1 : S1, A2 : S2, · · · An : Sn).

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 49 / 154

Example
A relational schema
Students(name: string, sid: string, age : integer)

A relational instance of this schema
Students = {

{(name, Fatima), (sid, fm21), (age, 20)},
{(name, Eva), (sid, ev77), (age, 18)},
{(name, James), (sid, jj25), (age, 19)}
}

Two equivalent tabular presentations

name sid age
Fatima fm21 20
Eva ev77 18
James jj25 19

sid name age
fm21 Fatima 20
ev77 Eva 18
jj25 James 19

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 50 / 154

What is a (relational) database query language?

Input : a collection of Output : a single
relation instances relation instance

R1, R2, · · · , Rk =⇒ Q(R1, R2, · · · , Rk)

How can we express Q?
In order to meet Codd’s goals we want a query language that is
high-level and independent of physical data representation.

There are many possibilities ...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 51 / 154

The Relational Algebra (RA)

Q ::= R base relation
| σp(Q) selection
| πX(Q) projection
| Q ×Q product
| Q −Q difference
| Q ∪Q union
| Q ∩Q intersection
| ρM(Q) renaming

p is a simple boolean predicate over attributes values.
X = {A1, A2, . . . , Ak} is a set of attributes.
M = {A1 7→ B1, A2 7→ B2, . . . , Ak 7→ Bk} is a renaming map.
A query Q must be well-formed: all column names of result are
distinct. So in Q1 ×Q2, the two sub-queries cannot share any
column names while in in Q1 ∪Q2, the two sub-queries must
share all column names.
tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 52 / 154

SQL : a vast and evolving language
Origins at IBM in early 1970’s.
SQL has grown and grown through many rounds of
standardization :

I ANSI: SQL-86
I ANSI and ISO : SQL-89, SQL-92, SQL:1999, SQL:2003,

SQL:2006, SQL:2008, SQL:2008
SQL is made up of many sub-languages, including

I Query Language
I Data Definition Language
I System Administration Language

SQL will inevitably absorb many “NoSQL” features ...

Why talk about the Relational Algebra?
Due to the RA’s simple syntax and semantics, it can often help us
better understand complex queries
Tradition
The RA lends itself to endlessly amusing tripos questions ...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 53 / 154

Selection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A B C D
20 10 0 55
77 25 4 0

Q
RA σA>12(R)

SQL SELECT DISTINCT * FROM R WHERE R.A > 12

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 54 / 154

Projection

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

=⇒

Q(R)

B C
10 0
99 17
25 4

Q
RA πB,C(R)

SQL SELECT DISTINCT B, C FROM R

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 55 / 154

Renaming

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

A E C F
20 10 0 55
11 10 0 7
4 99 17 2
77 25 4 0

Q
RA ρ{B 7→E , D 7→F}(R)

SQL SELECT A, B AS E, C, D AS F FROM R

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 56 / 154

Union

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R, S)

A B
20 10
11 10
4 99
77 1000

Q
RA R ∪ S

SQL (SELECT * FROM R) UNION (SELECT * FROM S)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 57 / 154

Intersection

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
20 10

Q
RA R ∩ S

SQL (SELECT * FROM R) INTERSECT (SELECT * FROM S)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 58 / 154

Difference

R

A B
20 10
11 10
4 99

S

A B
20 10
77 1000

=⇒

Q(R)

A B
11 10
4 99

Q
RA R − S

SQL (SELECT * FROM R) EXCEPT (SELECT * FROM S)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 59 / 154

Product

R
A B
20 10
11 10
4 99

S
C D
14 99
77 100 =⇒

Q(R, S)
A B C D
20 10 14 99
20 10 77 100
11 10 14 99
11 10 77 100
4 99 14 99
4 99 77 100

Q
RA R × S

SQL SELECT A, B, C, D FROM R CROSS JOIN S

SQL SELECT A, B, C, D FROM R, S

Note that the RA product is not exactly the Cartesian product
suggested by this notation!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 60 / 154

Natural Join
First, a bit of notation

We will often ignore domain types and write a relational schema
as R(A), where A = {A1, A2, · · · , An} is a set of attribute names.
When we write R(A, B) we mean R(A ∪ B) and implicitly assume
that A ∩ B = φ.
u.[A] = v .[A] abbreviates u.A1 = v .A1 ∧ · · · ∧ u.An = v .An.

Natural Join
Given R(A, B) and S(B, C), we define the natural join, denoted
R on S, as a relation over attributes A,B,C defined as

R on S ≡ {t | ∃u ∈ R, v ∈ S, u.[B] = v .[B] ∧ t = u.[A] ∪ u.[B] ∪ v .[C]}

In the Relational Algebra:

R on S = πA,B,C(σB=B′(R × ρ~B 7→ ~B′(S)))

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 61 / 154

Join example

Students
name sid cid
Fatima fm21 cl
Eva ev77 k
James jj25 cl

Colleges
cid cname
k King’s
cl Clare
q Queens’

=⇒

Students on Colleges
name sid cid cname
Fatima fm21 cl Clare
Eva ev77 k King’s
James jj25 cl Clare

(See online tutorial for joins in SQL.)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 62 / 154

Lecture 4: How can we implement an ER model
relationally?

Movie

title
year

movie_id Directed Person

birthYear
name

person_id

The ER model does not dictate implementation
There are many options
We will discuss some of the trade-offs involved

Remember, we only have tables to work with!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 63 / 154

How about one big table?

DirectedComplete
MOVIE_ID TITLE YEAR PERSON_ID NAME BIRTHYEAR
---------- ----------------------------- ---- --------- ---------------- ---------
tt0126029 Shrek 2001 nm0011470 Andrew Adamson 1966
tt0126029 Shrek 2001 nm0421776 Vicky Jenson
tt0181689 Minority Report 2002 nm0000229 Steven Spielberg 1946
tt0212720 A.I. Artificial Intelligence 2001 nm0000229 Steven Spielberg 1946
tt0983193 The Adventures of Tintin 2011 nm0000229 Steven Spielberg 1946
tt4975722 Moonlight 2016 nm1503575 Barry Jenkins 1979
tt5012394 Maigret Sets a Trap 2016 nm0668887 Ashley Pearce
tt5013056 Dunkirk 2017 nm0634240 Christopher Nolan 1970
tt5017060 Maigret’s Dead Man 2016 nm1113890 Jon East
tt5052448 Get Out 2017 nm1443502 Jordan Peele 1979
tt5052474 Sicario: Day of the Soldado 2018 nm1356588 Stefano Sollima 1966
.....

What’s wrong with this approach?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 64 / 154

Anomalies caused by data redundancy
Insertion anomalies: How can we tell if a newly inserted record is

consistent all other records records? We may want to
insert a person without knowing if they are a director. We
might want to insert a movie without knowing its
director(s).

Deletion anomalies: We will wipe out information about people when
last record is deleted from this table.

Update anomalies: What if an director’s name is mis-spelled? We may
update it correctly for one movie but not for another.

A transaction implementing a conceptually simple update but
containing checks to guarantee correctness may end up locking
the entire table.
Lesson: In a database supporting many concurrent updates we
see that data redundancy can lead to complex transactions and
low write throughput.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 65 / 154

A better idea : break tables down in order to reduce
redundancy

movies
MOVIE_ID TITLE YEAR
---------- ----------------------------- ----
tt0126029 Shrek 2001
tt0181689 Minority Report 2002
tt0212720 A.I. Artificial Intelligence 2001
tt0983193 The Adventures of Tintin 2011
tt4975722 Moonlight 2016
tt5012394 Maigret Sets a Trap 2016
tt5013056 Dunkirk 2017
tt5017060 Maigret’s Dead Man 2016
tt5052448 Get Out 2017
tt5052474 Sicario: Day of the Soldado 2018
.....

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 66 / 154

A better idea : break tables down in order to reduce
redundancy

people
PERSON_ID NAME BIRTHYEAR
--------- ---------------- ---------
nm0011470 Andrew Adamson 1966
nm0421776 Vicky Jenson
nm0000229 Steven Spielberg 1946
nm1503575 Barry Jenkins 1979
nm0668887 Ashley Pearce
nm0634240 Christopher Nolan 1970
nm1113890 Jon East
nm1443502 Jordan Peele 1979
nm1356588 Stefano Sollima 1966
.....

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 67 / 154

What about the relationship?

Directed
MOVIE_ID PERSON_ID
---------- ---------
tt0126029 nm0011470
tt0126029 nm0421776
tt0181689 nm0000229
tt0212720 nm0000229
tt0983193 nm0000229
tt4975722 nm1503575
tt5012394 nm0668887
tt5013056 nm0634240
tt5017060 nm1113890
tt5052448 nm1443502
tt5052474 nm1356588
.....

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 68 / 154

Computing DirectedComplete with SQL

select movie_id, title, year,
person_id, name, birthYear

from movies
join directed on directed.movie_id = movies_id
join people on people.person_id = person_id

Note: the relation directed does not actually exist in our database
(more on that later). We would have to write something like this:

select movie_id, title, year,
person_id, name, birthyear

from movies as m
join has_position as hp on hp.movie_id = m.movie_id
join people as p on p.person_id = hp.person_id
where hp.position = ’director’;

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 69 / 154

We can recover all information for the ActsIn relation

The SQL query

select movies.id as mid, title, year,
people.id as pid, name, character, position

from movies
join actsin on movie_id = movies.id
join people on people.id = person_id

might return something like

MID TITLE YEAR PID NAME CHARACTER POSITION
------- ----------------------- ---- ------- ------------------ ------------ ---------
2544956 12 Years a Slave (2013) 2013 146271 Batt, Bryan Judge Turner 4
2544956 12 Years a Slave (2013) 2013 2460265 Bennett, Liza J. Mistress Ford 32
2544956 12 Years a Slave (2013) 2013 173652 Bentley, Tony (I) Mr. Moon 9
2544956 12 Years a Slave (2013) 2013 477824 Dano, Paul Tibeats 35
2544956 12 Years a Slave (2013) 2013 256114 Bright, Gregory Edward 42
2544956 12 Years a Slave (2013) 2013 2826281 Haley, Emily D. Tea Seller NULL
...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 70 / 154

Observations

Both ER entities and ER relationships are implemented as tables.
We call them tables rather than relations to avoid confusion!
Good: We avoid many update anomalies by breaking tables into
smaller tables.
Bad: We have to work hard to combine information in tables
(joins) to produce interesting results.

What about consistency/integrity of our relational
implementation?
How can we ensure that the table representing an ER relation really
implements a relationship? Answer : we use keys and foreign keys.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 71 / 154

Key Concepts

Relational Key
Suppose R(X) is a relational schema with Z ⊆ X. If for any records u
and v in any instance of R we have

u.[Z] = v .[Z] =⇒ u.[X] = v .[X],

then Z is a superkey for R. If no proper subset of Z is a superkey, then
Z is a key for R. We write R(Z, Y) to indicate that Z is a key for
R(Z ∪ Y).

Note that this is a semantic assertion, and that a relation can have
multiple keys.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 72 / 154

Foreign Keys and Referential Integrity

Foreign Key
Suppose we have R(Z, Y). Furthermore, let S(W) be a relational
schema with Z ⊆W. We say that Z represents a Foreign Key in S for R
if for any instance we have πZ(S) ⊆ πZ(R). Think of these as (logical)
pointers!

Referential integrity
A database is said to have referential integrity when all foreign key
constraints are satisfied.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 73 / 154

A representation using tables

A relational schema

Has_Genre(movie_id ,genre_id)

With referential integrity constraints

πmovie_id(Has_Genre) ⊆ πmovie_id(Movies)

πgenre_id(Has_Genre) ⊆ πgenre_id(Genres)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 74 / 154

Foreign Keys in SQL

create table genres (
genre_id integer NOT NULL,
genre varchar(100) NOT NULL,
PRIMARY KEY (genre_id));

create table has_genre (
movie_id varchar(16) NOT NULL

REFERENCES movies (movie_id),
genre_id integer NOT NULL

REFERENCES genres (genre_id),
PRIMARY KEY (movie_id, genre_id));

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 75 / 154

Relationships to Tables (the “clean” approach)

T X

Y

R

U

SZ

W

Relation R is Schema

many to many (M : N) R(X , Z , U)

one to many (1 : M) R(X , Z , U)

many to one (M : 1) R(X , Z , U)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 76 / 154

Implementation can differ from the “clean” approach

T X

Y

R

U

SZ

W

Suppose R is one to many
Rather than implementing a new table R(X , Z , U) we could expand
table T (X , Y) to T (X , Y , Z , U) and allow the Z and U columns to be
NULL for those rows in T not participating in the relationship.

Pros and cons?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 77 / 154

Implementing weak entities

T X

Y

R

U

SZ

W

This is always a one to many relationship!
Notice that all rows of T must participate in the relationship.
The expanded T (X , Y , Z , U) is even more compelling.
We might drop the keys X from T resulting in T (Y , Z , U).

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 78 / 154

Implementing multiple relationships into a single table?

Suppose we have two many-to-many relationships:

T X

Y

SZ

W R

U

Q

V

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 79 / 154

Implementing multiple relationships into a single table?
Rather than using two tables

R(X , Z , U)

Q(X , Z , V)

we might squash them into a single table

RQ(X , Z , type, U, V)

using a tag domain(type) = {r,q} (for some constant values r and q).

represent an R-record (x , z,u) as an RQ-record (x , z, r,u,NULL)
represent an Q-record (x , z, v) as an RQ-record (x , z,q,NULL, v)

Redundancy alert!
If we now the value of the type column, we can compute the value of
either the U column or the V column!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 80 / 154

We have stuffed 5 relationships into the
has_position table!

select position, count(*) as total
from has_position
group by position
order by total desc;

Using our database this query produces the output

POSITION TOTAL
-------- -----
actor 4950
producer 2300
writer 2215
director 1422
self 293

Was this a good idea?
Discuss!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 81 / 154

Implementation of entity hierarchy

S

W Z

IsA

T

Y

U

V

One approach:
S(Z , W)

T (Z , Y) with πZ (T) ⊆ πZ (S)

U(Z , V) with πZ (U) ⊆ πZ (S)

Could we combine these tables into one with type tags?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 82 / 154

Implementing weak entities

T DISC

Y

R

U

SZ

W

One approach:
S(Z , W)

R(Z , DISC, U) with πZ (R) ⊆ πZ (S)

T (Z , DISC, Y) with πZ (T) ⊆ πZ (S)

Another approach:
S(Z , W)

R(Z , DISC, U, Y) with πZ (R) ⊆ πZ (S)

This is how Has_Alternative is implemented.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 83 / 154

Lecture 5

Data redundancy and update anomalies.
Relational normalisation attempts to eliminate redundancy.
Normalisation and transaction throughput.

I Relation databases are designed to maximise the number of
concurrent users executing update transactions.

But what if your applications never or rarely update data?
I Read-oriented vs. update-oriented databases.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 84 / 154

Implementing ACID transactions requies locking data

As will be discussed in IB Concurrent and Distributed Systems,
implementing ACID transaction requires locks on data.
Locks are acquired and released by transactions.
Once a lock is acquired a transaction has exclusive access to the
locked data.
Locking mechanisms can be placed along a spectrum of
granulariy from very coarse-grained (lock the entire database!) to
very fine-grained (lock a single data value).
Implementation details of implementing ACID transactions are not
a part of SQL standards. Rather, this is part of the “secret sauce”
implemented by every vendor.
Observation: As more and more data is locked by typical
transactions, fewer and fewer concurrent updates can be
supported within a given time period.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 85 / 154

What is redundant data? Why is it bad?

Our definition
Data in a database is redundant if it can be deleted and then
reconstructed from the data remaining in the database.

Why is redundant data problematic?
In a database supporting high-throughput update transactions, high
levels of data redundancy imply that correct transactions may have to
acquire many locks to consistently update copies of redundant data.

Update anomalies
This is a general term for transactions that do no correctly update
redundant data.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 86 / 154

Database normalisation

Since reducing redundancy results in higher throughput many
techniques have been developed for eleminating redundancy from
schema designs.
This is called database normalisation.
A normalised database is one that has little or no redundant data.
We will not cover the theoretical details of normal forms (3rd
normal form, Boyce-Codd normal form, fourth normal form, fifth
normal form, and so on).
Why? In practice, if you have done a good job of
Entity-Relationship modeling, then your database should be
fairly well normalised.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 87 / 154

Why read-oriented databases?

A fundamental tradeoff
Introducing data redundancy can speed up read-oriented transactions
at the expense of slowing down write-oriented transactions.

Something to ponder
How do database indexes demonstrate this point?

Situations where we might want a read-oriented database
Your data is seldom updated, but very often read.
Your reads can afford to be mildly out-of-synch with the
write-oriented database. Then consider periodically extracting
read-oriented snapshots and storing them in a database system
optimised for reading. The following two slides illustrate examples
of this situation.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 88 / 154

A common trade-off: Query response vs. update throughput

Data redundancy is problematic for some applications
If a database supports many concurrent updates, then data
redundancy leads to many problems, discussed in Lecture 4. If a
database has little redundancy, then update throughput is typically
better since transactions need only lock a few data items. This has
been the traditional approach in the relational database world.

Data redundancy is highly desirable for some applications
In a low redundancy database, evaluation of complex queries can be
very slow and require large amounts of computing power.
Precomputing answers to common queries (either fully or partially) can
greatly speed up query response time. This introduces redundancy,
but it may be appropriate for databases supporting applications that
are read-intensive, with few or no data modifications. This is an
approach common in aggregate-oriented databases.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 89 / 154

Example : Hinxton Bio-informatics

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 90 / 154

Example : Embedded databases

FIDO = Fetch Intensive Data Organization

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 91 / 154

Key-value stores

One of the simplest types of database systems is the key-value
store that simply maps a key to a block of bytes.
The retrieved block of bytes is typically opaque to the databases
system.
Interpretation of such data is left to applications.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 92 / 154

OLAP vs. OLTP

OLTP Online Transaction Processing
OLAP Online Analytical Processing

Commonly associated with terms like Decision
Support, Data Warehousing, etc.

OLAP OLTP
Supports analysis day-to-day operations

Data is historical current
Transactions mostly reads updates

optimized for reads updates
data redundancy high low

database size humongous large

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 93 / 154

Example : Data Warehouse (Decision support)

fast updates

Data Warehouse

business analysis queries

Operational Databases

ETL

ETL = Extract, Transform, and Load

This looks very similar to slide 91!
But there must be differences that are not illustrated.
What are these differences?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 94 / 154

Lecture 6

Optimise for reading data?
Document-oriented databases
Semi-structured data
Our bespoke database: DoctorWho
Using python as a query language

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 95 / 154

Semi-structured data : JSON

{"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]
}

}}

From http://json.org/example.html.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 96 / 154

Semi-structured data : XML

<menu id="file" value="File">
<popup>
<menuitem value="New" onclick="CreateNewDoc()" />
<menuitem value="Open" onclick="OpenDoc()" />
<menuitem value="Close" onclick="CloseDoc()" />

</popup>
</menu>

From http://json.org/example.html.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 97 / 154

Document-oriented database systems

Our working definition
A document-oriented databases stores data in the form of
semi-structured objects. Such database systems are also called
aggregate-oriented databases.

Why Semi-structured data?
Let’s do a thought experiment.
In the next few slides imagine that we intend to use a relational
database to store read-optimised tables generated from a a set of
write-optimised tables (that is, having little redundancy).
We will encounter some problems that can be solved by
representing our data as semi-structured objects.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 98 / 154

Start with a simple relationship ...

T B

Z

R

Y

SA

X

A database instance
S R T

A X
a1 x1
a2 x2
a3 x3

A B Y
a1 b1 y1
a1 b2 y2
a1 b3 y3
a2 b1 y4
a2 b3 y5

B Z
b1 z1
b2 z2
b3 z3
b4 z4

Imagine that our read-oriented applications can’t afford to do joins!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 99 / 154

Implement the relationship as one big table?

BigTableOne: An outer join of S, R, and T

A X B Z Y
a1 x1 b1 z1 y1
a1 x1 b2 z2 y2
a1 x1 b3 z3 y3
a2 x2 b1 z1 y4
a2 x2 b3 z3 y5
a3 x3

b4 z4

Since we don’t update this date we will not encounter the problems
associated with redundancy.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 100 / 154

However, we might have many more relationships ...

T B

Z

Q

W

SA

X

A database instance
S Q T

A X
a1 x1
a2 x2
a3 x3

A B W
a1 b4 w1
a3 b2 w2
a3 b3 w3

B Z
b1 z1
b2 z2
b3 z3
b4 z4

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 101 / 154

Implement with another big table?

BigTableTwo: An outer join of S, Q, and T

A X B Z W
a1 x1 b4 z4 w1
a3 x3 b2 z2 w2
a3 x3 b3 z3 w3
a2 x2

b1 z1

Having two tables makes reading a bit more difficult!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 102 / 154

Combine into one big table?

BigTable: Derived from S, R, Q, and T

A X B Z Y W
a1 x1 b1 z1 y1
a1 x1 b2 z2 y2
a1 x1 b3 z3 y3
a2 x2 b1 z1 y4
a2 x2 b3 z3 y5
a1 x1 b4 z4 w1
a3 x3 b2 z2 w2
a3 x3 b3 z3 w3

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 103 / 154

Problems with BigTable

We could store BigTable and speed up some queries.
But suppose that our applications typically access data using
either S’s key or T ’s key.
Creating indices on the A and B columns could speed things up,
but our applications may still be forced to gather information from
many rows in order to collect all information related to a given key
of S or a given key of T .
It would be better to access all data associated with a given key of
S or a given key of T using only a single database lookup.

Potential Solution
Represent the data using semi-structured objects.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 104 / 154

Use (S-oriented) documents ("A" value is unique id)

{ "A": a1, "X": x1,
"R": [{"B": b1, "Z": z1, "Y": y1},

{"B": b2, "Z": z2, "Y": y2},
{"B": b3, "Z": z3, "Y": y3}],

"Q": [{"B": b4, "Z": z4, "W": w1}]
}

{ "A": a2, "X": x2,
"R": [{"B": b1, "Z": z1, "Y": y4},

{"B": b3, "Z": z3, "Y": y5}],
"Q": []

}

{ "A": a3, "X": x3,
"R": [],
"Q": [{"B": b2, "Z": z2, "W": w2},

{"B": b3, "Z": z3, "W": w3}]
}

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 105 / 154

Use (T -oriented) documents ("B" value is id)

{ "B": b1, "Z": z1,
"R": [{"A": a1, "X": x1, "Y": y2},

{"A": a2, "X": x2, "Y": y4}],
"Q": [] }

{ "B": b2, "Z": z2,
"R": [{"A": a1, "X": x1, "Y": y2}],
"Q": [{"A": a3, "X": x3, "Y": w2}] }

{ "B": b3, "Z": z3,
"R": [{"A": a1, "X": x1, "Y": y3},

{"A": a2, "X": x2, "Y": y5}],
"Q": [{"A": a3, "X": x3, "Y": w3}]}

{ "B": b4, "Z": z4, "R": [],
"Q": [{"A": a1, "X": x1, "Y": w1}] }

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 106 / 154

DOCtor Who

Our DOCtor Who “database” is simply made up of two key-value
stores – one for movies and one for people. Here database is in quotes
since we will just be using python dictionaries to implement mappings
from keys to JSON objects. In other words, no ACID transactions, no
auxiliary indices, no JSON-specific (XPath-like) query language, ...

Could be implemented on top of transactional key-value store.
(If anyone finds a JSON-based database that is easy to install, please
let me know....)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 107 / 154

DOCtor Who: person_id nm2225369 maps to
{ ’person_id’: ’nm2225369’,
’name’: ’Jennifer Lawrence’,
’birthYear’: ’1990’,
’acted_in’: [
{’movie_id’: ’tt1355644’, ’roles’: [’Aurora Lane’],
’title’: ’Passengers’, ’year’: ’2016’},

{’movie_id’: ’tt1045658’, ’roles’: [’Tiffany’],
’title’: ’Silver Linings Playbook’, ’year’: ’2012’},

{’movie_id’: ’tt1392170’, ’roles’: [’Katniss Everdeen’],
’title’: ’The Hunger Games’, ’year’: ’2012’},

{’movie_id’: ’tt1800241’, ’roles’: [’Rosalyn Rosenfeld’],
’title’: ’American Hustle’, ’year’: ’2013’},

{’movie_id’: ’tt1951264’, ’roles’: [’Katniss Everdeen’],
’title’: ’The Hunger Games: Catching Fire’, ’year’: ’2013’},

{’movie_id’: ’tt1270798’, ’roles’: [’Raven’, ’Mystique’],
’title’: ’X-Men: First Class’, ’year’: ’2011’},

{’movie_id’: ’tt1399683’, ’roles’: [’Ree’],
’title’: "Winter’s Bone",’year’: ’2010’}

]
}

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 108 / 154

DOCtor Who: person_id nm0031976 maps to

{ ’person_id’: ’nm0031976’,
’name’: ’Judd Apatow’,
’birthYear’: ’1967’,
’acted_in’: [

{’movie_id’: ’tt7860890’, ’roles’: [’Himself’],
’title’: ’The Zen Diaries of Garry Shandling’, ’year’: ’2018’}],

’directed’: [
{’movie_id’: ’tt0405422’,
’title’: ’The 40-Year-Old Virgin’, ’year’: ’2005’}],

’produced’: [
{’movie_id’: ’tt0357413’,
’title’: ’Anchorman: The Legend of Ron Burgundy’, ’year’: ’2004’},

{’movie_id’: ’tt5462602’,
’title’: ’The Big Sick’, ’year’: ’2017’},

{’movie_id’: ’tt0829482’, ’title’: ’Superbad’, ’year’: ’2007’},
{’movie_id’: ’tt0800039’,
’title’: ’Forgetting Sarah Marshall’, ’year’: ’2008’},

{’movie_id’: ’tt1980929’, ’title’: ’Begin Again’, ’year’: ’2013’}],
’was_self’: [

{’movie_id’: ’tt7860890’,
’title’: ’The Zen Diaries of Garry Shandling’, ’year’: ’2018’}],

’wrote’: [
{’movie_id’: ’tt0910936’,
’title’: ’Pineapple Express’, ’year’: ’2008’}]

}

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 109 / 154

DOCtor Who: movie_id tt1045658 maps to

{ ’movie_id’: ’tt1045658’,
’title’: ’Silver Linings Playbook’,
’type’: ’movie’,
’rating’: ’7.7’,
’votes’: ’651782’,
’minutes’: ’122’,
’year’: ’2012’,
’genres’: [’Comedy’, ’Drama’, ’Romance’],
’actors’: [

{’name’: ’Robert De Niro’, ’person_id’: ’nm0000134’,
’roles’: [’Pat Sr.’]},
{’name’: ’Jennifer Lawrence’, ’person_id’: ’nm2225369’,
’roles’: [’Tiffany’]},
{’name’: ’Jacki Weaver’, ’person_id’: ’nm0915865’,
’roles’: [’Dolores’]},
{’name’: ’Bradley Cooper’, ’person_id’: ’nm0177896’,
’roles’: [’Pat’]}],

’directors’: [
{’name’: ’David O. Russell’, ’person_id’: ’nm0751102’}],

’producers’: [
{’name’: ’Jonathan Gordon’, ’person_id’: ’nm0330335’},
{’name’: ’Donna Gigliotti’, ’person_id’: ’nm0317642’},
{’name’: ’Bruce Cohen’, ’person_id’: ’nm0169260’}],

’writers’: [{’name’: ’Matthew Quick’, ’person_id’: ’nm2683048’}]
}

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 110 / 154

But how do we query DOCtor Who?
We write python code!
import sys # operating system interface
import os.path # manipulate paths to files, directories
import pickle # read/write pickled python dictionaries
import pprint # pretty print JSON

first command-line argument = directory of pickled data files
data_dir = sys.argv[1]

use os.path.join so that path works on both Windows and Unix
movies_path = os.path.join(data_dir, ’movies.pickled’)
people_path = os.path.join(data_dir, ’people.pickled’)

open the files and un-pickle them
moviesFile = open(movies_path, mode= "rb")
movies = pickle.load(moviesFile)
peopleFile = open(people_path, mode= "rb")
people = pickle.load(peopleFile)

... YOUR QUERY CODE HERE...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 111 / 154

Thought experiment

Imagine you discover that an actor’s name has been misspelled. Now
you want to correct it in the database.

Compare the complexity of doing this in our relational database
compared to our document database.

Further, imagine that our document database had to support ACID
transaction.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 112 / 154

Lecture 7

Another look at SQL
What is a database index?
Two complications for SQL semantics

I Multi-sets (bags)
I NULL values

Kevin Bacon!
Transitive closure of a relation
Problems computing a transitive closure in
relational databases

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 113 / 154

Complexity of a JOIN?

Given tables R(A, B) and S(B, C), how much work is required to
compute the join R on S?

// Brute force appaoch:
// scan R
for each (a, b) in R {

// scan S
for each (b’, c) in S {

if b = b’ then create (a, b, c) ...
}

}

Worst case: requires on the order of | R | × | S | steps. But note that
on each iteration over R, there may be only a very small number of
matching records in S — only one if R’s B is a foreign key into S.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 114 / 154

What is a database index?

An index is a data structure — created and maintained within a
database system — that can greatly reduce the time needed to locate
records.

// scan R
for each (a, b) in R {

// don’t scan S, use an index
for each s in S-INDEX-ON-B(b) {

create (a, b, s.c) ...
}

In 1A Algorithms you will see a few of the data structures used to
implement database indices (search trees, hash tables, and so on).

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 115 / 154

Remarks
Typical SQL commands for creating and deleting an index:

CREATE INDEX index_name on S(B)

DROP INDEX index_name

There are many types of database indices and the commands for
creating them can be complex.
Index creation is not defined in the SQL standards.
While an index can speed up reads, it will slow down
updates. This is one more illustration of a fundamental
database tradeoff.
The tuning of database performance using indices is a fine art.
In some cases it is better to store read-oriented data in a separate
database optimised for that purpose.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 116 / 154

Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

R

A B C D
20 10 0 55
11 10 0 7
4 99 17 2

77 25 4 0

=⇒

Q(R)

B C
10 0 ? ? ?
10 0 ? ? ?
99 17
25 4

SQL is actually based on multisets, not sets.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 117 / 154

Why Multisets?
Duplicates are important for aggregate functions (min, max, ave, count,
and so on). These are typically used with the GROUP BY construct.

sid course mark
ev77 databases 92
ev77 spelling 99
tgg22 spelling 3
tgg22 databases 100
fm21 databases 92
fm21 spelling 100
jj25 databases 88
jj25 spelling 92

group by
=⇒

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 118 / 154

Visualizing the aggregate function min

course mark
spelling 99
spelling 3
spelling 100
spelling 92

course mark
databases 92
databases 100
databases 92
databases 88

min(mark)
=⇒

course min(mark)
spelling 3

databases 88

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 119 / 154

In SQL

select course,
min(mark),
max(mark),
avg(mark)

from marks
group by course;

+-----------+-----------+-----------+-----------+
| course | min(mark) | max(mark) | avg(mark) |
+-----------+-----------+-----------+-----------+
| databases | 88 | 100 | 93.0000 |
| spelling | 3 | 100 | 73.5000 |
+-----------+-----------+-----------+-----------+

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 120 / 154

What is NULL?

NULL is a place-holder, not a value!
NULL is not a member of any domain (type),
This means we need three-valued logic.

Let ⊥ represent we don’t know!

∧ T F ⊥
T T F ⊥
F F F F
⊥ ⊥ F ⊥

∨ T F ⊥
T T T T
F T F ⊥
⊥ T ⊥ ⊥

v ¬v
T F
F T
⊥ ⊥

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 121 / 154

NULL can lead to unexpected results
select * from students;
+------+--------+------+
| sid | name | age |
+------+--------+------+
ev77	Eva	18
fm21	Fatima	20
jj25	James	19
ks87	Kim	NULL
+------+--------+------+

select * from students where age <> 19;
+------+--------+------+
| sid | name | age |
+------+--------+------+
| ev77 | Eva | 18 |
| fm21 | Fatima | 20 |
+------+--------+------+

select ... where P

The select statement only returns those records where the where
predicate evaluates to true.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 122 / 154

The ambiguity of NULL

Possible interpretations of NULL
There is a value, but we don’t know what it is.
No value is applicable.
The value is known, but you are not allowed to see it.
...

A great deal of semantic muddle is created by conflating all of these
interpretations into one non-value.

On the other hand, introducing distinct NULLs for each possible
interpretation leads to very complex logics ...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 123 / 154

SQL’s NULL has generated endless controversy

C. J. Date [D2004], Chapter 19
“Before we go any further, we should make it very clear that in our
opinion (and in that of many other writers too, we hasten to add),
NULLs and 3VL are and always were a serious mistake and have no
place in the relational model.”

In defense of Nulls, by Fesperman
“[...] nulls have an important role in relational databases. To remove
them from the currently flawed SQL implementations would be
throwing out the baby with the bath water. On the other hand, the
flaws in SQL should be repaired immediately.” (See
http://www.firstsql.com/idefend.htm.)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 124 / 154

Flaws? One example of SQL’s inconsistency

With our small database, the query

SELECT note FROM credits WHERE note IS NULL;

returns 4892 records of NULL.

The expression note IS NULL is either true or false — true when
note is the NULL value, false otherwise.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 125 / 154

Flaws? One example of SQL’s inconsistency (cont.)

Furthermore, the query

SELECT note, count(*) AS total
FROM credits
WHERE note IS NULL GROUP BY note;

returns a single record

note total
---- -----
NULL 4892

This seems to mean that NULL is equal to NULL. But recall that
NULL = NULL returns NULL!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 126 / 154

Bacon Number

Kevin Bacon has Bacon number 0.
Anyone acting in a movie with Kevin Bacon has Bacon number 1.
For any other actor, their bacon number is calculated as follows.
Look at all of the movies the actor acts in. Among all of the
associated co-actors, find the smallest Bacon number k . Then the
actor has Bacon number k + 1.

Let’s try to calculate Bacon numbers using SQL!

First, what is Kevin Bacon’s person_id?
select person_id from people where name = ’Kevin Bacon’;

Result is “nm0000102”.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 127 / 154

Mathematical relations, again

Given two binary relations

R ⊆ S × T
Q ⊆ T × U

we can define their composition Q ◦ R ⊆ S × U as

Q ◦ R ≡ {(s, u) | ∃t ∈ T , (s, t) ∈ R ∧ (t , u) ∈ Q}

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 128 / 154

Partial functions as relations

A (partial) function f ∈ S → T can be thought of as a binary
relations where (s, t) ∈ f if and only if t = f (s).
Suppose R is a relation where if (s, t1) ∈ R and (s, t2) ∈ R, then
it follows that t1 = t2. In this case R represents a (partial) function.
Given (partial) functions f ∈ S → T and g ∈ T → U their
composition g ◦ f ∈ S → U is defined by (g ◦ f)(s) = g(f (s)).
Note that the definition of ◦ for relations and functions is
equivalent for relations representing functions.

Since we could write Q ◦ R as R on2=1 Q we can see that joins are a
generalisation of function composition!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 129 / 154

Directed Graphs

G = (V , A) is a directed graph, where
V a finite set of vertices (also called nodes).
A is a binary relation over V . That is A ⊆ V × V .
If (u, v) ∈ A, then we have an arc from u to v .
The arc (u, v) ∈ A is also called a directed edge, or a
relationship of u to v .

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 130 / 154

Drawing directed graphs

A directed graph
V = {A,B,C,D}
A = {(A, B), (A, D), (B, C), (C, C)}

BA C D

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 131 / 154

Composition example

A ◦ A = {(A, C), (B, C), (C, C)}

BA C D

Elements of A ◦ A represent paths of length 2
(A, C) ∈ A ◦ A by the path A→ B → C
(B, C) ∈ A ◦ A by the path B → C → C
(C, C) ∈ A ◦ A by the path C → C → C

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 132 / 154

Iterated composition, and paths

Suppose R is a binary relation over S, R ⊆ S × S. Define iterated
composition as

R1 ≡ R
Rn+1 ≡ R ◦ Rn

Let G = (V , A) be a directed graph. Suppose v1, v2, · · · vk+1 is a
sequence of vertices. Then this sequence represents a path in G of
length k when (vi , vi+1) ∈ A, for i ∈ {1,2, · · · k}. We will often write
this as

v1 → v2 → · · · vk

Observation
If G = (V , A) is a directed graph, and (u, v) ∈ Ak , then there is at least
one path in G from u to v of length k . Such paths may contain loops.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 133 / 154

Shortest path

Definition of R-distance (hop count)
Suppose s0 ∈ π1(R) (that is there is a pair (s0, s1) ∈ R).

The distance from s0 to s0 is 0.
If (s0, s1) ∈ R, then the distance from s0 to s1 is 1.
For any other s′ ∈ π2(R), the distance from s0 to s′ is the least n
such that (s0, s′) ∈ Rn.

We will think of the Bacon number as an R-distance where s0 is Kevin
Bacon. But what is R?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 134 / 154

Let R be the co-actor relation

drop view if exists coactors;

create view coactors as
select distinct p1.person_id as pid1,

p2.person_id as pid2
from plays_role as p1
join plays_role as p2 on p2.movie_id = p1.movie_id;

On our database this relation contains 18,252 rows. Note that this
relation is reflexive and symmetric.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 135 / 154

SQL : Bacon number 1

drop view if exists bacon_number_1;

create view bacon_number_1 as
select distinct pid2 as pid,

1 as bacon_number
from coactors
where pid1 = ’nm0000102’ and pid1 <> pid2;

Remember Kevin Bacon’s person_id is nm0000102.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 136 / 154

SQL : Bacon number 2

drop view if exists bacon_number_2;

create view bacon_number_2 as
select distinct ca.pid2 as pid,

2 as bacon_number
from bacon_number_1 as bn1
join coactors as ca on ca.pid1 = bn1.pid
where ca.pid2 <> ’nm0000102’
and not(ca.pid2 in (select pid from bacon_number_1));

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 137 / 154

SQL : Bacon number 3

drop view if exists bacon_number_3;

create view bacon_number_3 as
select distinct ca.pid2 as pid,

3 as bacon_number
from bacon_number_2 as bn2
join coactors as ca on ca.pid1 = bn2.pid
where ca.pid2 <> ’nm0000102’
and not(ca.pid2 in (select pid from bacon_number_1))
and not(ca.pid2 in (select pid from bacon_number_2));

You get the idea. Lets do this all the way up to bacon_number_9
...

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 138 / 154

SQL : Bacon number 8

drop view if exists bacon_number_9;

create view bacon_number_9 as
select distinct ca.pid2 as pid,

9 as bacon_number
from bacon_number_8 as bn8
join coactors as ca on ca.pid1 = bn8.pid
where ca.pid2 <> ’nm0000102’
and not(ca.pid2 in (select pid from bacon_number_1))
and not(ca.pid2 in (select pid from bacon_number_2))
and not(ca.pid2 in (select pid from bacon_number_3))
and not(ca.pid2 in (select pid from bacon_number_4))
and not(ca.pid2 in (select pid from bacon_number_5))
and not(ca.pid2 in (select pid from bacon_number_6))
and not(ca.pid2 in (select pid from bacon_number_7))
and not(ca.pid2 in (select pid from bacon_number_8));

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 139 / 154

SQL : Bacon numbers
drop view if exists bacon_numbers;

create view bacon_numbers as
select * from bacon_number_1
union
select * from bacon_number_2
union
select * from bacon_number_3
union
select * from bacon_number_4
union
select * from bacon_number_5
union
select * from bacon_number_6
union
select * from bacon_number_7
union
select * from bacon_number_8
union
select * from bacon_number_9 ;tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 140 / 154

Bacon Numbers, counted
select bacon_number, count(*) as total
from bacon_numbers
group by bacon_number
order by bacon_number;

Results
BACON_NUMBER TOTAL
------------ -----

1 12
2 110
3 614
4 922
5 381
6 123
7 86
8 16

bacon_number_9 is empty!
tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 141 / 154

Transitive closure
Suppose R is a binary relation over S, R ⊆ S × S. The transitive
closure of R, denoted R+, is the smallest binary relation on S such
that R ⊆ R+ and R+ is transitive:

(x , y) ∈ R+ ∧ (y , z) ∈ R+ → (x , z) ∈ R+.

Then
R+ =

⋃
n∈{1, 2, ··· }

Rn.

Happily, all of our relations are finite, so there must be some k
with

R+ = R ∪ R2 ∪ · · · ∪ Rk .

Sadly, k will depend on the contents of R!
Conclude: we cannot compute transitive closure in the Relational
Algebra (or SQL without recursion).

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 142 / 154

CONTEST!!!
The challenge
HyperSQL implements SQL’s notoriously complicated (and
non-examinable) recursive query constructs. Write a recursive query
that takes n as a parameter and computes all actors with Bacon
number n.

Send solutions to tgg22@cam.ac.uk.

PRIZES!!!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 143 / 154

Lecture 8: Graph-oriented Databases

Model data as a graph (nodes and
arcs between nodes).
Provide a large number of graph
algorithms.
Implement graphs in main memory
in such a way that the graph
algorithms can be computed
efficiently.

The Graph Algorithms book is available on the course web site.
Only the contents of the following slides are examinable.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 144 / 154

Graph databases are optimised for “Data Science”
queries on graphs

This is a small metabolic network from Urinary metabolic
signatures of human adiposity (2015)
Many biological networks derived from experiments have millions
of nodes and edges.
Biologist interested in drug development want to “query” such
graphs to find important structures.
tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 145 / 154

The global air transport network

This air transport graph is from page 5 of Graph Algorithms.
Analysis have used graph algorithms to better understand how
flight delays propagate around the globe.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 146 / 154

Social networks

From Building Social Network Visualizations
(https://gwu-libraries.github.io/sfm-ui/posts/2017-09-08-sna).
Graph algorithms are used to recommend new friend links.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 147 / 154

Types of graph algorithms for Data Science

Community: How are nodes clustered?
Centrality: How important is each node or link to the structure of
the entire graph.
Similarity: How alike are two or more nodes?
Prediction: How likely is it that a new arc will be formed between
two nodes?
Path finding: What is the “best” path between two nodes?

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 148 / 154

Can’t we simply represent graphs in relational tables?

Of course!

But graph-oriented systems optimise implementation
For example, in memory representations can use pointers to
implement referential links.

Many SQL-bases systems are fighting back...
Some SQL-based systems are adding features for in-memory tables
optimised in similar ways.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 149 / 154

We are using Neo4j
A Neo4j database contains nodes and binary relationships
between nodes.
Nodes and relationships can have attributes (called properties).
Neo4j has a query language called Cypher that contains
path-oriented constructs.
Complex graph algorithms are implemented in Java and can be
called from Cypher queries.

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 150 / 154

Neo4j: Example of path-oriented query in Cypher
match path=allshortestpaths((m:Person {name : ’Jennifer Lawrence’})

-[:ACTED_IN*]-
(n:Person {name : ’Matt Damon’}))

return path

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 151 / 154

Let’s count Bacon numbers with Cypher
match paths=allshortestpaths(

(m:Person {name : "Kevin Bacon"})
-[:ACTED_IN*]-

(n:Person))
where n.person_id <> m.person_id
return length(paths)/2 as bacon_number,

count(distinct n.person_id) as total
order by bacon_number;

bacon_number total
----------- -------

1 12
2 110
3 614
4 922
5 381
6 123
7 86
8 16

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 152 / 154

Last Slide!

What have we learned?
Having a conceptual model of data is very useful, no matter which
implementation technology is employed.
There is a trade-off between fast reads and fast writes.
There is no databases system that satisfies all possible
requirements!
It is best to understand pros and cons of each approach and
develop integrated solutions where each component database is
dedicated to doing what it does best.
The future will see enormous churn and creative activity in the
database field!

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 153 / 154

The End

(http://xkcd.com/327)

tgg22 (cl.cam.ac.uk) Databases 1A DB 2020 154 / 154

