

Mark Needham and Amy E. Hodler

Graph Algorithms
Practical Examples in

Apache Spark and Neo4j

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05781-9

[LSI]

Graph Algorithms
by Mark Needham and Amy E. Hodler

Copyright © 2019 Amy Hodler and Mark Needham. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisition Editor: Jonathan Hassell
Editor: Jeff Bleiel
Production Editor: Deborah Baker
Copy Editor: Tracy Brown
Proofreader: Rachel Head

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2019: First Edition

Revision History for the First Edition
2019-04-15: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492047681 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Graph Algorithms, the cover image of a
European garden spider, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Neo4j. See our statement of editorial independ‐
ence.

Table of Contents

Preface. ix

Foreword. xiii

1. Introduction. 1
What Are Graphs? 2
What Are Graph Analytics and Algorithms? 3
Graph Processing, Databases, Queries, and Algorithms 6

OLTP and OLAP 7
Why Should We Care About Graph Algorithms? 8
Graph Analytics Use Cases 12
Conclusion 14

2. Graph Theory and Concepts. 15
Terminology 15
Graph Types and Structures 16

Random, Small-World, Scale-Free Structures 17
Flavors of Graphs 18

Connected Versus Disconnected Graphs 19
Unweighted Graphs Versus Weighted Graphs 19
Undirected Graphs Versus Directed Graphs 21
Acyclic Graphs Versus Cyclic Graphs 22
Sparse Graphs Versus Dense Graphs 23
Monopartite, Bipartite, and k-Partite Graphs 24

Types of Graph Algorithms 27
Pathfinding 27
Centrality 27
Community Detection 27

iii

Summary 28

3. Graph Platforms and Processing. 29
Graph Platform and Processing Considerations 29

Platform Considerations 29
Processing Considerations 30

Representative Platforms 31
Selecting Our Platform 31
Apache Spark 32
Neo4j Graph Platform 34

Summary 37

4. Pathfinding and Graph Search Algorithms. 39
Example Data: The Transport Graph 41

Importing the Data into Apache Spark 43
Importing the Data into Neo4j 44

Breadth First Search 45
Breadth First Search with Apache Spark 46

Depth First Search 48
Shortest Path 49

When Should I Use Shortest Path? 50
Shortest Path with Neo4j 51
Shortest Path (Weighted) with Neo4j 53
Shortest Path (Weighted) with Apache Spark 54
Shortest Path Variation: A* 56
Shortest Path Variation: Yen’s k-Shortest Paths 58

All Pairs Shortest Path 60
A Closer Look at All Pairs Shortest Path 60
When Should I Use All Pairs Shortest Path? 62
All Pairs Shortest Path with Apache Spark 62
All Pairs Shortest Path with Neo4j 63

Single Source Shortest Path 65
When Should I Use Single Source Shortest Path? 67
Single Source Shortest Path with Apache Spark 67
Single Source Shortest Path with Neo4j 69

Minimum Spanning Tree 70
When Should I Use Minimum Spanning Tree? 71
Minimum Spanning Tree with Neo4j 72

Random Walk 73
When Should I Use Random Walk? 74
Random Walk with Neo4j 74

Summary 75

iv | Table of Contents

5. Centrality Algorithms. 77
Example Graph Data: The Social Graph 79

Importing the Data into Apache Spark 80
Importing the Data into Neo4j 81

Degree Centrality 81
Reach 81
When Should I Use Degree Centrality? 82
Degree Centrality with Apache Spark 83

Closeness Centrality 84
When Should I Use Closeness Centrality? 85
Closeness Centrality with Apache Spark 86
Closeness Centrality with Neo4j 88
Closeness Centrality Variation: Wasserman and Faust 89
Closeness Centrality Variation: Harmonic Centrality 91

Betweenness Centrality 92
When Should I Use Betweenness Centrality? 94
Betweenness Centrality with Neo4j 95
Betweenness Centrality Variation: Randomized-Approximate Brandes 98

PageRank 99
Influence 99
The PageRank Formula 100
Iteration, Random Surfers, and Rank Sinks 102
When Should I Use PageRank? 103
PageRank with Apache Spark 103
PageRank with Neo4j 105
PageRank Variation: Personalized PageRank 107

Summary 108

6. Community Detection Algorithms. 109
Example Graph Data: The Software Dependency Graph 112

Importing the Data into Apache Spark 114
Importing the Data into Neo4j 114

Triangle Count and Clustering Coefficient 114
Local Clustering Coefficient 115
Global Clustering Coefficient 116
When Should I Use Triangle Count and Clustering Coefficient? 116
Triangle Count with Apache Spark 117
Triangles with Neo4j 117
Local Clustering Coefficient with Neo4j 118

Strongly Connected Components 119
When Should I Use Strongly Connected Components? 120
Strongly Connected Components with Apache Spark 120

Table of Contents | v

Strongly Connected Components with Neo4j 122
Connected Components 124

When Should I Use Connected Components? 124
Connected Components with Apache Spark 125
Connected Components with Neo4j 126

Label Propagation 127
Semi-Supervised Learning and Seed Labels 129
When Should I Use Label Propagation? 129
Label Propagation with Apache Spark 130
Label Propagation with Neo4j 131

Louvain Modularity 133
When Should I Use Louvain? 137
Louvain with Neo4j 138

Validating Communities 143
Summary 143

7. Graph Algorithms in Practice. 145
Analyzing Yelp Data with Neo4j 145

Yelp Social Network 146
Data Import 147
Graph Model 147
A Quick Overview of the Yelp Data 148
Trip Planning App 152
Travel Business Consulting 157
Finding Similar Categories 162

Analyzing Airline Flight Data with Apache Spark 166
Exploratory Analysis 168
Popular Airports 168
Delays from ORD 170
Bad Day at SFO 172
Interconnected Airports by Airline 174
Summary 181

8. Using Graph Algorithms to Enhance Machine Learning. 183
Machine Learning and the Importance of Context 183

Graphs, Context, and Accuracy 184
Connected Feature Extraction and Selection 185

Graphy Features 187
Graph Algorithm Features 188

Graphs and Machine Learning in Practice: Link Prediction 190
Tools and Data 190
Importing the Data into Neo4j 192

vi | Table of Contents

The Coauthorship Graph 193
Creating Balanced Training and Testing Datasets 194
How We Predict Missing Links 199
Creating a Machine Learning Pipeline 200
Predicting Links: Basic Graph Features 201
Predicting Links: Triangles and the Clustering Coefficient 214
Predicting Links: Community Detection 218

Summary 224
Wrapping Things Up 224

A. Additional Information and Resources. 225

Index. 231

Table of Contents | vii

Preface

The world is driven by connections—from financial and communication systems to
social and biological processes. Revealing the meaning behind these connections
drives breakthroughs across industries in areas such as identifying fraud rings and
optimizing recommendations to evaluating the strength of a group and predicting
cascading failures.

As connectedness continues to accelerate, it’s not surprising that interest in graph
algorithms has exploded because they are based on mathematics explicitly developed
to gain insights from the relationships between data. Graph analytics can uncover the
workings of intricate systems and networks at massive scales—for any organization.

We are passionate about the utility and importance of graph analytics as well as the
joy of uncovering the inner workings of complex scenarios. Until recently, adopting
graph analytics required significant expertise and determination, because tools and
integrations were difficult and few knew how to apply graph algorithms to their
quandaries. It is our goal to help change this. We wrote this book to help organiza‐
tions better leverage graph analytics so that they can make new discoveries and
develop intelligent solutions faster.

What’s in This Book
This book is a practical guide to getting started with graph algorithms for developers
and data scientists who have experience using Apache Spark™ or Neo4j. Although our
algorithm examples utilize the Spark and Neo4j platforms, this book will also be help‐
ful for understanding more general graph concepts, regardless of your choice of
graph technologies.

The first two chapters provide an introduction to graph analytics, algorithms, and
theory. The third chapter briefly covers the platforms used in this book before we
dive into three chapters focusing on classic graph algorithms: pathfinding, centrality,
and community detection. We wrap up the book with two chapters showing how

ix

graph algorithms are used within workflows: one for general analysis and one for
machine learning.

At the beginning of each category of algorithms, there is a reference table to help you
quickly jump to the relevant algorithm. For each algorithm, you’ll find:

• An explanation of what the algorithm does
• Use cases for the algorithm and references to where you can learn more
• Example code providing concrete ways to use the algorithm in Spark, Neo4j, or

both

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

x | Preface

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://bit.ly/2FPgGVV.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Graph Algorithms by Amy E. Hodler
and Mark Needham (O’Reilly). Copyright 2019 Amy E. Hodler and Mark Needham,
978-1-492-05781-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For almost 40 years, O’Reilly has provided technology and
business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

Preface | xi

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/graph-algorithms.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We’ve thoroughly enjoyed putting together the material for this book and thank all
those who assisted. We’d especially like to thank Michael Hunger for his guidance, Jim
Webber for his invaluable edits, and Tomaz Bratanic for his keen research. Finally, we
greatly appreciate Yelp permitting us to use its rich dataset for powerful examples.

xii | Preface

Foreword

What do the following things all have in common: marketing attribution analysis,
anti-money laundering (AML) analysis, customer journey modeling, safety incident
causal factor analysis, literature-based discovery, fraud network detection, internet
search node analysis, map application creation, disease cluster analysis, and analyzing
the performance of a William Shakespeare play. As you might have guessed, what
these all have in common is the use of graphs, proving that Shakespeare was right
when he declared, “All the world’s a graph!”

Okay, the Bard of Avon did not actually write graph in that sentence, he wrote stage.
However, notice that the examples listed above all involve entities and the relation‐
ships between them, including both direct and indirect (transitive) relationships.
Entities are the nodes in the graph—these can be people, events, objects, concepts, or
places. The relationships between the nodes are the edges in the graph. Therefore,
isn’t the very essence of a Shakespearean play the active portrayal of entities (the
nodes) and their relationships (the edges)? Consequently, maybe Shakespeare could
have written graph in his famous declaration.

What makes graph algorithms and graph databases so interesting and powerful isn’t
the simple relationship between two entities, with A being related to B. After all, the
standard relational model of databases instantiated these types of relationships in its
foundation decades ago, in the entity relationship diagram (ERD). What makes
graphs so remarkably important are directional relationships and transitive relation‐
ships. In directional relationships, A may cause B, but not the opposite. In transitive
relationships, A can be directly related to B and B can be directly related to C, while A
is not directly related to C, so that consequently A is transitively related to C.

With these transitivity relationships—particularly when they are numerous and
diverse, with many possible relationship/network patterns and degrees of separation
between the entities—the graph model uncovers relationships between entities that
otherwise may seem disconnected or unrelated, and are undetected by a relational

xiii

database. Hence, the graph model can be applied productively and effectively in many
network analysis use cases.

Consider this marketing attribution use case: person A sees the marketing campaign;
person A talks about it on social media; person B is connected to person A and sees
the comment; and, subsequently, person B buys the product. From the marketing
campaign manager’s perspective, the standard relational model fails to identify the
attribution, since B did not see the campaign and A did not respond to the campaign.
The campaign looks like a failure, but its actual success (and positive ROI) is discov‐
ered by the graph analytics algorithm through the transitive relationship between the
marketing campaign and the final customer purchase, through an intermediary
(entity in the middle).

Next, consider an anti-money laundering (AML) analysis case: persons A and C are
suspected of illicit trafficking. Any interaction between the two (e.g., a financial trans‐
action in a financial database) would be flagged by the authorities, and heavily scruti‐
nized. However, if A and C never transact business together, but instead conduct
financial dealings through safe, respected, and unflagged financial authority B, what
could pick up on the transaction? The graph analytics algorithm! The graph engine
would discover the transitive relationship between A and C through intermediary B.

In internet searches, major search engines use a hyperlinked network (graph-based)
algorithm to find the central authoritative node across the entire internet for any
given set of search words. The directionality of the edge is vital in this case, since the
authoritative node in the network is the one that many other nodes point at.

With literature-based discovery (LBD)—a knowledge network (graph-based) applica‐
tion enabling significant discoveries across the knowledge base of thousands (or even
millions) of research journal articles—“hidden knowledge” is discovered only
through the connection between published research results that may have many
degrees of separation (transitive relationships) between them. LBD is being applied to
cancer research studies, where the massive semantic medical knowledge base of
symptoms, diagnoses, treatments, drug interactions, genetic markers, short-term
results, and long-term consequences could be “hiding” previously unknown cures or
beneficial treatments for the most impenetrable cases. The knowledge could already
be in the network, but we need to connect the dots to find it.

Similar descriptions of the power of graphing can be given for the other use cases lis‐
ted earlier, all examples of network analysis through graph algorithms. Each case
deeply involves entities (people, objects, events, actions, concepts, and places) and
their relationships (touch points, both causal and simple associations).

When considering the power of graphing, we should keep in mind that perhaps the
most powerful node in a graph model for real-world use cases might be “context.”
Context may include time, location, related events, nearby entities, and more. Incor‐

xiv | Foreword

porating context into the graph (as nodes and as edges) can thus yield impressive pre‐
dictive analytics and prescriptive analytics capabilities.

Mark Needham and Amy Hodler’s Graph Algorithms aims to broaden our knowledge
and capabilities around these important types of graph analyses, including algo‐
rithms, concepts, and practical machine learning applications of the algorithms.
From basic concepts to fundamental algorithms to processing platforms and practical
use cases, the authors have compiled an instructive and illustrative guide to the won‐
derful world of graphs.

— Kirk Borne, PhD
Principal Data Scientist and Executive Advisor

Booz Allen Hamilton
March 2019

Foreword | xv

CHAPTER 1

Introduction

Graphs are one of the unifying themes of computer science—an abstract representation that
describes the organization of transportation systems, human interactions, and telecommuni‐
cation networks. That so many different structures can be modeled using a single formalism
is a source of great power to the educated programmer.

—The Algorithm Design Manual, by Steven S. Skiena (Springer), Distinguished Teach‐
ing Professor of Computer Science at Stony Brook University

Today’s most pressing data challenges center around relationships, not just tabulating
discrete data. Graph technologies and analytics provide powerful tools for connected
data that are used in research, social initiatives, and business solutions such as:

• Modeling dynamic environments from financial markets to IT services
• Forecasting the spread of epidemics as well as rippling service delays and outages
• Finding predictive features for machine learning to combat financial crimes
• Uncovering patterns for personalized experiences and recommendations

As data becomes increasingly interconnected and systems increasingly sophisticated,
it’s essential to make use of the rich and evolving relationships within our data.

This chapter provides an introduction to graph analysis and graph algorithms. We’ll
start with a brief refresher about the origin of graphs before introducing graph algo‐
rithms and explaining the difference between graph databases and graph processing.
We’ll explore the nature of modern data itself, and how the information contained in
connections is far more sophisticated than what we can uncover with basic statistical
methods. The chapter will conclude with a look at use cases where graph algorithms
can be employed.

1

What Are Graphs?
Graphs have a history dating back to 1736, when Leonhard Euler solved the “Seven
Bridges of Königsberg” problem. The problem asked whether it was possible to visit
all four areas of a city connected by seven bridges, while only crossing each bridge
once. It wasn’t.

With the insight that only the connections themselves were relevant, Euler set the
groundwork for graph theory and its mathematics. Figure 1-1 depicts Euler’s progres‐
sion with one of his original sketches, from the paper “Solutio problematis ad geome‐
triam situs pertinentis”.

Figure 1-1. The origins of graph theory. The city of Königsberg included two large islands
connected to each other and the two mainland portions of the city by seven bridges. The
puzzle was to create a walk through the city, crossing each bridge once and only once.

While graphs originated in mathematics, they are also a pragmatic and high fidelity
way of modeling and analyzing data. The objects that make up a graph are called
nodes or vertices and the links between them are known as relationships, links, or
edges. We use the terms nodes and relationships in this book: you can think of nodes
as the nouns in sentences, and relationships as verbs giving context to the nodes. To
avoid any confusion, the graphs we talk about in this book have nothing to do with
graphing equations or charts as in Figure 1-2.

2 | Chapter 1: Introduction

Figure 1-2. A graph is a representation of a network, often illustrated with circles to rep‐
resent entities which we call nodes, and lines to represent relationships.

Looking at the person graph in Figure 1-2, we can easily construct several sentences
which describe it. For example, person A lives with person B who owns a car, and
person A drives a car that person B owns. This modeling approach is compelling
because it maps easily to the real world and is very “whiteboard friendly.” This helps
align data modeling and analysis.

But modeling graphs is only half the story. We might also want to process them to
reveal insight that isn’t immediately obvious. This is the domain of graph algorithms.

What Are Graph Analytics and Algorithms?
Graph algorithms are a subset of tools for graph analytics. Graph analytics is some‐
thing we do—it’s the use of any graph-based approach to analyze connected data.
There are various methods we could use: we might query the graph data, use basic
statistics, visually explore the graphs, or incorporate graphs into our machine learn‐
ing tasks. Graph pattern–based querying is often used for local data analysis, whereas
graph computational algorithms usually refer to more global and iterative analysis.
Although there is overlap in how these types of analysis can be employed, we use the
term graph algorithms to refer to the latter, more computational analytics and data
science uses.

What Are Graph Analytics and Algorithms? | 3

Graph algorithms provide one of the most potent approaches to analyzing connected
data because their mathematical calculations are specifically built to operate on rela‐
tionships. They describe steps to be taken to process a graph to discover its general
qualities or specific quantities. Based on the mathematics of graph theory, graph algo‐
rithms use the relationships between nodes to infer the organization and dynamics of
complex systems. Network scientists use these algorithms to uncover hidden infor‐
mation, test hypotheses, and make predictions about behavior.

Network Science
Network science is an academic field strongly rooted in graph theory that is concerned
with mathematical models of the relationships between objects. Network scientists
rely on graph algorithms and database management systems because of the size, con‐
nectedness, and complexity of their data.

There are many fantastic resources for complexity and network science. Here are a
few references for you to explore.

• Network Science, by Albert-László Barabási, is an introductory ebook
• Complexity Explorer offers online courses
• The New England Complex Systems Institute provides various resources and

papers

Graph algorithms have widespread potential, from preventing fraud and optimizing
call routing to predicting the spread of the flu. For instance, we might want to score
particular nodes that could correspond to overload conditions in a power system. Or
we might like to discover groupings in the graph which correspond to congestion in a
transport system.

In fact, in 2010 US air travel systems experienced two serious events involving multi‐
ple congested airports that were later studied using graph analytics. Network scien‐
tists P. Fleurquin, J. J. Ramasco, and V. M. Eguíluz used graph algorithms to confirm
the events as part of systematic cascading delays and use this information for correc‐
tive advice, as described in their paper, “Systemic Delay Propagation in the US Air‐
port Network”.

To visualize the network underpinning air transportation Figure 1-3 was created by
Martin Grandjean for his article, “Connected World: Untangling the Air Traffic Net‐
work”. This illustration clearly shows the highly connected structure of air transpor‐
tation clusters. Many transportation systems exhibit a concentrated distribution of
links with clear hub-and-spoke patterns that influence delays.

4 | Chapter 1: Introduction

Figure 1-3. Air transportation networks illustrate hub-and-spoke structures that evolve
over multiple scales. These structures contribute to how travel flows.

Graphs also help uncover how very small interactions and dynamics lead to global
mutations. They tie together the micro and macro scales by representing exactly
which things are interacting within global structures. These associations are used to
forecast behavior and determine missing links. Figure 1-4 is a foodweb of grassland
species interactions that used graph analysis to evaluate the hierarchical organization
and species interactions and then predict missing relationships, as detailed in the
paper by A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical Structure and the
Prediction of Missing Links in Network”.

What Are Graph Analytics and Algorithms? | 5

Figure 1-4. This foodweb of grassland species uses graphs to correlate small-scale interac‐
tions to larger structure formation.

Graph Processing, Databases, Queries, and Algorithms
Graph processing includes the methods by which graph workloads and tasks are car‐
ried out. Most graph queries consider specific parts of the graph (e.g., a starting
node), and the work is usually focused in the surrounding subgraph. We term this
type of work graph local, and it implies declaratively querying a graph’s structure, as
explained in the book Graph Databases, by Ian Robinson, Jim Webber, and Emil
Eifrem (O’Reilly). This type of graph-local processing is often utilized for real-time
transactions and pattern-based queries.

When speaking about graph algorithms, we are typically looking for global patterns
and structures. The input to the algorithm is usually the whole graph, and the output
can be an enriched graph or some aggregate value such as a score. We categorize such
processing as graph global, and it implies processing a graph’s structure using compu‐
tational algorithms (often iteratively). This approach sheds light on the overall nature
of a network through its connections. Organizations tend to use graph algorithms to
model systems and predict behavior based on how things disseminate, important
components, group identification, and the overall robustness of the system.

There may be some overlap in these definitions—sometimes we can use processing of
an algorithm to answer a local query, or vice versa—but simplistically speaking
whole-graph operations are processed by computational algorithms and subgraph
operations are queried in databases.

Traditionally, transaction processing and analysis have been siloed. This was an
unnatural split based on technology limitations. Our view is that graph analytics

6 | Chapter 1: Introduction

drives smarter transactions, which creates new data and opportunities for further
analysis. More recently there’s been a trend to integrate these silos for more real-time
decision making.

OLTP and OLAP
Online transaction processing (OLTP) operations are typically short activities like
booking a ticket, crediting an account, booking a sale, and so forth. OLTP implies
voluminous low-latency query processing and high data integrity. Although OLTP
may involve only a small number of records per transaction, systems process many
transactions concurrently.

Online analytical processing (OLAP) facilitates more complex queries and analysis
over historical data. These analyses may include multiple data sources, formats, and
types. Detecting trends, conducting “what-if ” scenarios, making predictions, and
uncovering structural patterns are typical OLAP use cases. Compared to OLTP,
OLAP systems process fewer but longer-running transactions over many records.
OLAP systems are biased toward faster reading without the expectation of transac‐
tional updates found in OLTP, and batch-oriented operation is common.

Recently, however, the line between OLTP and OLAP has begun to blur. Modern
data-intensive applications now combine real-time transactional operations with ana‐
lytics. This merging of processing has been spurred by several advances in software,
such as more scalable transaction management and incremental stream processing,
and by lower-cost, large-memory hardware.

Bringing together analytics and transactions enables continual analysis as a natural
part of regular operations. As data is gathered—from point-of-sale (POS) machines,
manufacturing systems, or internet of things (IoT) devices—analytics now supports
the ability to make real-time recommendations and decisions while processing. This
trend was observed several years ago, and terms to describe this merging include
translytics and hybrid transactional and analytical processing (HTAP). Figure 1-5 illus‐
trates how read-only replicas can be used to bring together these different types of
processing.

Graph Processing, Databases, Queries, and Algorithms | 7

Figure 1-5. A hybrid platform supports the low latency query processing and high data
integrity required for transactions while integrating complex analytics over large
amounts of data.

According to Gartner:
[HTAP] could potentially redefine the way some business processes are executed, as
real-time advanced analytics (for example, planning, forecasting and what-if analysis)
becomes an integral part of the process itself, rather than a separate activity performed
after the fact. This would enable new forms of real-time business-driven decision-
making process. Ultimately, HTAP will become a key enabling architecture for intelli‐
gent business operations.

As OLTP and OLAP become more integrated and begin to support functionality pre‐
viously offered in only one silo, it’s no longer necessary to use different data products
or systems for these workloads—we can simplify our architecture by using the same
platform for both. This means our analytical queries can take advantage of real-time
data and we can streamline the iterative process of analysis.

Why Should We Care About Graph Algorithms?
Graph algorithms are used to help make sense of connected data. We see relation‐
ships within real-world systems from protein interactions to social networks, from
communication systems to power grids, and from retail experiences to Mars mission
planning. Understanding networks and the connections within them offers incredible
potential for insight and innovation.

Graph algorithms are uniquely suited to understanding structures and revealing pat‐
terns in datasets that are highly connected. Nowhere is the connectivity and interac‐

8 | Chapter 1: Introduction

tivity so apparent than in big data. The amount of information that has been brought
together, commingled, and dynamically updated is impressive. This is where graph
algorithms can help make sense of our volumes of data, with more sophisticated ana‐
lytics that leverage relationships and enhance artificial intelligence contextual infor‐
mation.

As our data becomes more connected, it’s increasingly important to understand its
relationships and interdependencies. Scientists that study the growth of networks
have noted that connectivity increases over time, but not uniformly. Preferential
attachment is one theory on how the dynamics of growth impact structure. This idea,
illustrated in Figure 1-6, describes the tendency of a node to link to other nodes that
already have a lot of connections.

Figure 1-6. Preferential attachment is the phenomenon where the more connected a
node is, the more likely it is to receive new links. This leads to uneven concentrations and
hubs.

In his book, Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily
Life (Hachette), Steven Strogatz provides examples and explains different ways that
real-life systems self-organize. Regardless of the underlying causes, many researchers

Why Should We Care About Graph Algorithms? | 9

believe that how networks grow is inseparable from their resulting shapes and hierar‐
chies. Highly dense groups and lumpy data networks tend to develop, with complex‐
ity growing along with data size. We see this clustering of relationships in most real-
world networks today, from the internet to social networks like the gaming
community shown in Figure 1-7.

Figure 1-7. This gaming community analysis shows a concentration of connections
around just 5 of 382 communities.

The network analysis shown in Figure 1-7 was created by Francesco D’Orazio of Pul‐
sar to help predict the virality of content and inform distribution strategies. D’Orazio
found a correlation between the concentration of a community’s distribution and the
speed of diffusion of a piece of content.

This is significantly different than what an average distribution model would predict,
where most nodes would have the same number of connections. For instance, if the
World Wide Web had an average distribution of connections, all pages would have
about the same number of links coming in and going out. Average distribution mod‐
els assert that most nodes are equally connected, but many types of graphs and many
real networks exhibit concentrations. The web, in common with graphs like travel
and social networks, has a power-law distribution with a few nodes being highly con‐
nected and most nodes being modestly connected.

10 | Chapter 1: Introduction

Power Law
A power law (also called a scaling law) describes the relationship between two quanti‐
ties where one quantity varies as a power of another. For instance, the area of a cube is
related to the length of its sides by a power of 3. A well-known example is the Pareto
distribution or “80/20 rule,” originally used to describe the situation where 20% of a
population controlled 80% of the wealth. We see various power laws in the natural
world and networks.

Trying to “average out” a network generally won’t work well for investigating relation‐
ships or forecasting, because real-world networks have uneven distributions of nodes
and relationships. We can readily see in Figure 1-8 how using an average of character‐
istics for data that is uneven would lead to incorrect results.

Figure 1-8. Real-world networks have uneven distributions of nodes and relationships
represented in the extreme by a power-law distribution. An average distribution assumes
most nodes have the same number of relationships and results in a random network.

Because highly connected data does not adhere to an average distribution, network
scientists use graph analytics to search for and interpret structures and relationship
distributions in real-world data.

There is no network in nature that we know of that would be described by the random
network model.

Why Should We Care About Graph Algorithms? | 11

—Albert-László Barabási, Director, Center for Complex Network Research, North‐
eastern University, and author of numerous network science books

The challenge for most users is that densely and unevenly connected data is trouble‐
some to analyze with traditional analytical tools. There might be a structure there, but
it’s hard to find. It’s tempting to take an averages approach to messy data, but doing so
will conceal patterns and ensure our results are not representing any real groups. For
instance, if you average the demographic information of all your customers and offer
an experience based solely on averages, you’ll be guaranteed to miss most communi‐
ties: communities tend to cluster around related factors like age and occupation or
marital status and location.

Furthermore, dynamic behavior, particularly around sudden events and bursts, can’t
be seen with a snapshot. To illustrate, if you imagine a social group with increasing
relationships, you’d also expect more communications. This could lead to a tipping
point of coordination and a subsequent coalition or, alternatively, subgroup forma‐
tion and polarization in, for example, elections. Sophisticated methods are required
to forecast a network’s evolution over time, but we can infer behavior if we under‐
stand the structures and interactions within our data. Graph analytics is used to pre‐
dict group resiliency because of the focus on relationships.

Graph Analytics Use Cases
At the most abstract level, graph analytics is applied to forecast behavior and pre‐
scribe action for dynamic groups. Doing this requires understanding the relation‐
ships and structure within the group. Graph algorithms accomplish this by
examining the overall nature of networks through their connections. With this
approach, you can understand the topology of connected systems and model their
processes.

There are three general buckets of questions that indicate whether graph analytics
and algorithms are warranted, as shown in Figure 1-9.

12 | Chapter 1: Introduction

Figure 1-9. The types of questions graph analytics answer

Here are a few types of challenges where graph algorithms are employed. Are your
challenges similar?

• Investigate the route of a disease or a cascading transport failure.
• Uncover the most vulnerable, or damaging, components in a network attack.
• Identify the least costly or fastest way to route information or resources.
• Predict missing links in your data.
• Locate direct and indirect influence in a complex system.
• Discover unseen hierarchies and dependencies.
• Forecast whether groups will merge or break apart.
• Find bottlenecks or who has the power to deny/provide more resources.
• Reveal communities based on behavior for personalized recommendations.
• Reduce false positives in fraud and anomaly detection.
• Extract more predictive features for machine learning.

Graph Analytics Use Cases | 13

Conclusion
In this chapter, we’ve looked at how data today is extremely connected, and the impli‐
cations of this. Robust scientific practices exist for analysis of group dynamics and
relationships, yet those tools are not always commonplace in businesses. As we evalu‐
ate advanced analytics techniques, we should consider the nature of our data and
whether we need to understand community attributes or predict complex behavior. If
our data represents a network, we should avoid the temptation to reduce factors to an
average. Instead, we should use tools that match our data and the insights we’re seek‐
ing.

In the next chapter, we’ll cover graph concepts and terminology.

14 | Chapter 1: Introduction

CHAPTER 2

Graph Theory and Concepts

In this chapter, we set the framework and cover terminology for graph algorithms.
The basics of graph theory are explained, with a focus on the concepts that are most
relevant to a practitioner.

We’ll describe how graphs are represented, and then explain the different types of
graphs and their attributes. This will be important later, as our graph’s characteristics
will inform our algorithm choices and help us interpret results. We’ll finish the chap‐
ter with an overview of the types of graph algorithms detailed in this book.

Terminology
The labeled property graph is one of the most popular ways of modeling graph data.

A label marks a node as part of a group. In Figure 2-1, we have two groups of nodes:
Person and Car. (Although in classic graph theory a label applies to a single node, it’s
now commonly used to mean a node group.)

15

Figure 2-1. A labeled property graph model is a flexible and concise way of representing
connected data.

Relationships are classified based on relationship type. Our example includes the rela‐
tionship types of DRIVES, OWNS, LIVES_WITH, and MARRIED_TO.

Properties are synonymous with attributes and can contain a variety of data types,
from numbers and strings to spatial and temporal data. In Figure 2-1 we assigned the
properties as name-value pairs, where the name of the property comes first and then
its value. For example, the Person node on the left has a property name: "Dan", and
the MARRIED_TO relationship has a property of on: Jan 1, 2013.

A subgraph is a graph within a larger graph. Subgraphs are useful as a filters such as
when we need a subset with particular characteristics for focused analysis.

A path is a group of nodes and their connecting relationships. An example of a simple
path, based on Figure 2-1, could contain the nodes Dan, Ann, and Car and the DRIVES
and OWNS relationships.

Graphs vary in type, shape, and size as well the kind of attributes that can be used for
analysis. Next, we’ll describe the kinds of graphs most suited for graph algorithms.
Keep in mind that these explanations apply to graphs as well as subgraphs.

Graph Types and Structures
In classic graph theory, the term graph is equated with a simple (or strict) graph where
nodes only have one relationship between them, as shown on the left side of
Figure 2-2. Most real-world graphs, however, have many relationships between nodes

16 | Chapter 2: Graph Theory and Concepts

and even self-referencing relationships. Today, this term is commonly used for all
three graph types in Figure 2-2, so we also use the term inclusively.

Figure 2-2. In this book, we use the term graph to include any of these classic types of
graphs.

Random, Small-World, Scale-Free Structures
Graphs take on many shapes. Figure 2-3 shows three representative network types:

• Random networks
• Small-world networks
• Scale-free networks

Figure 2-3. Three network structures with distinctive graphs and behaviors

Graph Types and Structures | 17

• In a completely average distribution of connections, a random network is formed
with no hierarchies. This type of shapeless graph is “flat” with no discernible pat‐
terns. All nodes have the same probability of being attached to any other node.

• A small-world network is extremely common in social networks; it shows local‐
ized connections and some hub-and-spoke pattern. The “Six Degrees of Kevin
Bacon” game might be the best-known example of the small-world effect.
Although you associate mostly with a small group of friends, you’re never many
hops away from anyone else—even if they are a famous actor or on the other side
of the planet.

• A scale-free network is produced when there are power-law distributions and a
hub-and-spoke architecture is preserved regardless of scale, such as in the World
Wide Web.

These network types produce graphs with distinctive structures, distributions, and
behaviors. As we work with graph algorithms, we’ll come to recognize similar pat‐
terns in our results.

Flavors of Graphs
To get the most out of graph algorithms, it’s important to familiarize ourselves with
the most characteristic graphs we’ll encounter. Table 2-1 summarizes common graph
attributes. In the following sections we look at the different flavors in more detail.

Table 2-1. Common attributes of graphs

Graph attribute Key factor Algorithm consideration
Connected versus
disconnected

Whether there is a path between any
two nodes in the graph, irrespective of
distance

Islands of nodes can cause unexpected behavior, such as
getting stuck in or failing to process disconnected
components.

Weighted versus
unweighted

Whether there are (domain-specific)
values on relationships or nodes

Many algorithms expect weights, and we’ll see significant
differences in performance and results when they’re
ignored.

Directed versus
undirected

Whether or not relationships explicitly
define a start and end node

This adds rich context to infer additional meaning. In some
algorithms you can explicitly set the use of one, both, or no
direction.

Cyclic versus acyclic Whether paths start and end at the
same node

Cyclic graphs are common but algorithms must be careful
(typically by storing traversal state) or cycles may prevent
termination. Acyclic graphs (or spanning trees) are the basis
for many graph algorithms.

Sparse versus dense Relationship to node ratio Extremely dense or extremely sparsely connected graphs can
cause divergent results. Data modeling may help, assuming
the domain is not inherently dense or sparse.

18 | Chapter 2: Graph Theory and Concepts

Graph attribute Key factor Algorithm consideration
Monopartite,
bipartite, and k-
partite

Whether nodes connect to only one
other node type (e.g., users like movies)
or many other node types (e.g., users
like users who like movies)

Helpful for creating relationships to analyze and projecting
more useful graphs.

Connected Versus Disconnected Graphs
A graph is connected if there is a path between all nodes. If we have islands in our
graph, it’s disconnected. If the nodes in those islands are connected, they are called
components (or sometimes clusters), as shown in Figure 2-4.

Figure 2-4. If we have islands in our graph, it’s a disconnected graph.

Some algorithms struggle with disconnected graphs and can produce misleading
results. If we have unexpected results, checking the structure of our graph is a good
first step.

Unweighted Graphs Versus Weighted Graphs
Unweighted graphs have no weight values assigned to their nodes or relationships.
For weighted graphs, these values can represent a variety of measures such as cost,
time, distance, capacity, or even a domain-specific prioritization. Figure 2-5 visualizes
the difference.

Flavors of Graphs | 19

Figure 2-5. Weighted graphs can hold values on relationships or nodes.

Basic graph algorithms can use weights for processing as a representation for the
strength or value of relationships. Many algorithms compute metrics which can then
be used as weights for follow-up processing. Some algorithms update weight values as
they proceed to find cumulative totals, lowest values, or optimums.

A classic use for weighted graphs is in pathfinding algorithms. Such algorithms
underpin the mapping applications on our phones and compute the shortest/cheap‐
est/fastest transport routes between locations. For example, Figure 2-6 uses two dif‐
ferent methods of computing the shortest route.

Figure 2-6. The shortest paths can vary for otherwise identical unweighted and weighted
graphs.

20 | Chapter 2: Graph Theory and Concepts

Without weights, our shortest route is calculated in terms of the number of relation‐
ships (commonly called hops). A and E have a two-hop shortest path, which indicates
only one node (D) between them. However, the shortest weighted path from A to E
takes us from A to C to D to E. If weights represent a physical distance in kilometers,
the total distance would be 50 km. In this case, the shortest path in terms of the num‐
ber of hops would equate to a longer physical route of 70 km.

Undirected Graphs Versus Directed Graphs
In an undirected graph, relationships are considered bidirectional (for example,
friendships). In a directed graph, relationships have a specific direction. Relationships
pointing to a node are referred to as in-links and, unsurprisingly, out-links are those
originating from a node.

Direction adds another dimension of information. Relationships of the same type but
in opposing directions carry different semantic meaning, expressing a dependency or
indicating a flow. This may then be used as an indicator of credibility or group
strength. Personal preferences and social relations are expressed very well with direc‐
tion.

For example, if we assumed in Figure 2-7 that the directed graph was a network of
students and the relationships were “likes,” then we’d calculate that A and C are more
popular.

Figure 2-7. Many algorithms allow us to compute on the basis of only inbound or out‐
bound connections, both directions, or without direction.

Flavors of Graphs | 21

Road networks illustrate why we might want to use both types of graphs. For exam‐
ple, highways between cities are often traveled in both directions. However, within
cities, some roads are one-way streets. (The same is true for some information flows!)

We get different results running algorithms in an undirected fashion compared to
directed. In an undirected graph, for example for highways or friendships, we would
assume all relationships always go both ways.

If we reimagine Figure 2-7 as a directed road network, you can drive to A from C and
D but you can only leave through C. Furthermore if there were no relationships from
A to C, that would indicate a dead end. Perhaps that’s less likely for a one-way road
network, but not for a process or a web page.

Acyclic Graphs Versus Cyclic Graphs
In graph theory, cycles are paths through relationships and nodes that start and end at
the same node. An acyclic graph has no such cycles. As shown in Figure 2-8, both
directed and undirected graphs can have cycles, but when directed, paths follow the
relationship direction. A directed acyclic graph (DAG), shown in Graph 1, will by defi‐
nition always have dead ends (also called leaf nodes).

Figure 2-8. In acyclic graphs, it’s impossible to start and end on the same node without
retracing our steps.

Graphs 1 and 2 have no cycles, as there’s no way to start and end at the same node
without repeating a relationship. You might remember from Chapter 1 that not
repeating relationships was the Königsberg bridges problem that started graph
theory! Graph 3 in Figure 2-8 shows a simple cycle following A-D-C-A with no
repeated nodes. In Graph 4, the undirected cyclic graph has been made more interest‐
ing by adding a node and relationship. There’s now a closed cycle with a repeated
node (C), following B-F-C-D-A-C-B. There are actually multiple cycles in Graph 4.

22 | Chapter 2: Graph Theory and Concepts

Cycles are common, and we sometimes need to convert cyclic graphs to acyclic
graphs (by cutting relationships) to eliminate processing problems. Directed acyclic
graphs naturally arise in scheduling, genealogy, and version histories.

Trees
In classic graph theory, an acyclic graph that is undirected is called a tree. In com‐
puter science, trees can also be directed. A more inclusive definition would be a graph
where any two nodes are connected by only one path. Trees are significant for under‐
standing graph structures and many algorithms. They play a key role in designing
networks, data structures, and search optimizations to improve categorization or
organizational hierarchies.

Much has been written about trees and their variations. Figure 2-9 illustrates the
common trees that we’re likely to encounter.

Figure 2-9. Of these prototypical tree graphs, spanning trees are most often used for
graph algorithms.

Of these variations, spanning trees are the most relevant for this book. A spanning
tree is a subgraph that includes all the nodes of a larger acyclic graph but not all the
relationships. A minimum spanning tree connects all the nodes of a graph with either
the least number of hops or least weighted paths.

Sparse Graphs Versus Dense Graphs
The sparsity of a graph is based on the number of relationships it has compared to the
maximum possible number of relationships, which would occur if there was a rela‐
tionship between every pair of nodes. A graph where every node has a relationship
with every other node is called a complete graph, or a clique for components. For
instance, if all my friends knew each other, that would be a clique.

Flavors of Graphs | 23

The maximum density of a graph is the number of relationships possible in a com‐
plete graph. It’s calculated with the formula MaxD = N N − 1

2 where N is the number

of nodes. To measure actual density we use the formula D = 2 R
N N − 1 where R is the

number of relationships. In Figure 2-10, we can see three measures of actual density
for undirected graphs.

Figure 2-10. Checking the density of a graph can help you evaluate unexpected results.

Although there is no strict dividing line, any graph with an actual density that
approaches the maximum density is considered dense. Most graphs based on real
networks tend toward sparseness, with an approximately linear correlation of total
nodes to total relationships. This is especially the case where physical elements come
into play, such as the practical limitations to how many wires, pipes, roads, or friend‐
ships you can join at one point.

Some algorithms will return nonsensical results when executed on extremely sparse
or dense graphs. If a graph is too sparse there may not be enough relationships for
algorithms to compute useful results. Alternatively, very densely connected nodes
don’t add much additional information since they are so highly connected. High den‐
sities can also skew some results or add computational complexity. In these situations,
filtering out the relevant subgraph is a practical approach.

Monopartite, Bipartite, and k-Partite Graphs
Most networks contain data with multiple node and relationship types. Graph algo‐
rithms, however, frequently consider only one node type and one relationship type.
Graphs with one node type and relationship type are sometimes referred to as
monopartite.

24 | Chapter 2: Graph Theory and Concepts

A bipartite graph is a graph whose nodes can be divided into two sets, such that rela‐
tionships only connect a node from one set to a node from a different set. Figure 2-11
shows an example of such a graph. It has two sets of nodes: a viewer set and a TV
show set. There are only relationships between the two sets and no intraset connec‐
tions. In other words in Graph 1, TV shows are only related to viewers, not other TV
shows, and viewers are likewise not directly linked to other viewers.

Starting from our bipartite graph of viewers and TV shows, we created two monopar‐
tite projections: Graph 2 of viewer connections based on shows in common, and
Graph 3 of TV shows based on viewers in common. We can also filter based on rela‐
tionship type, such as watched, rated, or reviewed.

Projecting monopartite graphs with inferred connections is an important part of
graph analysis. These types of projections help uncover indirect relationships and
qualities. For example, in Graph 2 in Figure 2-11, Bev and Ann have watched only
one TV show in common whereas Bev and Evan have two shows in common. In
Graph 3 we’ve weighted the relationships between the TV shows by the aggregated
views by viewers in common. This, or other metrics such as similarity, can be used to
infer meaning between activities like watching Battlestar Galactica and Firefly. That
can inform our recommendation for someone similar to Evan who, in Figure 2-11,
just finished watching the last episode of Firefly.

k-partite graphs reference the number of node types our data has (k). For example, if
we have three node types, we’d have a tripartite graph. This just extends bipartite and
monopartite concepts to account for more node types. Many real-world graphs, espe‐
cially knowledge graphs, have a large value for k, as they combine many different
concepts and types of information. An example of using a larger number of node
types is creating new recipes by mapping a recipe set to an ingredient set to a chemi‐
cal compound, and then deducing new mixes that connect popular preferences. We
could also reduce the number of nodes types by generalization, such as treating many
forms of a node, like spinach or collards, as just “leafy greens.”

Now that we’ve reviewed the types of graphs we’re most likely to work with, let’s learn
about the types of graph algorithms we’ll execute on those graphs.

Flavors of Graphs | 25

Figure 2-11. Bipartite graphs are often projected to monopartite graphs for more specific
analysis.

26 | Chapter 2: Graph Theory and Concepts

Types of Graph Algorithms
Let’s look into the three areas of analysis that are at the heart of graph algorithms.
These categories correspond to the chapters on algorithms for pathfinding and
search, centrality computation, and community detection.

Pathfinding
Paths are fundamental to graph analytics and algorithms, so this is where we’ll start
our chapters with specific algorithm examples. Finding shortest paths is probably the
most frequent task performed with graph algorithms and is a precursor for several
different types of analysis. The shortest path is the traversal route with the fewest
hops or lowest weight. If the graph is directed, then it’s the shortest path between two
nodes as allowed by the relationship directions.

Path Types
The average shortest path is used to consider the overall efficiency and resiliency of
networks, such as understanding the average distance between subway stations.
Sometimes we may also want to understand the longest optimized route for situations
such as determining which subway stations are the farthest apart or have the most
number of stops between them even when the best route is chosen. In this case, we’d
use the diameter of a graph to find the longest shortest path between all node pairs.

Centrality
Centrality is all about understanding which nodes are more important in a network.
But what do we mean by importance? There are different types of centrality algo‐
rithms created to measure different things, such as the ability to quickly spread infor‐
mation versus bridging distinct groups. In this book, we’ll focus on how nodes and
relationships are structured.

Community Detection
Connectedness is a core concept of graph theory that enables a sophisticated network
analysis such as finding communities. Most real-world networks exhibit substruc‐
tures (often quasi-fractal) of more or less independent subgraphs.

Connectivity is used to find communities and quantify the quality of groupings. Eval‐
uating different types of communities within a graph can uncover structures, like
hubs and hierarchies, and tendencies of groups to attract or repel others. These tech‐
niques are used to study emergent phenomena such as those that lead to echo cham‐
bers and filter bubble effects.

Types of Graph Algorithms | 27

Summary
Graphs are intuitive. They align with how we think about and draw systems. The pri‐
mary tenets of working with graphs can be quickly assimilated once we’ve unraveled
some of the terminology and layers. In this chapter we’ve explained the ideas and
expressions used later in this book and described flavors of graphs you’ll come across.

Graph Theory References
If you’re excited to learn more about graph theory itself, there are a few introductory
texts we recommend:

• Introduction to Graph Theory, by Richard J. Trudeau (Dover), is a very well writ‐
ten, gentle introduction.

• Introduction to Graph Theory, Fifth Ed., by Robin J. Wilson (Pearson), is a solid
introduction with good illustrations.

• Graph Theory and Its Applications, Third Ed., by Jonathan L. Gross, Jay Yellen,
and Mark Anderson (Chapman and Hall), assumes more mathematics back‐
ground and provides more detail and exercises.

Next, we’ll look at graph processing and types of analysis before diving into how to
use graph algorithms in Apache Spark and Neo4j.

28 | Chapter 2: Graph Theory and Concepts

CHAPTER 3

Graph Platforms and Processing

In this chapter, we’ll quickly cover different methods for graph processing and the
most common platform approaches. We’ll look more closely at the two platforms
used in this book, Apache Spark and Neo4j, and when they may be appropriate for
different requirements. Platform installation guidelines are included to prepare you
for the next several chapters.

Graph Platform and Processing Considerations
Graph analytical processing has unique qualities such as computation that is
structure-driven, globally focused, and difficult to parse. In this section we’ll look at
the general considerations for graph platforms and processing.

Platform Considerations
There’s debate as to whether it’s better to scale up or scale out graph processing.
Should you use powerful multicore, large-memory machines and focus on efficient
data structures and multithreaded algorithms? Or are investments in distributed pro‐
cessing frameworks and related algorithms worthwhile?

A useful evaluation approach is the Configuration that Outperforms a Single Thread
(COST), as described in the research paper “Scalability! But at What COST?” by F.
McSherry, M. Isard, and D. Murray. COST provides us with a way to compare a sys‐
tem’s scalability with the overhead the system introduces. The core concept is that a
well-configured system using an optimized algorithm and data structure can outper‐
form current general-purpose scale-out solutions. It’s a method for measuring perfor‐
mance gains without rewarding systems that mask inefficiencies through
parallelization. Separating the ideas of scalability and efficient use of resources will
help us build a platform configured explicitly for our needs.

29

Some approaches to graph platforms include highly integrated solutions that opti‐
mize algorithms, processing, and memory retrieval to work in tighter coordination.

Processing Considerations
There are different approaches for expressing data processing; for example, stream or
batch processing or the map-reduce paradigm for records-based data. However, for
graph data, there also exist approaches which incorporate the data dependencies
inherent in graph structures into their processing:

Node-centric
This approach uses nodes as processing units, having them accumulate and com‐
pute state and communicate state changes via messages to their neighbors. This
model uses the provided transformation functions for more straightforward
implementations of each algorithm.

Relationship-centric
This approach has similarities with the node-centric model but may perform bet‐
ter for subgraph and sequential analysis.

Graph-centric
These models process nodes within a subgraph independently of other subgraphs
while (minimal) communication to other subgraphs happens via messaging.

Traversal-centric
These models use the accumulation of data by the traverser while navigating the
graph as their means of computation.

Algorithm-centric
These approaches use various methods to optimize implementations per algo‐
rithm. This is a hybrid of the previous models.

Pregel is a node-centric, fault-tolerant parallel processing frame‐
work created by Google for performant analysis of large graphs.
Pregel is based on the bulk synchronous parallel (BSP) model. BSP
simplifies parallel programming by having distinct computation
and communication phases.
Pregel adds a node-centric abstraction atop BSP whereby algo‐
rithms compute values from incoming messages from each node’s
neighbors. These computations are executed once per iteration and
can update node values and send messages to other nodes. The
nodes can also combine messages for transmission during the
communication phase, which helpfully reduces the amount of net‐
work chatter. The algorithm completes when either no new mes‐
sages are sent or a set limit has been reached.

30 | Chapter 3: Graph Platforms and Processing

Most of these graph-specific approaches require the presence of the entire graph for
efficient cross-topological operations. This is because separating and distributing the
graph data leads to extensive data transfers and reshuffling between worker instances.
This can be difficult for the many algorithms that need to iteratively process the
global graph structure.

Representative Platforms
To address the requirements of graph processing, several platforms have emerged.
Traditionally there was a separation between graph compute engines and graph data‐
bases, which required users to move their data depending on their process needs:

Graph compute engines
These are read-only, nontransactional engines that focus on efficient execution of
iterative graph analytics and queries of the whole graph. Graph compute engines
support different definition and processing paradigms for graph algorithms, like
node-centric (e.g., Pregel, Gather-Apply-Scatter) or MapReduce-based
approaches (e.g., PACT). Examples of such engines are Giraph, GraphLab,
Graph-Engine, and Apache Spark.

Graph databases
From a transactional background, these focus on fast writes and reads using
smaller queries that generally touch a small fraction of a graph. Their strengths
are in operational robustness and high concurrent scalability for many users.

Selecting Our Platform
Choosing a production platform involves many considersations, such as the type of
analysis to be run, performance needs, the existing environment, and team preferen‐
ces. We use Apache Spark and Neo4j to showcase graph algorithms in this book
because they both offer unique advantages.

Spark is an example of a scale-out and node-centric graph compute engine. Its popu‐
lar computing framework and libraries support a variety of data science workflows.
Spark may be the right platform when our:

• Algorithms are fundamentally parallelizable or partitionable.
• Algorithm workflows need “multilingual” operations in multiple tools and lan‐

guages.
• Analysis can be run offline in batch mode.
• Graph analysis is on data not transformed into a graph format.
• Team needs and has the expertise to code and implement their own algorithms.
• Team uses graph algorithms infrequently.

Representative Platforms | 31

• Team prefers to keep all data and analysis within the Hadoop ecosystem.

The Neo4j Graph Platform is an example of a tightly integrated graph database and
algorithm-centric processing, optimized for graphs. It is popular for building graph-
based applications and includes a graph algorithms library tuned for its native graph
database. Neo4j may be the right platform when our:

• Algorithms are more iterative and require good memory locality.
• Algorithms and results are performance sensitive.
• Graph analysis is on complex graph data and/or requires deep path traversal.
• Analysis/results are integrated with transactional workloads.
• Results are used to enrich an existing graph.
• Team needs to integrate with graph-based visualization tools.
• Team prefers prepackaged and supported algorithms.

Finally, some organizations use both Neo4j and Spark for graph processing: Spark for
the high-level filtering and preprocessing of massive datasets and data integration,
and Neo4j for more specific processing and integration with graph-based applica‐
tions.

Apache Spark
Apache Spark (henceforth just Spark) is an analytics engine for large-scale data pro‐
cessing. It uses a table abstraction called a DataFrame to represent and process data in
rows of named and typed columns. The platform integrates diverse data sources and
supports languages such as Scala, Python, and R. Spark supports various analytics
libraries, as shown in Figure 3-1. Its memory-based system operates by using effi‐
ciently distributed compute graphs.

GraphFrames is a graph processing library for Spark that succeeded GraphX in 2016,
although it is separate from the core Apache Spark. GraphFrames is based on
GraphX, but uses DataFrames as its underlying data structure. GraphFrames has sup‐
port for the Java, Scala, and Python programming languages. In spring 2019, the
“Spark Graph: Property Graphs, Cypher Queries, and Algorithms” proposal was
accepted (see “Spark Graph Evolution” on page 33). We expect this to bring a number
of graph features using the DataFrame framework and Cypher query language into
the core Spark project. However, in this book our examples will be based on the
Python API (PySpark) because of its current popularity with Spark data scientists.

32 | Chapter 3: Graph Platforms and Processing

Figure 3-1. Spark is an open-source distributed and general-purpose clustercomputing
framework. It includes several modules for various workloads.

Spark Graph Evolution
The Spark Graph project is a joint initiative from Apache project contributors in
Databricks and Neo4j to bring support for DataFrames, Cypher, and DataFrames-
based algorithms into the core Apache Spark project as part of the 3.0 release.

Cypher started as a declarative graph query language implemented in Neo4j, but
through the openCypher project it’s now used by multiple database vendors and an
opensource project, Cypher for Apache Spark (CAPS).

In the very near future, we look forward to using CAPS to load and project graph
data as an integrated part of the Spark platform. We’ll publish Cypher examples after
the Spark Graph project is implemented.

This development does not impact the algorithms covered in this book but may add
new options to how procedures are called. The underlying data model, concepts, and
computation of graph algorithms will remain the same.

Nodes and relationships are represented as DataFrames with a unique ID for each
node and a source and destination node for each relationship. We can see an example
of a nodes DataFrame in Table 3-1 and a relationships DataFrame in Table 3-2. A
GraphFrame based on these DataFrames would have two nodes, JFK and SEA, and
one relationship, from JFK to SEA.

Table 3-1. Nodes DataFrame

id city state
JFK New York NY

SEA Seattle WA

Representative Platforms | 33

Table 3-2. Relationships DataFrame

src dst delay tripId
JFK SEA 45 1058923

The nodes DataFrame must have an id column—the value in this column is used to
uniquely identify each node. The relationships DataFrame must have src and dst
columns—the values in these columns describe which nodes are connected and
should refer to entries that appear in the id column of the nodes DataFrame.

The nodes and relationships DataFrames can be loaded using any of the DataFrame
data sources, including Parquet, JSON, and CSV. Queries are described using a com‐
bination of the PySpark API and Spark SQL.

GraphFrames also provides users with an extension point to implement algorithms
that aren’t available out of the box.

Installing Spark
You can download Spark from the Apache Spark website. Once you’ve downloaded it,
you need to install the following libraries to execute Spark jobs from Python:

pip install pyspark graphframes

You can then launch the pyspark REPL by executing the following command:

export SPARK_VERSION="spark-2.4.0-bin-hadoop2.7"
./${SPARK_VERSION}/bin/pyspark \
 --driver-memory 2g \
 --executor-memory 6g \
 --packages graphframes:graphframes:0.7.0-spark2.4-s_2.11

At the time of writing the latest released version of Spark is spark-2.4.0-bin-
hadoop2.7, but that may have changed by the time you read this. If so, be sure to
change the SPARK_VERSION environment variable appropriately.

Although Spark jobs should be executed on a cluster of machines,
for demonstration purposes we’re only going to execute the jobs on
a single machine. You can learn more about running Spark in pro‐
duction environments in Spark: The Definitive Guide, by Bill
Chambers and Matei Zaharia (O’Reilly).

You’re now ready to learn how to run graph algorithms on Spark.

Neo4j Graph Platform
The Neo4j Graph Platform supports transactional processing and analytical process‐
ing of graph data. It includes graph storage and compute with data management and

34 | Chapter 3: Graph Platforms and Processing

analytics tooling. The set of integrated tools sits on top of a common protocol, API,
and query language (Cypher) to provide effective access for different uses, as shown
in Figure 3-2.

Figure 3-2. The Neo4j Graph Platform is built around a native graph database that sup‐
ports transactional applications and graph analytics.

In this book, we’ll be using the Neo4j Graph Algorithms library. The library is
installed as a plug-in alongside the database and provides a set of user-defined proce‐
dures that can be executed via the Cypher query language.

The graph algorithm library includes parallel versions of algorithms supporting
graph analytics and machine learning workflows. The algorithms are executed on top
of a task -based parallel computation framework and are optimized for the Neo4j
platform. For different graph sizes there are internal implementations that scale up to
tens of billions of nodes and relationships.

Results can be streamed to the client as a tuples stream and tabular results can be
used as a driving table for further processing. Results can also be optionally written
back to the database efficiently as node properties or relationship types.

In this book, we’ll also be using the Neo4j Awesome Procedures on
Cypher (APOC) library. APOC consists of more than 450 proce‐
dures and functions to help with common tasks such as data inte‐
gration, data conversion, and model refactoring.

Representative Platforms | 35

Installing Neo4j
Neo4j Desktop is a convenient way for developers to work with local Neo4j databases.
It can be downloaded from the Neo4j website. The graph algorithms and APOC
libraries can be installed as plug-ins once you’ve installed and launched the Neo4j
Desktop. In the lefthand menu, create a project and select it. Then click Manage on
the database where you want to install the plug-ins. On the Plugins tab, you’ll see
options for several plug-ins. Click the Install button for graph algorithms and APOC.
See Figures 3-3 and 3-4.

Figure 3-3. Installing the graph algorithms library

36 | Chapter 3: Graph Platforms and Processing

Figure 3-4. Installing the APOC library

Jennifer Reif explains the installation process in more detail in her blog post “Explore
New Worlds—Adding Plugins to Neo4j”. You’re now ready to learn how to run graph
algorithms in Neo4j.

Summary
In the previous chapters we’ve described why graph analytics is important to studying
real-world networks and looked at fundamental graph concepts, analysis, and pro‐
cessing. This puts us on solid footing for understanding how to apply graph algo‐
rithms. In the next chapters, we’ll discover how to run graph algorithms with
examples in Spark and Neo4j.

Summary | 37

CHAPTER 4

Pathfinding and Graph Search Algorithms

Graph search algorithms explore a graph either for general discovery or explicit
search. These algorithms carve paths through the graph, but there is no expectation
that those paths are computationally optimal. We will cover Breadth First Search and
Depth First Search because they are fundamental for traversing a graph and are often
a required first step for many other types of analysis.

Pathfinding algorithms build on top of graph search algorithms and explore routes
between nodes, starting at one node and traversing through relationships until the
destination has been reached. These algorithms are used to identify optimal routes
through a graph for uses such as logistics planning, least cost call or IP routing, and
gaming simulation.

Specifically, the pathfinding algorithms we’ll cover are:

• Shortest Path, with two useful variations (A* and Yen’s): finding the shortest path
or paths between two chosen nodes

• All Pairs Shortest Path and Single Source Shortest Path: for finding the shortest
paths between all pairs or from a chosen node to all others

• Minimum Spanning Tree: for finding a connected tree structure with the smallest
cost for visiting all nodes from a chosen node

• Random Walk: because it’s a useful preprocessing/sampling step for machine
learning workflows and other graph algorithms

In this chapter we’ll explain how these algorithms work and show examples in Spark
and Neo4j. In cases where an algorithm is only available in one platform, we’ll pro‐
vide just that one example or illustrate how you can customize our implementation.

39

Figure 4-1 shows the key differences between these types of algorithms, and Table 4-1
is a quick reference to what each algorithm computes with an example use.

Figure 4-1. Pathfinding and search algorithms

40 | Chapter 4: Pathfinding and Graph Search Algorithms

Table 4-1. Overview of pathfinding and graph search algorithms

Algorithm type What it does Example use Spark
example

Neo4j
example

Breadth First Search Traverses a tree structure by fanning
out to explore the nearest neighbors
and then their sublevel neighbors

Locating neighbor nodes in
GPS systems to identify
nearby places of interest

Yes No

Depth First Search Traverses a tree structure by exploring
as far as possible down each branch
before backtracking

Discovering an optimal
solution path in gaming
simulations with
hierarchical choices

No No

Shortest Path
Variations: A*, Yen’s

Calculates the shortest path between a
pair of nodes

Finding driving directions
between two locations

Yes Yes

All Pairs Shortest Path Calculates the shortest path between
all pairs of nodes in the graph

Evaluating alternate routes
around a traffic jam

Yes Yes

Single Source Shortest Path Calculates the shorest path between a
single root node and all other nodes

Least cost routing of phone
calls

Yes Yes

Minimum Spanning Tree Calculates the path in a connected tree
structure with the smallest cost for
visiting all nodes

Optimizing connected
routing, such as laying cable
or garbage collection

No Yes

Random Walk Returns a list of nodes along a path of
specified size by randomly choosing
relationships to traverse.

Augmenting training for
machine learning or data for
graph algorithms.

No Yes

First we’ll take a look at the dataset for our examples and walk through how to import
the data into Apache Spark and Neo4j. For each algorithm, we’ll start with a short
description of the algorithm and any pertinent information on how it operates. Most
sections also include guidance on when to use related algorithms. Finally, we provide
working sample code using the sample dataset at the end of each algorithm section.

Let’s get started!

Example Data: The Transport Graph
All connected data contains paths between nodes, which is why search and pathfind‐
ing are the starting points for graph analytics. Transportation datasets illustrate these
relationships in an intuitive and accessible way. The examples in this chapter run
against a graph containing a subset of the European road network. You can download
the nodes and relationships files from the book’s GitHub repository.

Table 4-2. transport-nodes.csv

id latitude longitude population
Amsterdam 52.379189 4.899431 821752

Example Data: The Transport Graph | 41

id latitude longitude population
Utrecht 52.092876 5.104480 334176

Den Haag 52.078663 4.288788 514861

Immingham 53.61239 -0.22219 9642

Doncaster 53.52285 -1.13116 302400

Hoek van Holland 51.9775 4.13333 9382

Felixstowe 51.96375 1.3511 23689

Ipswich 52.05917 1.15545 133384

Colchester 51.88921 0.90421 104390

London 51.509865 -0.118092 8787892

Rotterdam 51.9225 4.47917 623652

Gouda 52.01667 4.70833 70939

Table 4-3. transport-relationships.csv

src dst relationship cost
Amsterdam Utrecht EROAD 46

Amsterdam Den Haag EROAD 59

Den Haag Rotterdam EROAD 26

Amsterdam Immingham EROAD 369

Immingham Doncaster EROAD 74

Doncaster London EROAD 277

Hoek van Holland Den Haag EROAD 27

Felixstowe Hoek van Holland EROAD 207

Ipswich Felixstowe EROAD 22

Colchester Ipswich EROAD 32

London Colchester EROAD 106

Gouda Rotterdam EROAD 25

Gouda Utrecht EROAD 35

Den Haag Gouda EROAD 32

Hoek van Holland Rotterdam EROAD 33

Figure 4-2 shows the target graph that we want to construct.

42 | Chapter 4: Pathfinding and Graph Search Algorithms

Figure 4-2. The transport graph

For simplicity we consider the graph in Figure 4-2 to be undirected because most
roads between cities are bidirectional. We’d get slightly different results if we evalu‐
ated the graph as directed because of the small number of one-way streets, but the
overall approach remains similar. However, both Spark and Neo4j operate on direc‐
ted graphs. In cases like this where we want to work with undirected graphs (e.g.,
bidirectional roads), there is an easy way to accomplish that:

• For Spark, we’ll create two relationships for each row in transport-
relationships.csv—one going from dst to src and one from src to dst.

• For Neo4j, we’ll create a single relationship and then ignore the relationship
direction when we run the algorithms.

Having understood those little modeling workarounds, we can now get on with load‐
ing graphs into Spark and Neo4j from the example CSV files.

Importing the Data into Apache Spark
Starting with Spark, we’ll first import the packages we need from Spark and the
GraphFrames package:

from pyspark.sql.types import *
from graphframes import *

Example Data: The Transport Graph | 43

The following function creates a GraphFrame from the example CSV files:

def create_transport_graph():
 node_fields = [
 StructField("id", StringType(), True),
 StructField("latitude", FloatType(), True),
 StructField("longitude", FloatType(), True),
 StructField("population", IntegerType(), True)
]
 nodes = spark.read.csv("data/transport-nodes.csv", header=True,
 schema=StructType(node_fields))

 rels = spark.read.csv("data/transport-relationships.csv", header=True)
 reversed_rels = (rels.withColumn("newSrc", rels.dst)
 .withColumn("newDst", rels.src)
 .drop("dst", "src")
 .withColumnRenamed("newSrc", "src")
 .withColumnRenamed("newDst", "dst")
 .select("src", "dst", "relationship", "cost"))

 relationships = rels.union(reversed_rels)

 return GraphFrame(nodes, relationships)

Loading the nodes is easy, but for the relationships we need to do a little preprocess‐
ing so that we can create each relationship twice.

Now let’s call that function:

g = create_transport_graph()

Importing the Data into Neo4j
Now for Neo4j. We’ll start by loading the nodes:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data" AS base
WITH base + "transport-nodes.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MERGE (place:Place {id:row.id})
SET place.latitude = toFloat(row.latitude),
 place.longitude = toFloat(row.latitude),
 place.population = toInteger(row.population)

And now the relationships:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "transport-relationships.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MATCH (origin:Place {id: row.src})
MATCH (destination:Place {id: row.dst})
MERGE (origin)-[:EROAD {distance: toInteger(row.cost)}]->(destination)

Although we’re storing directed relationships, we’ll ignore the direction when we exe‐
cute algorithms later in the chapter.

44 | Chapter 4: Pathfinding and Graph Search Algorithms

Breadth First Search
Breadth First Search (BFS) is one of the fundamental graph traversal algorithms. It
starts from a chosen node and explores all of its neighbors at one hop away before
visiting all the neighbors at two hops away, and so on.

The algorithm was first published in 1959 by Edward F. Moore, who used it to find
the shortest path out of a maze. It was then developed into a wire routing algorithm
by C. Y. Lee in 1961, as described in “An Algorithm for Path Connections and Its
Applications”.

BFS is most commonly used as the basis for other more goal-oriented algorithms. For
example, Shortest Path, Connected Components, and Closeness Centrality all use the
BFS algorithm. It can also be used to find the shortest path between nodes.

Figure 4-3 shows the order in which we would visit the nodes of our transport graph
if we were performing a breadth first search that started from the Dutch city, Den
Haag (in English, The Hague). The numbers next to the city name indicate the order
in which each node is visited.

Breadth First Search | 45

Figure 4-3. Breadth First Search starting from Den Haag. Node numbers indicate the
order traversed.

We first visit all of Den Haag’s direct neighbors, before visiting their neighbors, and
their neighbors’ neighbors, until we’ve run out of relationships to traverse.

Breadth First Search with Apache Spark
Spark’s implementation of the Breadth First Search algorithm finds the shortest path
between two nodes by the number of relationships (i.e., hops) between them. You can
explicitly name your target node or add criteria to be met.

46 | Chapter 4: Pathfinding and Graph Search Algorithms

For example, we can use the bfs function to find the first medium-sized (by Euro‐
pean standards) city that has a population of between 100,000 and 300,000 people.
Let’s first check which places have a population matching those criteria:

(g.vertices
 .filter("population > 100000 and population < 300000")
 .sort("population")
 .show())

This is the output we’ll see:

id latitude longitude population
Colchester 51.88921 0.90421 104390

Ipswich 52.05917 1.15545 133384

There are only two places matching our criteria, and we’d expect to reach Ipswich first
based on a breadth first search.

The following code finds the shortest path from Den Haag to a medium-sized city:

from_expr = "id='Den Haag'"
to_expr = "population > 100000 and population < 300000 and id <> 'Den Haag'"
result = g.bfs(from_expr, to_expr)

result contains columns that describe the nodes and relationships between the two
cities. We can run the following code to see the list of columns returned:

print(result.columns)

This is the output we’ll see:

['from', 'e0', 'v1', 'e1', 'v2', 'e2', 'to']

Columns beginning with e represent relationships (edges) and columns beginning
with v represent nodes (vertices). We’re only interested in the nodes, so let’s filter out
any columns that begin with e from the resulting DataFrame:

columns = [column for column in result.columns if not column.startswith("e")]
result.select(columns).show()

If we run the code in pyspark we’ll see this output:

from v1 v2 to
[Den Haag, 52.078… [Hoek van Holland… [Felixstowe, 51.9… [Ipswich, 52.0591…

As expected, the bfs algorithm returns Ipswich! Remember that this function is satis‐
fied when it finds the first match, and as you can see in Figure 4-3, Ipswich is evalu‐
ated before Colchester.

Breadth First Search | 47

Depth First Search
Depth First Search (DFS) is the other fundamental graph traversal algorithm. It starts
from a chosen node, picks one of its neighbors, and then traverses as far as it can
along that path before backtracking.

DFS was originally invented by French mathematician Charles Pierre Trémaux as a
strategy for solving mazes. It provides a useful tool to simulate possible paths for sce‐
nario modeling.

Figure 4-4 shows the order in which we would visit the nodes of our transport graph
if we were performing a DFS that started from Den Haag.

Figure 4-4. Depth First Search starting from Den Haag. Node numbers indicate the
order traversed.

Notice how different the node order is compared to BFS. For this DFS, we start by
traversing from Den Haag to Amsterdam, and are then able to get to every other
node in the graph without needing to backtrack at all!

We can see how search algorithms lay the groundwork for moving through graphs.
Now let’s look at the pathfinding algorithms that find the cheapest path in terms of
the number of hops or weight. Weights can be anything measured, such as time, dis‐
tance, capacity, or cost.

48 | Chapter 4: Pathfinding and Graph Search Algorithms

Two Special Paths/Cycles
There are two special paths in graph analysis that are worth noting. First, an Eulerian
path is one where every relationship is visited exactly once. Second, a Hamiltonian
path is one where every node is visited exactly once. A path can be both Eulerian and
Hamiltonian, and if you start and finish at the same node it’s considered a cycle or
tour. A visual comparison is shown in Figure 4-5.

Figure 4-5. Eulerian and Hamiltonian cycles have a special historical significance.

The Königsberg bridges problem from Chapter 1 was searching for an Eulerian cycle.
It’s easy to see how this applies to routing scenarios such as directing snowplows and
mail delivery. However, Eulerian paths are also used by other algorithms in process‐
ing data in tree structures and are simpler mathematically to study than other cycles.

The Hamiltonian cycle is best known from its relation to the Traveling Salesman Prob‐
lem (TSP), which asks, “What’s the shortest possible route for a salesperson to visit
each of their assigned cities and return to the origin city?” Although seemingly simi‐
lar to an Eulerian tour, the TSP is computationally more intensive with approxima‐
tion alternatives. It’s used in a wide variety of planning, logistics, and optimization
problems.

Shortest Path
The Shortest Path algorithm calculates the shortest (weighted) path between a pair of
nodes. It’s useful for user interactions and dynamic workflows because it works in real
time.

Shortest Path | 49

Pathfinding has a history dating back to the 19th century and is considered to be a
classic graph problem. It gained prominence in the early 1950s in the context of alter‐
nate routing; that is, finding the second-shortest route if the shortest route is blocked.
In 1956, Edsger Dijkstra created the best-known of these algorithms.

Dijkstra’s Shortest Path algorithm operates by first finding the lowest-weight relation‐
ship from the start node to directly connected nodes. It keeps track of those weights
and moves to the “closest” node. It then performs the same calculation, but now as a
cumulative total from the start node. The algorithm continues to do this, evaluating a
“wave” of cumulative weights and always choosing the lowest weighted cumulative
path to advance along, until it reaches the destination node.

You’ll notice in graph analytics the use of the terms weight, cost,
distance, and hop when describing relationships and paths.
“Weight” is the numeric value of a particular property of a relation‐
ship. “Cost” is used similarly, but we’ll see it more often when con‐
sidering the total weight of a path.
“Distance” is often used within an algorithm as the name of the
relationship property that indicates the cost of traversing between a
pair of nodes. It’s not required that this be an actual physical meas‐
ure of distance. “Hop” is commonly used to express the number of
relationships between two nodes. You may see some of these terms
combined, as in “It’s a five-hop distance to London” or “That’s the
lowest cost for the distance.”

When Should I Use Shortest Path?
Use Shortest Path to find optimal routes between a pair of nodes, based on either the
number of hops or any weighted relationship value. For example, it can provide real-
time answers about degrees of separation, the shortest distance between points, or the
least expensive route. You can also use this algorithm to simply explore the connec‐
tions between particular nodes.

Example use cases include:

• Finding directions between locations. Web-mapping tools such as Google Maps
use the Shortest Path algorithm, or a close variant, to provide driving directions.

• Finding the degrees of separation between people in social networks. For exam‐
ple, when you view someone’s profile on LinkedIn, it will indicate how many
people separate you in the graph, as well as listing your mutual connections.

• Finding the number of degrees of separation between an actor and Kevin Bacon
based on the movies they’ve appeared in (the Bacon Number). An example of this
can be seen on the Oracle of Bacon website. The Erdös Number Project provides

50 | Chapter 4: Pathfinding and Graph Search Algorithms

a similar graph analysis based on collaboration with Paul Erdös, one of the most
prolific mathematicians of the twentieth century.

Dijkstra’s algorithm does not support negative weights. The algo‐
rithm assumes that adding a relationship to a path can never make
a path shorter—an invariant that would be violated with negative
weights.

Shortest Path with Neo4j
The Neo4j Graph Algorithms library has a built-in procedure that we can use to com‐
pute both unweighted and weighted shortest paths. Let’s first learn how to compute
unweighted shortest paths.

All of Neo4j’s Shortest Path algorithms assume that the underlying
graph is undirected. You can override this by passing in the param‐
eter direction: "OUTGOING" or direction: "INCOMING".

To have Neo4j’s Shortest Path algorithm ignore weights we need to pass null as the
third parameter to the procedure, which indicates that we don’t want to consider a
weight property when executing the algorithm. The algorithm will then assume a
default weight of 1.0 for each relationship:

MATCH (source:Place {id: "Amsterdam"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.stream(source, destination, null)
YIELD nodeId, cost
RETURN algo.getNodeById(nodeId).id AS place, cost

This query returns the following output:

place cost
Amsterdam 0.0

Immingham 1.0

Doncaster 2.0

London 3.0

Here the cost is the cumulative total for relationships (or hops). This is the same path
as we see using Breadth First Search in Spark.

Shortest Path | 51

We could even work out the total distance of following this path by writing a bit of
postprocessing Cypher. The following procedure calculates the shortest unweighted
path and then works out what the actual cost of that path would be:

MATCH (source:Place {id: "Amsterdam"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.stream(source, destination, null)
YIELD nodeId, cost

WITH collect(algo.getNodeById(nodeId)) AS path
UNWIND range(0, size(path)-1) AS index
WITH path[index] AS current, path[index+1] AS next
WITH current, next, [(current)-[r:EROAD]-(next) | r.distance][0] AS distance

WITH collect({current: current, next:next, distance: distance}) AS stops
UNWIND range(0, size(stops)-1) AS index
WITH stops[index] AS location, stops, index
RETURN location.current.id AS place,
 reduce(acc=0.0,
 distance in [stop in stops[0..index] | stop.distance] |
 acc + distance) AS cost

If the previous code feels a bit unwieldy, notice that the tricky part is figuring out how
to massage the data to include the cost over the whole journey. This is helpful to keep
in mind when we need the cumulative path cost.

The query returns the following result:

place cost
Amsterdam 0.0

Immingham 369.0

Doncaster 443.0

London 720.0

Figure 4-6 shows the unweighted shortest path from Amsterdam to London, routing
us through the fewest number of cities. It has a total cost of 720 km.

52 | Chapter 4: Pathfinding and Graph Search Algorithms

Figure 4-6. The unweighted shortest path between Amsterdam and London

Choosing a route with the fewest number of nodes visited might be very useful in sit‐
uations such as subway systems, where less stops are highly desirable. However, in a
driving scenario, we’re probably more interested in the total cost using the shortest
weighted path.

Shortest Path (Weighted) with Neo4j
We can execute the Weighted Shortest Path algorithm to find the shortest path
between Amsterdam and London like this:

MATCH (source:Place {id: "Amsterdam"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.stream(source, destination, "distance")
YIELD nodeId, cost
RETURN algo.getNodeById(nodeId).id AS place, cost

The parameters passed to this algorithm are:

source

The node where our shortest path search begins

destination

The node where our shortest path ends

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes

The cost is the number of kilometers between two locations. The query returns the
following result:

place cost
Amsterdam 0.0

Shortest Path | 53

place cost
Den Haag 59.0

Hoek van Holland 86.0

Felixstowe 293.0

Ipswich 315.0

Colchester 347.0

London 453.0

The quickest route takes us via Den Haag, Hoek van Holland, Felixstowe, Ipswich,
and Colchester! The cost shown is the cumulative total as we progress through the
cities. First we go from Amsterdam to Den Haag, at a cost of 59. Then we go from
Den Haag to Hoek van Holland, at a cumulative cost of 86—and so on. Finally, we
arrive in London, from Colchester, for a total cost of 453 km.

Remember that the unweighted shortest path had a total cost of 720 km, so we’ve
been able to save 267 km by taking weights into account when computing the shortest
path.

Shortest Path (Weighted) with Apache Spark
In the Breadth First Search with Apache Spark section we learned how to find the
shortest path between two nodes. That shortest path was based on hops and therefore
isn’t the same as the shortest weighted path, which would tell us the shortest total dis‐
tance between cities.

If we want to find the shortest weighted path (in this case, distance) we need to use
the cost property, which is used for various types of weighting. This option is not
available out of the box with GraphFrames, so we need to write our own version of
Weighted Shortest Path using its aggregateMessages framework. Most of our algo‐
rithm examples for Spark use the simpler process of calling on algorithms from the
library, but we have the option of writing our own functions. More information on
aggregateMessages can be found in the “Message passing via AggregateMessages”
section of the GraphFrames user guide.

When available, we recommend leveraging preexisting, tested
libraries. Writing our own functions, especially for more compli‐
cated algorithms, requires a deeper understanding of our data and
calculations.
The following example should be treated as a reference implemen‐
tation, and would need to be optimized before running on a larger
dataset. Those that aren’t interested in writing their own functions
can skip this example.

54 | Chapter 4: Pathfinding and Graph Search Algorithms

Before we create our function, we’ll import some libraries that we’ll use:

from graphframes.lib import AggregateMessages as AM
from pyspark.sql import functions as F

The Aggregate_Messages module is part of the GraphFrames library and contains
some useful helper functions.

Now let’s write our function. We first create a user-defined function that we’ll use to
build the paths between our source and destination:

add_path_udf = F.udf(lambda path, id: path + [id], ArrayType(StringType()))

And now for the main function, which calculates the shortest path starting from an
origin and returns as soon as the destination has been visited:

def shortest_path(g, origin, destination, column_name="cost"):
 if g.vertices.filter(g.vertices.id == destination).count() == 0:
 return (spark.createDataFrame(sc.emptyRDD(), g.vertices.schema)
 .withColumn("path", F.array()))

 vertices = (g.vertices.withColumn("visited", F.lit(False))
 .withColumn("distance", F.when(g.vertices["id"] == origin, 0)
 .otherwise(float("inf")))
 .withColumn("path", F.array()))
 cached_vertices = AM.getCachedDataFrame(vertices)
 g2 = GraphFrame(cached_vertices, g.edges)

 while g2.vertices.filter('visited == False').first():
 current_node_id = g2.vertices.filter('visited == False').sort
 ("distance").first().id

 msg_distance = AM.edge[column_name] + AM.src['distance']
 msg_path = add_path_udf(AM.src["path"], AM.src["id"])
 msg_for_dst = F.when(AM.src['id'] == current_node_id,
 F.struct(msg_distance, msg_path))
 new_distances = g2.aggregateMessages(F.min(AM.msg).alias("aggMess"),
 sendToDst=msg_for_dst)

 new_visited_col = F.when(
 g2.vertices.visited | (g2.vertices.id == current_node_id),
 True).otherwise(False)
 new_distance_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"]
 < g2.vertices.distance),
 new_distances.aggMess["col1"])
 .otherwise(g2.vertices.distance)
 new_path_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"]
 < g2.vertices.distance), new_distances.aggMess["col2"]
 .cast("array<string>")).otherwise(g2.vertices.path)

 new_vertices = (g2.vertices.join(new_distances, on="id",

Shortest Path | 55

 how="left_outer")
 .drop(new_distances["id"])
 .withColumn("visited", new_visited_col)
 .withColumn("newDistance", new_distance_col)
 .withColumn("newPath", new_path_col)
 .drop("aggMess", "distance", "path")
 .withColumnRenamed('newDistance', 'distance')
 .withColumnRenamed('newPath', 'path'))
 cached_new_vertices = AM.getCachedDataFrame(new_vertices)
 g2 = GraphFrame(cached_new_vertices, g2.edges)
 if g2.vertices.filter(g2.vertices.id == destination).first().visited:
 return (g2.vertices.filter(g2.vertices.id == destination)
 .withColumn("newPath", add_path_udf("path", "id"))
 .drop("visited", "path")
 .withColumnRenamed("newPath", "path"))
 return (spark.createDataFrame(sc.emptyRDD(), g.vertices.schema)
 .withColumn("path", F.array()))

If we store references to any DataFrames in our functions, we need
to cache them using the AM.getCachedDataFrame function or we’ll
encounter a memory leak during execution. In the shortest_path
function we use this function to cache the vertices and new_verti
ces DataFrames.

If we wanted to find the shortest path between Amsterdam and Colchester we could
call that function like so:

result = shortest_path(g, "Amsterdam", "Colchester", "cost")
result.select("id", "distance", "path").show(truncate=False)

which would return the following result:

id distance path
Colchester 347.0 [Amsterdam, Den Haag, Hoek van Holland, Felixstowe, Ipswich, Colchester]

The total distance of the shortest path between Amsterdam and Colchester is 347 km
and takes us via Den Haag, Hoek van Holland, Felixstowe, and Ipswich. By contrast,
the shortest path in terms of number of relationships between the locations, which we
worked out with the Breadth First Search algorithm (refer back to Figure 4-4), would
take us via Immingham, Doncaster, and London.

Shortest Path Variation: A*
The A* Shortest Path algorithm improves on Dijkstra’s by finding shortest paths more
quickly. It does this by allowing the inclusion of extra information that the algorithm
can use, as part of a heuristic function, when determining which paths to explore
next.

56 | Chapter 4: Pathfinding and Graph Search Algorithms

The algorithm was invented by Peter Hart, Nils Nilsson, and Bertram Raphael and
described in their 1968 paper “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”.

The A* algorithm operates by determining which of its partial paths to expand at
each iteration of its main loop. It does so based on an estimate of the cost (heuristic)
still left to reach the goal node.

Be thoughtful in the heuristic employed to estimate path costs.
Underestimating path costs may unnecessarily include some paths
that could have been eliminated, but the results will still be accu‐
rate. However, if the heuristic overestimates path costs, it may skip
over actual shorter paths (incorrectly estimated to be longer) that
should have been evaluated, which can lead to inaccurate results.

A* selects the path that minimizes the following function:

`f(n) = g(n) + h(n)`

where:

• g(n) is the cost of the path from the starting point to node n.
• h(n) is the estimated cost of the path from node n to the destination node, as

computed by a heuristic.

In Neo4j’s implementation, geospatial distance is used as the heu‐
ristic. In our example transportation dataset we use the latitude and
longitude of each location as part of the heuristic function.

A* with Neo4j
The following query executes the A* algorithm to find the shortest path between Den
Haag and London:

MATCH (source:Place {id: "Den Haag"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.astar.stream(source,
 destination, "distance", "latitude", "longitude")
YIELD nodeId, cost
RETURN algo.getNodeById(nodeId).id AS place, cost

The parameters passed to this algorithm are:

source

The node where our shortest path search begins.

Shortest Path | 57

destination

The node where our shortest path search ends.

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes. The cost is the number of kilometers between two loca‐
tions.

latitude

The name of the node property used to represent the latitude of each node as part
of the geospatial heuristic calculation.

longitude

The name of the node property used to represent the longitude of each node as
part of the geospatial heuristic calculation.

Running this procedure gives the following result:

place cost
Den Haag 0.0

Hoek van Holland 27.0

Felixstowe 234.0

Ipswich 256.0

Colchester 288.0

London 394.0

We’d get the same result using the Shortest Path algorithm, but on more complex
datasets the A* algorithm will be faster as it evaluates fewer paths.

Shortest Path Variation: Yen’s k-Shortest Paths
Yen’s k-Shortest Paths algorithm is similar to the Shortest Path algorithm, but rather
than finding just the shortest path between two pairs of nodes, it also calculates the
second shortest path, third shortest path, and so on up to k-1 deviations of shortest
paths.

Jin Y. Yen invented the algorithm in 1971 and described it in “Finding the K Shortest
Loopless Paths in a Network”. This algorithm is useful for getting alternative paths
when finding the absolute shortest path isn’t our only goal. It can be particularly help‐
ful when we need more than one backup plan!

Yen’s with Neo4j
The following query executes Yen’s algorithm to find the shortest paths between
Gouda and Felixstowe:

58 | Chapter 4: Pathfinding and Graph Search Algorithms

MATCH (start:Place {id:"Gouda"}),
 (end:Place {id:"Felixstowe"})
CALL algo.kShortestPaths.stream(start, end, 5, "distance")
YIELD index, nodeIds, path, costs
RETURN index,
 [node in algo.getNodesById(nodeIds[1..-1]) | node.id] AS via,
 reduce(acc=0.0, cost in costs | acc + cost) AS totalCost

The parameters passed to this algorithm are:

start

The node where our shortest path search begins.

end

The node where our shortest path search ends.

5

The maximum number of shortest paths to find.

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes. The cost is the number of kilometers between two loca‐
tions.

After we get back the shortest paths we look up the associated node for each node ID,
and then we filter out the start and end nodes from the collection.

Running this procedure gives the following result:

index via totalCost
0 [Rotterdam, Hoek van Holland] 265.0

1 [Den Haag, Hoek van Holland] 266.0

2 [Rotterdam, Den Haag, Hoek van Holland] 285.0

3 [Den Haag, Rotterdam, Hoek van Holland] 298.0

4 [Utrecht, Amsterdam, Den Haag, Hoek van Holland] 374.0

Figure 4-7 shows the shortest path between Gouda and Felixstowe.

Figure 4-7. The shortest path between Gouda and Felixstowe

Shortest Path | 59

The shortest path in Figure 4-7 is interesting in comparison to the results ordered by
total cost. It illustrates that sometimes you may want to consider several shortest
paths or other parameters. In this example, the second-shortest route is only 1 km
longer than the shortest one. If we prefer the scenery, we might choose the slightly
longer route.

All Pairs Shortest Path
The All Pairs Shortest Path (APSP) algorithm calculates the shortest (weighted) path
between all pairs of nodes. It’s more efficient than running the Single Source Shortest
Path algorithm for every pair of nodes in the graph.

APSP optimizes operations by keeping track of the distances calculated so far and
running on nodes in parallel. Those known distances can then be reused when calcu‐
lating the shortest path to an unseen node. You can follow the example in the next
section to get a better understanding of how the algorithm works.

Some pairs of nodes might not be reachable from each other, which
means that there is no shortest path between these nodes. The algo‐
rithm doesn’t return distances for these pairs of nodes.

A Closer Look at All Pairs Shortest Path
The calculation for APSP is easiest to understand when you follow a sequence of
operations. The diagram in Figure 4-8 walks through the steps for node A.

60 | Chapter 4: Pathfinding and Graph Search Algorithms

Figure 4-8. The steps to calculate the shortest path from node A to all other nodes, with
updates shaded.

Initially the algorithm assumes an infinite distance to all nodes. When a start node is
selected, then the distance to that node is set to 0. The calculation then proceeds as
follows:

1. From start node A we evaluate the cost of moving to the nodes we can reach and
update those values. Looking for the smallest value, we have a choice of B (cost of
3) or C (cost of 1). C is selected for the next phase of traversal.

2. Now from node C, the algorithm updates the cumulative distances from A to
nodes that can be reached directly from C. Values are only updated when a lower
cost has been found:

A=0, B=3, C=1, D=8, E=∞

3. Then B is selected as the next closest node that hasn’t already been visited. It has
relationships to nodes A, D, and E. The algorithm works out the distance to those
nodes by summing the distance from A to B with the distance from B to each of
those nodes. Note that the lowest cost from the start node A to the current node
is always preserved as a sunk cost. The distance (d) calculation results:

d(A,A) = d(A,B) + d(B,A) = 3 + 3 = 6
d(A,D) = d(A,B) + d(B,D) = 3 + 3 = 6
d(A,E) = d(A,B) + d(B,E) = 3 + 1 = 4

All Pairs Shortest Path | 61

• In this step the distance from node A to B and back to A, shown as d(A,A) = 6,
is greater than the shortest distance already computed (0), so its value is not
updated.

• The distances for nodes D (6) and E (4) are less than the previously calculated
distances, so their values are updated.

4. E is selected next. Only the cumulative total for reaching D (5) is now lower, and
therefore it is the only one updated.

5. When D is finally evaluated, there are no new minimum path weights; nothing is
updated, and the algorithm terminates.

Even though the All Pairs Shortest Path algorithm is optimized to
run calculations in parallel for each node, this can still add up for a
very large graph. Consider using a subgraph if you only need to
evaluate paths between a subcategory of nodes.

When Should I Use All Pairs Shortest Path?
All Pairs Shortest Path is commonly used for understanding alternate routing when
the shortest route is blocked or becomes suboptimal. For example, this algorithm is
used in logical route planning to ensure the best multiple paths for diversity routing.
Use All Pairs Shortest Path when you need to consider all possible routes between all
or most of your nodes.

Example use cases include:

• Optimizing the location of urban facilities and the distribution of goods. One
example of this is determining the traffic load expected on different segments of a
transportation grid. For more information, see R. C. Larson and A. R. Odoni’s
book, Urban Operations Research (Prentice-Hall).

• Finding a network with maximum bandwidth and minimal latency as part of a
data center design algorithm. There are more details about this approach in the
paper “REWIRE: An Optimization-Based Framework for Data Center Network
Design”, by A. R. Curtis et al.

All Pairs Shortest Path with Apache Spark
Spark’s shortestPaths function is designed for finding the shortest paths from all
nodes to a set of nodes called landmarks. If we wanted to find the shortest path from
every location to Colchester, Immingham, and Hoek van Holland, we would write the
following query:

62 | Chapter 4: Pathfinding and Graph Search Algorithms

result = g.shortestPaths(["Colchester", "Immingham", "Hoek van Holland"])
result.sort(["id"]).select("id", "distances").show(truncate=False)

If we run that code in pyspark we’ll see this output:

id distances
Amsterdam [Immingham → 1, Hoek van Holland → 2, Colchester → 4]

Colchester [Colchester → 0, Hoek van Holland → 3, Immingham → 3]

Den Haag [Hoek van Holland → 1, Immingham → 2, Colchester → 4]

Doncaster [Immingham → 1, Colchester → 2, Hoek van Holland → 4]

Felixstowe [Hoek van Holland → 1, Colchester → 2, Immingham → 4]

Gouda [Hoek van Holland → 2, Immingham → 3, Colchester → 5]

Hoek van Holland [Hoek van Holland → 0, Immingham → 3, Colchester → 3]

Immingham [Immingham → 0, Colchester → 3, Hoek van Holland → 3]

Ipswich [Colchester → 1, Hoek van Holland → 2, Immingham → 4]

London [Colchester → 1, Immingham → 2, Hoek van Holland → 4]

Rotterdam [Hoek van Holland → 1, Immingham → 3, Colchester → 4]

Utrecht [Immingham → 2, Hoek van Holland → 3, Colchester → 5]

The number next to each location in the distances column is the number of rela‐
tionships (roads) between cities we need to traverse to get there from the source
node. In our example, Colchester is one of our destination cities and you can see it
has 0 nodes to traverse to get to itself but 3 hops to make from Immingham and Hoek
van Holland. If we were planning a trip, we could use this information to help maxi‐
mize our time at our chosen destinations.

All Pairs Shortest Path with Neo4j
Neo4j has a parallel implementation of the All Pairs Shortest Path algorithm, which
returns the distance between every pair of nodes.

The first parameter to this procedure is the property to use to work out the shortest
weighted path. If we set this to null then the algorithm will calculate the unweighted
shortest paths between all pairs of nodes.

The following query does this:

CALL algo.allShortestPaths.stream(null)
YIELD sourceNodeId, targetNodeId, distance
WHERE sourceNodeId < targetNodeId
RETURN algo.getNodeById(sourceNodeId).id AS source,
 algo.getNodeById(targetNodeId).id AS target,
 distance
ORDER BY distance DESC
LIMIT 10

All Pairs Shortest Path | 63

This algorithm returns the shortest path between every pair of nodes twice—once
with each of the nodes as the source node. This would be helpful if you were evaluat‐
ing a directed graph of one-way streets. However, we don’t need to see each path
twice, so we filter the results to only keep one of them by using the sourceNodeId <
targetNodeId predicate.

The query returns the following results:

source target distance
Colchester Utrecht 5.0

London Rotterdam 5.0

London Gouda 5.0

Ipswich Utrecht 5.0

Colchester Gouda 5.0

Colchester Den Haag 4.0

London Utrecht 4.0

London Den Haag 4.0

Colchester Amsterdam 4.0

Ipswich Gouda 4.0

This output shows the 10 pairs of locations that have the most relationships between
them because we asked for results in descending order (DESC).

If we want to calculate the shortest weighted paths, rather than passing in null as the
first parameter, we can pass in the property name that contains the cost to be used in
the shortest path calculation. This property will then be evaluated to work out the
shortest weighted path between each pair of nodes.

The following query does this:

CALL algo.allShortestPaths.stream("distance")
YIELD sourceNodeId, targetNodeId, distance
WHERE sourceNodeId < targetNodeId
RETURN algo.getNodeById(sourceNodeId).id AS source,
 algo.getNodeById(targetNodeId).id AS target,
 distance
ORDER BY distance DESC
LIMIT 10

The query returns the following result:

source target distance
Doncaster Hoek van Holland 529.0

Rotterdam Doncaster 528.0

Gouda Doncaster 524.0

64 | Chapter 4: Pathfinding and Graph Search Algorithms

source target distance
Felixstowe Immingham 511.0

Den Haag Doncaster 502.0

Ipswich Immingham 489.0

Utrecht Doncaster 489.0

London Utrecht 460.0

Colchester Immingham 457.0

Immingham Hoek van Holland 455.0

Now we’re seeing the 10 pairs of locations furthest from each other in terms of the
total distance between them. Notice that Doncaster shows up frequently along with
several cities in the Netherlands. It looks like it would be a long drive if we wanted to
take a road trip between those areas.

Single Source Shortest Path
The Single Source Shortest Path (SSSP) algorithm, which came into prominence at
around the same time as Dijkstra’s Shortest Path algorithm, acts as an implementation
for both problems.

The SSSP algorithm calculates the shortest (weighted) path from a root node to all
other nodes in the graph, as demonstrated in Figure 4-9.

Single Source Shortest Path | 65

Figure 4-9. The steps of the Single Source Shortest Path algorithm

It proceeds as follows:

1. It begins with a root node from which all paths will be measured. In Figure 4-9
we’ve selected node A as the root.

2. The relationship with the smallest weight coming from that root node is selected
and added to the tree, along with its connected node. In this case, that’s
d(A,D)=1.

3. The next relationship with the smallest cumulative weight from our root node to
any unvisited node is selected and added to the tree in the same way. Our choices
in Figure 4-9 are d(A,B)=8, d(A,C)=5 directly or 4 via A-D-C, and d(A,E)=5. So,
the route via A-D-C is chosen and C is added to our tree.

4. The process continues until there are no more nodes to add and we have our sin‐
gle source shortest path.

66 | Chapter 4: Pathfinding and Graph Search Algorithms

When Should I Use Single Source Shortest Path?
Use Single Source Shortest Path when you need to evaluate the optimal route from a
fixed start point to all other individual nodes. Because the route is chosen based on
the total path weight from the root, it’s useful for finding the best path to each node,
but not necessarily when all nodes need to be visited in a single trip.

For example, SSSP is helpful for identifying the main routes to use for emergency
services where you don’t visit every location on each incident, but not for finding a
single route for garbage collection where you need to visit each house in one trip. (In
the latter case, you’d use the Minimum Spanning Tree algorithm, covered later.)

Example use cases include:

• Detecting changes in topology, such as link failures, and suggesting a new rout‐
ing structure in seconds

• Using Dijkstra as an IP routing protocol for use in autonomous systems such as a
local area network (LAN)

Single Source Shortest Path with Apache Spark
We can adapt the shortest_path function that we wrote to calculate the shortest path
between two locations to instead return us the shortest path from one location to all
others. Note that we’re using Spark’s aggregateMessages framework again to custom‐
ize our function.

We’ll first import the same libraries as before:

from graphframes.lib import AggregateMessages as AM
from pyspark.sql import functions as F

And we’ll use the same user-defined function to construct paths:

add_path_udf = F.udf(lambda path, id: path + [id], ArrayType(StringType()))

Now for the main function, which calculates the shortest path starting from an origin:

def sssp(g, origin, column_name="cost"):
 vertices = g.vertices \
 .withColumn("visited", F.lit(False)) \
 .withColumn("distance",
 F.when(g.vertices["id"] == origin, 0).otherwise(float("inf"))) \
 .withColumn("path", F.array())
 cached_vertices = AM.getCachedDataFrame(vertices)
 g2 = GraphFrame(cached_vertices, g.edges)

 while g2.vertices.filter('visited == False').first():
 current_node_id = g2.vertices.filter('visited == False')
 .sort("distance").first().id

Single Source Shortest Path | 67

 msg_distance = AM.edge[column_name] + AM.src['distance']
 msg_path = add_path_udf(AM.src["path"], AM.src["id"])
 msg_for_dst = F.when(AM.src['id'] == current_node_id,
 F.struct(msg_distance, msg_path))
 new_distances = g2.aggregateMessages(
 F.min(AM.msg).alias("aggMess"), sendToDst=msg_for_dst)

 new_visited_col = F.when(
 g2.vertices.visited | (g2.vertices.id == current_node_id),
 True).otherwise(False)
 new_distance_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"] <
 g2.vertices.distance),
 new_distances.aggMess["col1"]) \
 .otherwise(g2.vertices.distance)
 new_path_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"] <
 g2.vertices.distance),
 new_distances.aggMess["col2"]
 .cast("array<string>")) \
 .otherwise(g2.vertices.path)

 new_vertices = g2.vertices.join(new_distances, on="id",
 how="left_outer") \
 .drop(new_distances["id"]) \
 .withColumn("visited", new_visited_col) \
 .withColumn("newDistance", new_distance_col) \
 .withColumn("newPath", new_path_col) \
 .drop("aggMess", "distance", "path") \
 .withColumnRenamed('newDistance', 'distance') \
 .withColumnRenamed('newPath', 'path')
 cached_new_vertices = AM.getCachedDataFrame(new_vertices)
 g2 = GraphFrame(cached_new_vertices, g2.edges)

 return g2.vertices \
 .withColumn("newPath", add_path_udf("path", "id")) \
 .drop("visited", "path") \
 .withColumnRenamed("newPath", "path")

If we want to find the shortest path from Amsterdam to all other locations we can call
the function like this:

via_udf = F.udf(lambda path: path[1:-1], ArrayType(StringType()))

result = sssp(g, "Amsterdam", "cost")
(result
 .withColumn("via", via_udf("path"))
 .select("id", "distance", "via")
 .sort("distance")
 .show(truncate=False))

68 | Chapter 4: Pathfinding and Graph Search Algorithms

We define another user-defined function to filter out the start and end nodes from
the resulting path. If we run that code we’ll see the following output:

id distance via
Amsterdam 0.0 []

Utrecht 46.0 []

Den Haag 59.0 []

Gouda 81.0 [Utrecht]

Rotterdam 85.0 [Den Haag]

Hoek van Holland 86.0 [Den Haag]

Felixstowe 293.0 [Den Haag, Hoek van Holland]

Ipswich 315.0 [Den Haag, Hoek van Holland, Felixstowe]

Colchester 347.0 [Den Haag, Hoek van Holland, Felixstowe, Ipswich]

Immingham 369.0 []

Doncaster 443.0 [Immingham]

London 453.0 [Den Haag, Hoek van Holland, Felixstowe, Ipswich, Colchester]

In these results we see the physical distances in kilometers from the root node,
Amsterdam, to all other cities in the graph, ordered by shortest distance.

Single Source Shortest Path with Neo4j
Neo4j implements a variation of SSSP, called the Delta-Stepping algorithm that
divides Dijkstra’s algorithm into a number of phases that can be executed in parallel.

The following query executes the Delta-Stepping algorithm:

MATCH (n:Place {id:"London"})
CALL algo.shortestPath.deltaStepping.stream(n, "distance", 1.0)
YIELD nodeId, distance
WHERE algo.isFinite(distance)
RETURN algo.getNodeById(nodeId).id AS destination, distance
ORDER BY distance

The query returns the following output:

destination distance
London 0.0

Colchester 106.0

Ipswich 138.0

Felixstowe 160.0

Doncaster 277.0

Immingham 351.0

Single Source Shortest Path | 69

destination distance
Hoek van Holland 367.0

Den Haag 394.0

Rotterdam 400.0

Gouda 425.0

Amsterdam 453.0

Utrecht 460.0

In these results we see the physical distances in kilometers from the root node, Lon‐
don, to all other cities in the graph, ordered by shortest distance.

Minimum Spanning Tree
The Minimum (Weight) Spanning Tree algorithm starts from a given node and finds
all its reachable nodes and the set of relationships that connect the nodes together
with the minimum possible weight. It traverses to the next unvisited node with the
lowest weight from any visited node, avoiding cycles.

The first known Minimum Weight Spanning Tree algorithm was developed by the
Czech scientist Otakar Borůvka in 1926. Prim’s algorithm, invented in 1957, is the
simplest and best known.

Prim’s algorithm is similar to Dijkstra’s Shortest Path algorithm, but rather than mini‐
mizing the total length of a path ending at each relationship, it minimizes the length
of each relationship individually. Unlike Dijkstra’s algorithm, it tolerates negative-
weight relationships.

The Minimum Spanning Tree algorithm operates as demonstrated in Figure 4-10.

Figure 4-10. The steps of the Minimum Spanning Tree algorithm

The steps are as follows:

1. It begins with a tree containing only one node. In Figure 4-10 we start with node
A.

2. The relationship with smallest weight coming from that node is selected and
added to the tree (along with its connected node). In this case, A-D.

70 | Chapter 4: Pathfinding and Graph Search Algorithms

3. This process is repeated, always choosing the minimal-weight relationship that
joins any node not already in the tree.
a. If you compare our example here to the SSSP example in Figure 4-9 you’ll

notice that in the fourth graph the paths become different. This is because
SSSP evaluates the shortest path based on cumulative totals from the root,
whereas Minimum Spanning Tree only looks at the cost of the next step.

4. When there are no more nodes to add, the tree is a minimum spanning tree.

There are also variants of this algorithm that find the maximum-weight spanning tree
(highest-cost tree) and the k-spanning tree (tree size limited.)

When Should I Use Minimum Spanning Tree?
Use Minimum Spanning Tree when you need the best route to visit all nodes. Because
the route is chosen based on the cost of each next step, it’s useful when you must visit
all nodes in a single walk. (Review the previous section on “Single Source Shortest
Path” on page 65 if you don’t need a path for a single trip.)

You can use this algorithm for optimizing paths for connected systems like water
pipes and circuit design. It’s also employed to approximate some problems with
unknown compute times, such as the Traveling Salesman Problem and certain types
of rounding problems. Although it may not always find the absolute optimal solution,
this algorithm makes potentially complicated and compute-intensive analysis much
more approachable.

Example use cases include:

• Minimizing the travel cost of exploring a country. “An Application of Minimum
Spanning Trees to Travel Planning” describes how the algorithm analyzed airline
and sea connections to do this.

• Visualizing correlations between currency returns. This is described in “Mini‐
mum Spanning Tree Application in the Currency Market”.

• Tracing the history of infection transmission in an outbreak. For more informa‐
tion, see “Use of the Minimum Spanning Tree Model for Molecular Epidemiolog‐
ical Investigation of a Nosocomial Outbreak of Hepatitis C Virus Infection”.

The Minimum Spanning Tree algorithm only gives meaningful
results when run on a graph where the relationships have different
weights. If the graph has no weights, or all relationships have the
same weight, then any spanning tree is a minimum spanning tree.

Minimum Spanning Tree | 71

Minimum Spanning Tree with Neo4j
Let’s see the Minimum Spanning Tree algorithm in action. The following query finds
a spanning tree starting from Amsterdam:

MATCH (n:Place {id:"Amsterdam"})
CALL algo.spanningTree.minimum("Place", "EROAD", "distance", id(n),
 {write:true, writeProperty:"MINST"})
YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount

The parameters passed to this algorithm are:

Place

The node labels to consider when computing the spanning tree

EROAD

The relationship types to consider when computing the spanning tree

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes

id(n)

The internal node id of the node from which the spanning tree should begin

This query stores its results in the graph. If we want to return the minimum weight
spanning tree we can run the following query:

MATCH path = (n:Place {id:"Amsterdam"})-[:MINST*]-()
WITH relationships(path) AS rels
UNWIND rels AS rel
WITH DISTINCT rel AS rel
RETURN startNode(rel).id AS source, endNode(rel).id AS destination,
 rel.distance AS cost

And this is the output of the query:

source destination cost
Amsterdam Utrecht 46.0

Utrecht Gouda 35.0

Gouda Rotterdam 25.0

Rotterdam Den Haag 26.0

Den Haag Hoek van Holland 27.0

Hoek van Holland Felixstowe 207.0

Felixstowe Ipswich 22.0

Ipswich Colchester 32.0

Colchester London 106.0

72 | Chapter 4: Pathfinding and Graph Search Algorithms

source destination cost
London Doncaster 277.0

Doncaster Immingham 74.0

Figure 4-11. A minimum weight spanning tree from Amsterdam

If we were in Amsterdam and wanted to visit every other place in our dataset during
the same trip, Figure 4-11 demonstrates the shortest continuous route to do so.

Random Walk
The Random Walk algorithm provides a set of nodes on a random path in a graph.
The term was first mentioned by Karl Pearson in 1905 in a letter to Nature magazine
titled “The Problem of the Random Walk”. Although the concept goes back even fur‐
ther, it’s only more recently that random walks have been applied to network science.

Random Walk | 73

A random walk, in general, is sometimes described as being similar to how a drunk
person traverses a city. They know what direction or end point they want to reach but
may take a very circuitous route to get there.

The algorithm starts at one node and somewhat randomly follows one of the relation‐
ships forward or backward to a neighbor node. It then does the same from that node
and so on, until it reaches the set path length. (We say somewhat randomly because
the number of relationships a node has, and its neighbors have, influences the proba‐
bility a node will be walked through.)

When Should I Use Random Walk?
Use the Random Walk algorithm as part of other algorithms or data pipelines when
you need to generate a mostly random set of connected nodes.

Example use cases include:

• As part of the node2vec and graph2vec algorithms, that create node embeddings.
These node embeddings could then be used as the input to a neural network.

• As part of the Walktrap and Infomap community detection. If a random walk
returns a small set of nodes repeatedly, then it indicates that node set may have a
community structure.

• As part of the training process of machine learning models. This is described fur‐
ther in David Mack’s article “Review Prediction with Neo4j and TensorFlow”.

You can read about more use cases in a paper by N. Masuda, M. A. Porter, and R.
Lambiotte, “Random Walks and Diffusion on Networks”.

Random Walk with Neo4j
Neo4j has an implementation of the Random Walk algorithm. It supports two modes
for choosing the next relationship to follow at each stage of the algorithm:

random

Randomly chooses a relationship to follow

node2vec

Chooses relationship to follow based on computing a probability distribution of
the previous neighbors

The following query does this:

MATCH (source:Place {id: "London"})
CALL algo.randomWalk.stream(id(source), 5, 1)
YIELD nodeIds
UNWIND algo.getNodesById(nodeIds) AS place
RETURN place.id AS place

74 | Chapter 4: Pathfinding and Graph Search Algorithms

The parameters passed to this algorithm are:

id(source)

The internal node id of the starting point for our random walk

5

The number of hops our random walk should take

1

The number of random walks we want to compute

It returns the following result:

place
London

Doncaster

Immingham

Amsterdam

Utrecht

Amsterdam

At each stage of the random walk the next relationship is chosen randomly. This
means that if we rerun the algorithm, even with the same parameters, we likely won’t
get the same result. It’s also possible for a walk to go back on itself, as we can see in
Figure 4-12 where we go from Amsterdam to Den Haag and back.

Figure 4-12. A random walk starting from London

Summary
Pathfinding algorithms are useful for understanding the way that our data is connec‐
ted. In this chapter we started out with the fundamental Breadth and Depth First
algorithms, before moving onto Dijkstra and other shortest path algorithms. We also
looked at variants of the shortest path algorithms optimized for finding the shortest
path from one node to all other nodes or between all pairs of nodes in a graph. We
finished with the Random Walk algorithm, which can be used to find arbitrary sets of
paths.

Summary | 75

Next we’ll learn about Centrality algorithms that can be used to find influential nodes
in a graph.

Algorithm Resource
There are many algorithm books, but one stands out for its coverage of fundamental
concepts and graph algorithms: The Algorithm Design Manual, by Steven S. Skiena
(Springer). We highly recommend this textbook to those seeking a comprehensive
resource on classic algorithms and design techniques, or who simply want to dig
deeper into how various algorithms operate.

76 | Chapter 4: Pathfinding and Graph Search Algorithms

CHAPTER 5

Centrality Algorithms

Centrality algorithms are used to understand the roles of particular nodes in a graph
and their impact on that network. They’re useful because they identify the most
important nodes and help us understand group dynamics such as credibility, accessi‐
bility, the speed at which things spread, and bridges between groups. Although many
of these algorithms were invented for social network analysis, they have since found
uses in a variety of industries and fields.

We’ll cover the following algorithms:

• Degree Centrality as a baseline metric of connectedness
• Closeness Centrality for measuring how central a node is to the group, including

two variations for disconnected groups
• Betweenness Centrality for finding control points, including an alternative for

approximation
• PageRank for understanding the overall influence, including a popular option for

personalization

Different centrality algorithms can produce significantly different
results based on what they were created to measure. When you see
suboptimal answers, it’s best to check the algorithm you’ve used is
aligned to its intended purpose.

We’ll explain how these algorithms work and show examples in Spark and Neo4j.
Where an algorithm is unavailable on one platform or where the differences are
unimportant, we’ll provide just one platform example.

77

Figure 5-1 shows the differences between the types of questions centrality algorithms
can answer, and Table 5-1 is a quick reference for what each algorithm calculates with
an example use.

Figure 5-1. Representative centrality algorithms and the types of questions they answer

Table 5-1. Overview of centrality algorithms

Algorithm type What it does Example use Spark
example

Neo4j
example

Degree Centrality Measures the number of
relationships a node has

Estimating a person’s popularity by
looking at their in-degree and
using their out-degree to estimate
gregariousness

Yes No

Closeness Centrality
Variations: Wasserman and
Faust, Harmonic Centrality

Calculates which nodes have
the shortest paths to all
other nodes

Finding the optimal location of
new public services for maximum
accessibility

Yes Yes

Betweenness Centrality
Variation: Randomized-
Approximate Brandes

Measures the number of
shortest paths that pass
through a node

Improving drug targeting by
finding the control genes for
specific diseases

No Yes

PageRank
Variation: Personalized
PageRank

Estimates a current node’s
importance from its linked
neighbors and their
neighbors (popularized by
Google)

Finding the most influential
features for extraction in machine
learning and ranking text for entity
relevance in natural language
processing.

Yes Yes

Several of the centrality algorithms calculate shortest paths between
every pair of nodes. This works well for small- to medium-sized
graphs but for large graphs can be computationally prohibitive. To
avoid long runtimes on larger graphs, some algorithms (for exam‐
ple, Betweenness Centrality) have approximating versions.

78 | Chapter 5: Centrality Algorithms

First, we’ll describe the dataset for our examples and walk through importing the data
into Apache Spark and Neo4j. Each algorithm is covered in the order listed in
Table 5-1. We’ll start with a short description of the algorithm and, when warranted,
information on how it operates. Variations of algorithms already covered will include
less detail. Most sections also include guidance on when to use the related algorithm.
We demonstrate example code using a sample dataset at the end of each section.

Let’s get started!

Example Graph Data: The Social Graph
Centrality algorithms are relevant to all graphs, but social networks provide a very
relatable way to think about dynamic influence and the flow of information. The
examples in this chapter are run against a small Twitter-like graph. You can download
the nodes and relationships files we’ll use to create our graph from the book’s GitHub
repository.

Table 5-2. social-nodes.csv

id
Alice

Bridget

Charles

Doug

Mark

Michael

David

Amy

James

Table 5-3. social-relationships.csv

src dst relationship
Alice Bridget FOLLOWS

Alice Charles FOLLOWS

Mark Doug FOLLOWS

Bridget Michael FOLLOWS

Doug Mark FOLLOWS

Michael Alice FOLLOWS

Alice Michael FOLLOWS

Bridget Alice FOLLOWS

Michael Bridget FOLLOWS

Example Graph Data: The Social Graph | 79

src dst relationship
Charles Doug FOLLOWS

Bridget Doug FOLLOWS

Michael Doug FOLLOWS

Alice Doug FOLLOWS

Mark Alice FOLLOWS

David Amy FOLLOWS

James David FOLLOWS

Figure 5-2 illustrates the graph that we want to construct.

Figure 5-2. The graph model

We have one larger set of users with connections between them and a smaller set with
no connections to that larger group.

Let’s create graphs in Spark and Neo4j based on the contents of those CSV files.

Importing the Data into Apache Spark
First, we’ll import the required packages from Spark and the GraphFrames package:

from graphframes import *
from pyspark import SparkContext

We can write the following code to create a GraphFrame based on the contents of the
CSV files:

v = spark.read.csv("data/social-nodes.csv", header=True)
e = spark.read.csv("data/social-relationships.csv", header=True)
g = GraphFrame(v, e)

80 | Chapter 5: Centrality Algorithms

Importing the Data into Neo4j
Next, we’ll load the data for Neo4j. The following query imports nodes:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "social-nodes.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MERGE (:User {id: row.id})

And this query imports relationships:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "social-relationships.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MATCH (source:User {id: row.src})
MATCH (destination:User {id: row.dst})
MERGE (source)-[:FOLLOWS]->(destination)

Now that our graphs are loaded, it’s on to the algorithms!

Degree Centrality
Degree Centrality is the simplest of the algorithms that we’ll cover in this book. It
counts the number of incoming and outgoing relationships from a node, and is used
to find popular nodes in a graph. Degree Centrality was proposed by Linton C. Free‐
man in his 1979 paper “Centrality in Social Networks: Conceptual Clarification”.

Reach
Understanding the reach of a node is a fair measure of importance. How many other
nodes can it touch right now? The degree of a node is the number of direct relation‐
ships it has, calculated for in-degree and out-degree. You can think of this as the
immediate reach of node. For example, a person with a high degree in an active social
network would have a lot of immediate contacts and be more likely to catch a cold
circulating in their network.

The average degree of a network is simply the total number of relationships divided by
the total number of nodes; it can be heavily skewed by high degree nodes. The degree
distribution is the probability that a randomly selected node will have a certain num‐
ber of relationships.

Figure 5-3 illustrates the difference looking at the actual distribution of connections
among subreddit topics. If you simply took the average, you’d assume most topics
have 10 connections, whereas in fact most topics only have 2 connections.

Degree Centrality | 81

Figure 5-3. This mapping of subreddit degree distribution by Jacob Silterrapa provides an
example of how the average does not often reflect the actual distribution in networks.
CC BY-SA 3.0.

These measures are used to categorize network types such as the scale-free or small-
world networks that were discussed in Chapter 2. They also provide a quick measure
to help estimate the potential for things to spread or ripple throughout a network.

When Should I Use Degree Centrality?
Use Degree Centrality if you’re attempting to analyze influence by looking at the
number of incoming and outgoing relationships, or find the “popularity” of individ‐
ual nodes. It works well when you’re concerned with immediate connectedness or
near-term probabilities. However, Degree Centrality is also applied to global analysis
when you want to evaluate the minimum degree, maximum degree, mean degree, and
standard deviation across the entire graph.

Example use cases include:

• Identifying powerful individuals though their relationships, such as connections
of people in a social network. For example, in BrandWatch’s “Most Influential
Men and Women on Twitter 2017”, the top 5 people in each category have over
40 million followers each.

• Separating fraudsters from legitimate users of an online auction site. The weigh‐
ted centrality of fraudsters tends to be significantly higher due to collusion aimed

82 | Chapter 5: Centrality Algorithms

at artificially increasing prices. Read more in the paper by P. Bangcharoensap et
al., “Two Step Graph-Based Semi-Supervised Learning for Online Auction Fraud
Detection”.

Degree Centrality with Apache Spark
Now we’ll execute the Degree Centrality algorithm with the following code:

total_degree = g.degrees
in_degree = g.inDegrees
out_degree = g.outDegrees

(total_degree.join(in_degree, "id", how="left")
 .join(out_degree, "id", how="left")
 .fillna(0)
 .sort("inDegree", ascending=False)
 .show())

We first calculate the total, in, and out degrees. Then we join those DataFrames
together, using a left join to retain any nodes that don’t have incoming or outgoing
relationships. If nodes don’t have relationships we set that value to 0 using the fillna
function.

Here’s the result of running the code in pyspark:

id degree inDegree outDegree
Doug 6 5 1

Alice 7 3 4

Michael 5 2 3

Bridget 5 2 3

Charles 2 1 1

Mark 3 1 2

David 2 1 1

Amy 1 1 0

James 1 0 1

We can see in Figure 5-4 that Doug is the most popular user in our Twitter graph,
with five followers (in-links). All other users in that part of the graph follow him and
he only follows one person back. In the real Twitter network, celebrities have high
follower counts but tend to follow few people. We could therefore consider Doug a
celebrity!

Degree Centrality | 83

Figure 5-4. Visualization of degree centrality

If we were creating a page showing the most-followed users or wanted to suggest peo‐
ple to follow, we could use this algorithm to identify those people.

Some data may contain very dense nodes with lots of relationships.
These don’t add much additional information and can skew some
results or add computational complexity. You may want to filter out
these dense notes by using a subgraph, or use a projection to sum‐
marize the relationships as weights.

Closeness Centrality
Closeness Centrality is a way of detecting nodes that are able to spread information
efficiently through a subgraph.

The measure of a node’s centrality is its average farness (inverse distance) to all other
nodes. Nodes with a high closeness score have the shortest distances from all other
nodes.

For each node, the Closeness Centrality algorithm calculates the sum of its distances
to all other nodes, based on calculating the shortest paths between all pairs of nodes.
The resulting sum is then inverted to determine the closeness centrality score for that
node.

The closeness centrality of a node is calculated using the formula:

C u = 1
∑v = 1

n − 1 d u, v

84 | Chapter 5: Centrality Algorithms

where:

• u is a node.
• n is the number of nodes in the graph.
• d(u,v) is the shortest-path distance between another node v and u.

It is more common to normalize this score so that it represents the average length of
the shortest paths rather than their sum. This adjustment allows comparisons of the
closeness centrality of nodes of graphs of different sizes.

The formula for normalized closeness centrality is as follows:

Cnorm u = n − 1
∑v = 1

n − 1 d u, v

When Should I Use Closeness Centrality?
Apply Closeness Centrality when you need to know which nodes disseminate things
the fastest. Using weighted relationships can be especially helpful in evaluating inter‐
action speeds in communication and behavioral analyses.

Example use cases include:

• Uncovering individuals in very favorable positions to control and acquire vital
information and resources within an organization. One such study is “Mapping
Networks of Terrorist Cells”, by V. E. Krebs.

• As a heuristic for estimating arrival time in telecommunications and package
delivery, where content flows through the shortest paths to a predefined target. It
is also used to shed light on propagation through all shortest paths simultane‐
ously, such as infections spreading through a local community. Find more details
in “Centrality and Network Flow”, by S. P. Borgatti.

• Evaluating the importance of words in a document, based on a graph-based key‐
phrase extraction process. This process is described by F. Boudin in “A Compari‐
son of Centrality Measures for Graph-Based Keyphrase Extraction”.

Closeness Centrality works best on connected graphs. When the
original formula is applied to an unconnected graph, we end up
with an infinite distance between two nodes where there is no path
between them. This means that we’ll end up with an infinite close‐
ness centrality score when we sum up all the distances from that
node. To avoid this issue, a variation on the original formula will be
shown after the next example.

Closeness Centrality | 85

Closeness Centrality with Apache Spark
Apache Spark doesn’t have a built-in algorithm for Closeness Centrality, but we can
write our own using the aggregateMessages framework that we introduced in the
“Shortest Path (Weighted) with Apache Spark” on page 54 in the previous chapter.

Before we create our function, we’ll import some libraries that we’ll use:

from graphframes.lib import AggregateMessages as AM
from pyspark.sql import functions as F
from pyspark.sql.types import *
from operator import itemgetter

We’ll also create a few user-defined functions that we’ll need later:

def collect_paths(paths):
 return F.collect_set(paths)

collect_paths_udf = F.udf(collect_paths, ArrayType(StringType()))

paths_type = ArrayType(
 StructType([StructField("id", StringType()), StructField("distance", IntegerType())]))

def flatten(ids):
 flat_list = [item for sublist in ids for item in sublist]
 return list(dict(sorted(flat_list, key=itemgetter(0))).items())

flatten_udf = F.udf(flatten, paths_type)

def new_paths(paths, id):
 paths = [{"id": col1, "distance": col2 + 1} for col1,
 col2 in paths if col1 != id]
 paths.append({"id": id, "distance": 1})
 return paths

new_paths_udf = F.udf(new_paths, paths_type)

def merge_paths(ids, new_ids, id):
 joined_ids = ids + (new_ids if new_ids else [])
 merged_ids = [(col1, col2) for col1, col2 in joined_ids if col1 != id]
 best_ids = dict(sorted(merged_ids, key=itemgetter(1), reverse=True))
 return [{"id": col1, "distance": col2} for col1, col2 in best_ids.items()]

merge_paths_udf = F.udf(merge_paths, paths_type)

86 | Chapter 5: Centrality Algorithms

def calculate_closeness(ids):
 nodes = len(ids)
 total_distance = sum([col2 for col1, col2 in ids])
 return 0 if total_distance == 0 else nodes * 1.0 / total_distance

closeness_udf = F.udf(calculate_closeness, DoubleType())

And now for the main body that calculates the closeness centrality for each node:

vertices = g.vertices.withColumn("ids", F.array())
cached_vertices = AM.getCachedDataFrame(vertices)
g2 = GraphFrame(cached_vertices, g.edges)

for i in range(0, g2.vertices.count()):
 msg_dst = new_paths_udf(AM.src["ids"], AM.src["id"])
 msg_src = new_paths_udf(AM.dst["ids"], AM.dst["id"])
 agg = g2.aggregateMessages(F.collect_set(AM.msg).alias("agg"),
 sendToSrc=msg_src, sendToDst=msg_dst)
 res = agg.withColumn("newIds", flatten_udf("agg")).drop("agg")
 new_vertices = (g2.vertices.join(res, on="id", how="left_outer")
 .withColumn("mergedIds", merge_paths_udf("ids", "newIds",
 "id")).drop("ids", "newIds")
 .withColumnRenamed("mergedIds", "ids"))
 cached_new_vertices = AM.getCachedDataFrame(new_vertices)
 g2 = GraphFrame(cached_new_vertices, g2.edges)

(g2.vertices
 .withColumn("closeness", closeness_udf("ids"))
 .sort("closeness", ascending=False)
 .show(truncate=False))

If we run that we’ll see the following output:

id ids closeness
Doug [[Charles, 1], [Mark, 1], [Alice, 1], [Bridget, 1], [Michael, 1]] 1.0

Alice [[Charles, 1], [Mark, 1], [Bridget, 1], [Doug, 1], [Michael, 1]] 1.0

David [[James, 1], [Amy, 1]] 1.0

Bridget [[Charles, 2], [Mark, 2], [Alice, 1], [Doug, 1], [Michael, 1]] 0.7142857142857143

Michael [[Charles, 2], [Mark, 2], [Alice, 1], [Doug, 1], [Bridget, 1]] 0.7142857142857143

James [[Amy, 2], [David, 1]] 0.6666666666666666

Amy [[James, 2], [David, 1]] 0.6666666666666666

Mark [[Bridget, 2], [Charles, 2], [Michael, 2], [Doug, 1], [Alice, 1]] 0.625

Charles [[Bridget, 2], [Mark, 2], [Michael, 2], [Doug, 1], [Alice, 1]] 0.625

Alice, Doug, and David are the most closely connected nodes in the graph with a 1.0
score, which means each directly connects to all nodes in their part of the graph.
Figure 5-5 illustrates that even though David has only a few connections, within his

Closeness Centrality | 87

group of friends that’s significant. In other words, this score represents the closeness
of each user to others within their subgraph but not the entire graph.

Figure 5-5. Visualization of closeness centrality

Closeness Centrality with Neo4j
Neo4j’s implementation of Closeness Centrality uses the following formula:

C u = n − 1
∑v = 1

n − 1 d u, v
where:

• u is a node.
• n is the number of nodes in the same component (subgraph or group) as u.
• d(u,v) is the shortest-path distance between another node v and u.

A call to the following procedure will calculate the closeness centrality for each of the
nodes in our graph:

CALL algo.closeness.stream("User", "FOLLOWS")
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id, centrality
ORDER BY centrality DESC

Running this procedure gives the following output:

user centrality
Alice 1.0

Doug 1.0

88 | Chapter 5: Centrality Algorithms

user centrality
David 1.0

Bridget 0.7142857142857143

Michael 0.7142857142857143

Amy 0.6666666666666666

James 0.6666666666666666

Charles 0.625

Mark 0.625

We get the same results as with the Spark algorithm, but, as before, the score repre‐
sents their closeness to others within their subgraph but not the entire graph.

In the strict interpretation of the Closeness Centrality algorithm, all
the nodes in our graph would have a score of ∞ because every node
has at least one other node that it’s unable to reach. However, it’s
usually more useful to implement the score per component.

Ideally we’d like to get an indication of closeness across the whole graph, and in the
next two sections we’ll learn about a few variations of the Closeness Centrality algo‐
rithm that do this.

Closeness Centrality Variation: Wasserman and Faust
Stanley Wasserman and Katherine Faust came up with an improved formula for cal‐
culating closeness for graphs with multiple subgraphs without connections between
those groups. Details on their formula are in their book, Social Network Analysis:
Methods and Applications. The result of this formula is a ratio of the fraction of nodes
in the group that are reachable to the average distance from the reachable nodes.

The formula is as follows:

CWF u = n − 1
N − 1

n − 1
∑v = 1

n − 1 d u, v
where:

• u is a node.
• N is the total node count.
• n is the number of nodes in the same component as u.
• d(u,v) is the shortest-path distance between another node v and u.

Closeness Centrality | 89

We can tell the Closeness Centrality procedure to use this formula by passing the
parameter improved: true.

The following query executes Closeness Centrality using the Wasserman and Faust
formula:

CALL algo.closeness.stream("User", "FOLLOWS", {improved: true})
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

The procedure gives the following result:

user centrality
Alice 0.5

Doug 0.5

Bridget 0.35714285714285715

Michael 0.35714285714285715

Charles 0.3125

Mark 0.3125

David 0.125

Amy 0.08333333333333333

James 0.08333333333333333

As Figure 5-6 shows, the results are now more representative of the closeness of
nodes to the entire graph. The scores for the members of the smaller subgraph
(David, Amy, and James) have been dampened, and they now have the lowest scores
of all users. This makes sense as they are the most isolated nodes. This formula is
more useful for detecting the importance of a node across the entire graph rather
than within its own subgraph.

90 | Chapter 5: Centrality Algorithms

Figure 5-6. Visualization of closeness centrality

In the next section we’ll learn about the Harmonic Centrality algorithm, which ach‐
ieves similar results using another formula to calculate closeness.

Closeness Centrality Variation: Harmonic Centrality
Harmonic Centrality (also known as Valued Centrality) is a variant of Closeness Cen‐
trality, invented to solve the original problem with unconnected graphs. In “Harmony
in a Small World”, M. Marchiori and V. Latora proposed this concept as a practical
representation of an average shortest path.

When calculating the closeness score for each node, rather than summing the distan‐
ces of a node to all other nodes, it sums the inverse of those distances. This means
that infinite values become irrelevant.

The raw harmonic centrality for a node is calculated using the following formula:

H u = ∑
v = 1

n − 1 1
d u, v

where:

• u is a node.
• n is the number of nodes in the graph.
• d(u,v) is the shortest-path distance between another node v and u.

As with closeness centrality, we can also calculate a normalized harmonic centrality
with the following formula:

Closeness Centrality | 91

Hnorm u =
∑v = 1

n − 1 1
d u, v

n − 1
In this formula, ∞ values are handled cleanly.

Harmonic Centrality with Neo4j
The following query executes the Harmonic Centrality algorithm:

CALL algo.closeness.harmonic.stream("User", "FOLLOWS")
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

Running this procedure gives the following result:

user centrality
Alice 0.625

Doug 0.625

Bridget 0.5

Michael 0.5

Charles 0.4375

Mark 0.4375

David 0.25

Amy 0.1875

James 0.1875

The results from this algorithm differ from those of the original Closeness Centrality
algorithm but are similar to those from the Wasserman and Faust improvement.
Either algorithm can be used when working with graphs with more than one connec‐
ted component.

Betweenness Centrality
Sometimes the most important cog in the system is not the one with the most overt
power or the highest status. Sometimes it’s the middlemen that connect groups or the
brokers who the most control over resources or the flow of information. Betweenness
Centrality is a way of detecting the amount of influence a node has over the flow of
information or resources in a graph. It is typically used to find nodes that serve as a
bridge from one part of a graph to another.

The Betweenness Centrality algorithm first calculates the shortest (weighted) path
between every pair of nodes in a connected graph. Each node receives a score, based
on the number of these shortest paths that pass through the node. The more shortest
paths that a node lies on, the higher its score.

92 | Chapter 5: Centrality Algorithms

Betweenness Centrality was considered one of the “three distinct intuitive concep‐
tions of centrality” when it was introduced by Linton C. Freeman in his 1971 paper,
“A Set of Measures of Centrality Based on Betweenness”.

Bridges and control points
A bridge in a network can be a node or a relationship. In a very simple graph, you can
find them by looking for the node or relationship that, if removed, would cause a sec‐
tion of the graph to become disconnected. However, as that’s not practical in a typical
graph, we use a Betweenness Centrality algorithm. We can also measure the between‐
ness of a cluster by treating the group as a node.

A node is considered pivotal for two other nodes if it lies on every shortest path
between those nodes, as shown in Figure 5-7.

Figure 5-7. Pivotal nodes lie on every shortest path between two nodes. Creating more
shortest paths can reduce the number of pivotal nodes for uses such as risk mitigation.

Pivotal nodes play an important role in connecting other nodes—if you remove a piv‐
otal node, the new shortest path for the original node pairs will be longer or more
costly. This can be a consideration for evaluating single points of vulnerability.

Calculating betweenness centrality
The betweenness centrality of a node is calculated by adding the results of the follow‐
ing formula for all shortest paths:

B u = ∑
s ≠ u ≠ t

p u
p

where:

• u is a node.
• p is the total number of shortest paths between nodes s and t.

Betweenness Centrality | 93

• p(u) is the number of shortest paths between nodes s and t that pass through
node u.

Figure 5-8 illustrates the steps for working out betweenness centrality.

Figure 5-8. Basic concepts for calculating betweenness centrality

Here’s the procedure:

1. For each node, find the shortest paths that go through it.
a. B, C, E have no shortest paths and are assigned a value of 0.

2. For each shortest path in step 1, calculate its percentage of the total possible
shortest paths for that pair.

3. Add together all the values in step 2 to find a node’s betweenness centrality score.
The table in Figure 5-8 illustrates steps 2 and 3 for node D.

4. Repeat the process for each node.

When Should I Use Betweenness Centrality?
Betweenness Centrality applies to a wide range of problems in real-world networks.
We use it to find bottlenecks, control points, and vulnerabilities.

Example use cases include:

• Identifying influencers in various organizations. Powerful individuals are not
necessarily in management positions, but can be found in “brokerage positions”
using Betweenness Centrality. Removal of such influencers can seriously destabi‐
lize the organization. This might be considered a welcome disruption by law
enforcement if the organization is criminal, or could be a disaster if a business
loses key staff it underestimated. More details are found in “Brokerage Qualifica‐
tions in Ringing Operations”, by C. Morselli and J. Roy.

94 | Chapter 5: Centrality Algorithms

• Uncovering key transfer points in networks such as electrical grids. Counterin‐
tuitively, removal of specific bridges can actually improve overall robustness by
“islanding” disturbances. Research details are included in “Robustness of the
European Power Grids Under Intentional Attack”, by R. Solé, et al.

• Helping microbloggers spread their reach on Twitter, with a recommendation
engine for targeting influencers. This approach is described in a paper by S. Wu
et al., “Making Recommendations in a Microblog to Improve the Impact of a
Focal User”.

Betweenness Centrality makes the assumption that all communica‐
tion between nodes happens along the shortest path and with the
same frequency, which isn’t always the case in real life. Therefore, it
doesn’t give us a perfect view of the most influential nodes in a
graph, but rather a good representation. Mark Newman explains
this in more detail in Networks: An Introduction (Oxford University
Press, p186).

Betweenness Centrality with Neo4j
Spark doesn’t have a built-in algorithm for Betweenness Centrality, so we’ll demon‐
strate this algorithm using Neo4j. A call to the following procedure will calculate the
betweenness centrality for each of the nodes in our graph:

CALL algo.betweenness.stream("User", "FOLLOWS")
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

Running this procedure gives the following result:

user centrality
Alice 10.0

Doug 7.0

Mark 7.0

David 1.0

Bridget 0.0

Charles 0.0

Michael 0.0

Amy 0.0

James 0.0

Betweenness Centrality | 95

As we can see in Figure 5-9, Alice is the main broker in this network, but Mark and
Doug aren’t far behind. In the smaller subgraph all shortest paths go through David,
so he is important for information flow among those nodes.

Figure 5-9. Visualization of betweenness centrality

For large graphs, exact centrality computation isn’t practical. The
fastest known algorithm for exactly computing betweenness of all
the nodes has a runtime proportional to the product of the number
of nodes and the number of relationships.
We may want to filter down to a subgraph first or use (described in
the next section) that works with a subset of nodes.

We can join our two disconnected components together by introducing a new user
called Jason, who follows and is followed by people from both groups of users:

WITH ["James", "Michael", "Alice", "Doug", "Amy"] AS existingUsers

MATCH (existing:User) WHERE existing.id IN existingUsers
MERGE (newUser:User {id: "Jason"})

MERGE (newUser)<-[:FOLLOWS]-(existing)
MERGE (newUser)-[:FOLLOWS]->(existing)

If we rerun the algorithm we’ll see this output:

96 | Chapter 5: Centrality Algorithms

user centrality
Jason 44.33333333333333

Doug 18.333333333333332

Alice 16.666666666666664

Amy 8.0

James 8.0

Michael 4.0

Mark 2.1666666666666665

David 0.5

Bridget 0.0

Charles 0.0

Jason has the highest score because communication between the two sets of users will
pass through him. Jason can be said to act as a local bridge between the two sets of
users, as illustrated in Figure 5-10.

Figure 5-10. Visualization of betweenness centrality with Jason

Before we move on to the next section, let’s reset our graph by deleting Jason and his
relationships:

MATCH (user:User {id: "Jason"})
DETACH DELETE user

Betweenness Centrality | 97

Betweenness Centrality Variation: Randomized-Approximate
Brandes
Recall that calculating the exact betweenness centrality on large graphs can be very
expensive. We could therefore choose to use an approximation algorithm that runs
much faster but still provides useful (albeit imprecise) information.

The Randomized-Approximate Brandes (RA-Brandes for short) algorithm is the
best-known algorithm for calculating an approximate score for betweenness central‐
ity. Rather than calculating the shortest path between every pair of nodes, the RA-
Brandes algorithm considers only a subset of nodes. Two common strategies for
selecting the subset of nodes are:

Random
Nodes are selected uniformly, at random, with a defined probability of selection. The
default probability is: log10 N

e2 . If the probability is 1, the algorithm works the same

way as the normal Betweenness Centrality algorithm, where all nodes are loaded.

Degree
Nodes are selected randomly, but those whose degree is lower than the mean are
automatically excluded (i.e., only nodes with a lot of relationships have a chance of
being visited).

As a further optimization, you could limit the depth used by the Shortest Path algo‐
rithm, which will then provide a subset of all the shortest paths.

Approximation of Betweenness Centrality with Neo4j
The following query executes the RA-Brandes algorithm using the random selection
method:

CALL algo.betweenness.sampled.stream("User", "FOLLOWS", {strategy:"degree"})
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

Running this procedure gives the following result:

user centrality
Alice 9.0

Mark 9.0

Doug 4.5

98 | Chapter 5: Centrality Algorithms

user centrality
David 2.25

Bridget 0.0

Charles 0.0

Michael 0.0

Amy 0.0

James 0.0

Our top influencers are similar to before, although Mark now has a higher ranking
than Doug.

Due to the random nature of this algorithm, we may see different results each time
that we run it. On larger graphs this randomness will have less of an impact than it
does on our small sample graph.

PageRank
PageRank is the best known of the centrality algorithms. It measures the transitive (or
directional) influence of nodes. All the other centrality algorithms we discuss meas‐
ure the direct influence of a node, whereas PageRank considers the influence of a
node’s neighbors, and their neighbors. For example, having a few very powerful
friends can make you more influential than having a lot of less powerful friends. Pag‐
eRank is computed either by iteratively distributing one node’s rank over its neigh‐
bors or by randomly traversing the graph and counting the frequency with which
each node is hit during these walks.

PageRank is named after Google cofounder Larry Page, who created it to rank web‐
sites in Google’s search results. The basic assumption is that a page with more incom‐
ing and more influential incoming links is more likely a credible source. PageRank
measures the number and quality of incoming relationships to a node to determine
an estimation of how important that node is. Nodes with more sway over a network
are presumed to have more incoming relationships from other influential nodes.

Influence
The intuition behind influence is that relationships to more important nodes contrib‐
ute more to the influence of the node in question than equivalent connections to less
important nodes. Measuring influence usually involves scoring nodes, often with
weighted relationships, and then updating the scores over many iterations. Some‐
times all nodes are scored, and sometimes a random selection is used as a representa‐
tive distribution.

PageRank | 99

Keep in mind that centrality measures represent the importance of
a node in comparison to other nodes. Centrality is a ranking of the
potential impact of nodes, not a measure of actual impact. For
example, you might identify the two people with the highest cen‐
trality in a network, but perhaps policies or cultural norms are in
play that actually shift influence to others. Quantifying actual
impact is an active research area to develop additional influence
metrics.

The PageRank Formula
PageRank is defined in the original Google paper as follows:

PR u = 1 − d + d PR T1
C T1 + . . . + PR Tn

C Tn
where:

• We assume that a page u has citations from pages T1 to Tn.
• d is a damping factor which is set between 0 and 1. It is usually set to 0.85. You

can think of this as the probability that a user will continue clicking. This helps
minimize rank sink, explained in the next section.

• 1-d is the probability that a node is reached directly without following any rela‐
tionships.

• C(Tn) is defined as the out-degree of a node T.

Figure 5-11 walks through a small example of how PageRank will continue to update
the rank of a node until it converges or meets the set number of iterations.

100 | Chapter 5: Centrality Algorithms

Figure 5-11. Each iteration of PageRank has two calculation steps: one to update node
values and one to update link values.

PageRank | 101

Iteration, Random Surfers, and Rank Sinks
PageRank is an iterative algorithm that runs either until scores converge or until a set
number of iterations is reached.

Conceptually, PageRank assumes there is a web surfer visiting pages by following
links or by using a random URL. A damping factor _d _ defines the probability that
the next click will be through a link. You can think of it as the probability that a surfer
will become bored and randomly switch to another page. A PageRank score repre‐
sents the likelihood that a page is visited through an incoming link and not randomly.

A node, or group of nodes, without outgoing relationships (also called a dangling
node) can monopolize the PageRank score by refusing to share. This is known as a
rank sink. You can imagine this as a surfer that gets stuck on a page, or a subset of
pages, with no way out. Another difficulty is created by nodes that point only to each
other in a group. Circular references cause an increase in their ranks as the surfer
bounces back and forth among the nodes. These situations are portrayed in
Figure 5-12.

Figure 5-12. Rank sink is caused by a node, or group of nodes, without outgoing rela‐
tionships.

There are two strategies used to avoid rank sinks. First, when a node is reached that
has no outgoing relationships, PageRank assumes outgoing relationships to all nodes.
Traversing these invisible links is sometimes called teleportation. Second, the damping
factor provides another opportunity to avoid sinks by introducing a probability for
direct link versus random node visitation. When you set d to 0.85, a completely ran‐
dom node is visited 15% of the time.

102 | Chapter 5: Centrality Algorithms

Although the original formula recommends a damping factor of 0.85, its initial use
was on the World Wide Web with a power-law distribution of links (most pages have
very few links and a few pages have many). Lowering the damping factor decreases
the likelihood of following long relationship paths before taking a random jump. In
turn, this increases the contribution of a node’s immediate predecessors to its score
and rank.

If you see unexpected results from PageRank, it is worth doing some exploratory
analysis of the graph to see if any of these problems are the cause. Read Ian Rogers’s
article, “The Google PageRank Algorithm and How It Works” to learn more.

When Should I Use PageRank?
PageRank is now used in many domains outside web indexing. Use this algorithm
whenever you’re looking for broad influence over a network. For instance, if you’re
looking to target a gene that has the highest overall impact to a biological function, it
may not be the most connected one. It may, in fact, be the gene with the most rela‐
tionships with other, more significant functions.

Example use cases include:

• Presenting users with recommendations of other accounts that they may wish to
follow (Twitter uses Personalized PageRank for this). The algorithm is run over a
graph that contains shared interests and common connections. The approach is
described in more detail in the paper “WTF: The Who to Follow Service at Twit‐
ter”, by P. Gupta et al.

• Predicting traffic flow and human movement in public spaces or streets. The
algorithm is run over a graph of road intersections, where the PageRank score
reflects the tendency of people to park, or end their journey, on each street. This
is described in more detail in “Self-Organized Natural Roads for Predicting Traf‐
fic Flow: A Sensitivity Study”, a paper by B. Jiang, S. Zhao, and J. Yin.

• As part of anomaly and fraud detection systems in the healthcare and insurance
industries. PageRank helps reveal doctors or providers that are behaving in an
unusual manner, and the scores are then fed into a machine learning algorithm.

David Gleich describes many more uses for the algorithm in his paper, “PageRank
Beyond the Web”.

PageRank with Apache Spark
Now we’re ready to execute the PageRank algorithm. GraphFrames supports two
implementations of PageRank:

PageRank | 103

• The first implementation runs PageRank for a fixed number of iterations. This
can be run by setting the maxIter parameter.

• The second implementation runs PageRank until convergence. This can be run
by setting the tol parameter.

PageRank with a fixed number of iterations
Let’s see an example of the fixed iterations approach:

results = g.pageRank(resetProbability=0.15, maxIter=20)
results.vertices.sort("pagerank", ascending=False).show()

Notice in Spark that the damping factor is more intuitively called
the reset probability, with the inverse value. In other words, reset
Probability=0.15 in this example is equivalent to dampingFac
tor:0.85 in Neo4j.

If we run that code in pyspark we’ll see this output:

id pageRank
Doug 2.2865372087512252

Mark 2.1424484186137263

Alice 1.520330830262095

Michael 0.7274429252585624

Bridget 0.7274429252585624

Charles 0.5213852310709753

Amy 0.5097143486157744

David 0.36655842368870073

James 0.1981396884803788

As we might expect, Doug has the highest PageRank because he is followed by all
other users in his subgraph. Although Mark only has one follower, that follower is
Doug, so Mark is also considered important in this graph. It’s not only the number of
followers that is important, but also the importance of those followers.

The relationships in the graph on which we ran the PageRank algo‐
rithm don’t have weights, so each relationship is considered equal.
Relationship weights are added by specifying a weight column in
the relationships DataFrame.

104 | Chapter 5: Centrality Algorithms

PageRank until convergence
And now let’s try the convergence implementation that will run PageRank until it
closes in on a solution within the set tolerance:

results = g.pageRank(resetProbability=0.15, tol=0.01)
results.vertices.sort("pagerank", ascending=False).show()

If we run that code in pyspark we’ll see this output:

id pageRank
Doug 2.2233188859989745

Mark 2.090451188336932

Alice 1.5056291439101062

Michael 0.733738785109624

Bridget 0.733738785109624

Amy 0.559446807245026

Charles 0.5338811076334145

David 0.40232326274180685

James 0.21747203391449021

The PageRank scores for each person are slightly different than with the fixed number
of iterations variant, but as we would expect, their order remains the same.

Although convergence on a perfect solution may sound ideal, in
some scenarios PageRank cannot mathematically converge. For
larger graphs, PageRank execution may be prohibitively long. A
tolerance limit helps set an acceptable range for a converged result,
but many choose to use (or combine this approach with) the maxi‐
mum iteration option instead. The maximum iteration setting will
generally provide more performance consistency. Regardless of
which option you choose, you may need to test several different
limits to find what works for your dataset. Larger graphs typcially
require more iterations or smaller tolerance than medium-sized
graphs for better accuracy.

PageRank with Neo4j
We can also run PageRank in Neo4j. A call to the following procedure will calculate
the PageRank for each of the nodes in our graph:

CALL algo.pageRank.stream('User', 'FOLLOWS', {iterations:20, dampingFactor:0.85})
YIELD nodeId, score
RETURN algo.getNodeById(nodeId).id AS page, score
ORDER BY score DESC

PageRank | 105

Running this procedure gives the following result:

page score
Doug 1.6704119999999998

Mark 1.5610085

Alice 1.1106700000000003

Bridget 0.535373

Michael 0.535373

Amy 0.385875

Charles 0.3844895

David 0.2775

James 0.15000000000000002

As with the Spark example, Doug is the most influential user, and Mark follows
closely after as the only user that Doug follows. We can see the importance of the
nodes relative to each other in Figure 5-13.

PageRank implementations vary, so they can produce different
scoring even when the ordering is the same. Neo4j initializes nodes
using a value of 1 minus the dampening factor whereas Spark uses
a value of 1. In this case, the relative rankings (the goal of Pag‐
eRank) are identical but the underlying score values used to reach
those results are different.

Figure 5-13. Visualization of PageRank

106 | Chapter 5: Centrality Algorithms

As with our Spark example, the relationships in the graph on which
we ran the PageRank algorithm don’t have weights, so each rela‐
tionship is considered equal. Relationship weights can be consid‐
ered by including the weightProperty property in the config
passed to the PageRank procedure. For example, if relationships
have a property weight containing weights, we would pass the fol‐
lowing config to the procedure: weightProperty: "weight".

PageRank Variation: Personalized PageRank
Personalized PageRank (PPR) is a variant of the PageRank algorithm that calculates
the importance of nodes in a graph from the perspective of a specific node. For PPR,
random jumps refer back to a given set of starting nodes. This biases results toward,
or personalizes for, the start node. This bias and localization make PPR useful for
highly targeted recommendations.

Personalized PageRank with Apache Spark
We can calculate the personalized PageRank score for a given node by passing in the
sourceId parameter. The following code calculates the PPR for Doug:

me = "Doug"
results = g.pageRank(resetProbability=0.15, maxIter=20, sourceId=me)
people_to_follow = results.vertices.sort("pagerank", ascending=False)

already_follows = list(g.edges.filter(f"src = '{me}'").toPandas()["dst"])
people_to_exclude = already_follows + [me]

people_to_follow[~people_to_follow.id.isin(people_to_exclude)].show()

The results of this query could be used to make recommendations for people who
Doug should follow. Notice that we are also making sure that we exclude people who
Doug already follows, as well as himself, from our final result.

If we run that code in pyspark we’ll see this output:

id pageRank
Alice 0.1650183746272782

Michael 0.048842467744891996

Bridget 0.048842467744891996

Charles 0.03497796119878669

David 0.0

James 0.0

Amy 0.0

PageRank | 107

Alice is the best suggestion for somebody that Doug should follow, but we might sug‐
gest Michael and Bridget as well.

Summary
Centrality algorithms are an excellent tool for identifying influencers in a network. In
this chapter we’ve learned about the prototypical centrality algorithms: Degree Cen‐
trality, Closeness Centrality, Betweenness Centrality, and PageRank. We’ve also cov‐
ered several variations to deal with issues such as long runtimes and isolated
components, as well as options for alternative uses.

There are many wide-ranging uses for centrality algorithms, and we encourage their
exploration for a variety of analyses. You can apply what we’ve learned to locate opti‐
mal touch points for disseminating information, find the hidden brokers that control
the flow of resources, and uncover the indirect power players lurking in the shadows.

Next, we’ll turn to community detection algorithms that look at groups and parti‐
tions.

108 | Chapter 5: Centrality Algorithms

CHAPTER 6

Community Detection Algorithms

Community formation is common in all types of networks, and identifying them is
essential for evaluating group behavior and emergent phenomena. The general prin‐
ciple in finding communities is that its members will have more relationships within
the group than with nodes outside their group. Identifying these related sets reveals
clusters of nodes, isolated groups, and network structure. This information helps
infer similar behavior or preferences of peer groups, estimate resiliency, find nested
relationships, and prepare data for other analyses. Community detection algorithms
are also commonly used to produce network visualization for general inspection.

We’ll provide details on the most representative community detection algorithms:

• Triangle Count and Clustering Coefficient for overall relationship density
• Strongly Connected Components and Connected Components for finding con‐

nected clusters
• Label Propagation for quickly inferring groups based on node labels
• Louvain Modularity for looking at grouping quality and hierarchies

We’ll explain how the algorithms work and show examples in Apache Spark and
Neo4j. In cases where an algorithm is only available in one platform, we’ll provide
just one example. We use weighted relationships for these algorithms because they’re
typically used to capture the significance of different relationships.

Figure 6-1 gives an overview of the differences between the community detection
algorithms covered here, and Table 6-1 provides a quick reference as to what each
algorithm calculates with example uses.

109

Figure 6-1. Representative community detection algorithms

We use the terms set, partition, cluster, group, and community inter‐
changeably. These terms are different ways to indicate that similar
nodes can be grouped. Community detection algorithms are also
called clustering and partitioning algorithms. In each section, we
use the terms that are most prominent in the literature for a partic‐
ular algorithm.

110 | Chapter 6: Community Detection Algorithms

Table 6-1. Overview of community detection algorithms

Algorithm type What it does Example use Spark
example

Neo4j
example

Triangle Count and
Clustering Coefficient

Measures how many nodes form
triangles and the degree to
which nodes tend to cluster
together

Estimating group stability and
whether the network might
exhibit “small-world” behaviors
seen in graphs with tightly knit
clusters

Yes Yes

Strongly Connected
Components

Finds groups where each node is
reachable from every other node
in that same group following the
direction of relationships

Making product
recommendations based on group
affiliation or similar items

Yes Yes

Connected Components Finds groups where each node is
reachable from every other node
in that same group, regardless of
the direction of relationships

Performing fast grouping for
other algorithms and identify
islands

Yes Yes

Label Propagation Infers clusters by spreading
labels based on neighborhood
majorities

Understanding consensus in social
communities or finding
dangerous combinations of
possible co-prescribed drugs

Yes Yes

Louvain Modularity Maximizes the presumed
accuracy of groupings by
comparing relationship weights
and densities to a defined
estimate or average

In fraud analysis, evaluating
whether a group has just a few
discrete bad behaviors or is acting
as a fraud ring

No Yes

First, we’ll describe the data for our examples and walk through importing the data
into Spark and Neo4j. The algorithms are covered in the order listed in Table 6-1. For
each, you’ll find a short description and advice on when to use it. Most sections also
include guidance on when to use related algorithms. We demonstrate example code
using sample data at the end of each algorithm section.

When using community detection algorithms, be conscious of the
density of the relationships.
If the graph is very dense, you may end up with all nodes congre‐
gating in one or just a few clusters. You can counteract this by fil‐
tering by degree, relationship weights, or similarity metrics.
On the other hand, if the graph is too sparse with few connected
nodes, you may end up with each node in its own cluster. In this
case, try to incorporate additional relationship types that carry
more relevant information.

Community Detection Algorithms | 111

Example Graph Data: The Software Dependency Graph
Dependency graphs are particularly well suited for demonstrating the sometimes
subtle differences between community detection algorithms because they tend to be
more connected and hierarchical. The examples in this chapter are run against a
graph containing dependencies between Python libraries, although dependency
graphs are used in various fields, from software to energy grids. This kind of software
dependency graph is used by developers to keep track of transitive interdependencies
and conflicts in software projects. You can download the nodes and files from the
book’s GitHub repository.

Table 6-2. sw-nodes.csv

id
six

pandas

numpy

python-dateutil

pytz

pyspark

matplotlib

spacy

py4j

jupyter

jpy-console

nbconvert

ipykernel

jpy-client

jpy-core

Table 6-3. sw-relationships.csv

src dst relationship
pandas numpy DEPENDS_ON

pandas pytz DEPENDS_ON

pandas python-dateutil DEPENDS_ON

python-dateutil six DEPENDS_ON

pyspark py4j DEPENDS_ON

matplotlib numpy DEPENDS_ON

matplotlib python-dateutil DEPENDS_ON

matplotlib six DEPENDS_ON

112 | Chapter 6: Community Detection Algorithms

src dst relationship
matplotlib pytz DEPENDS_ON

spacy six DEPENDS_ON

spacy numpy DEPENDS_ON

jupyter nbconvert DEPENDS_ON

jupyter ipykernel DEPENDS_ON

jupyter jpy-console DEPENDS_ON

jpy-console jpy-client DEPENDS_ON

jpy-console ipykernel DEPENDS_ON

jpy-client jpy-core DEPENDS_ON

nbconvert jpy-core DEPENDS_ON

Figure 6-2 shows the graph that we want to construct. Looking at this graph, we see
that there are three clusters of libraries. We can use visualizations on smaller datasets
as a tool to help validate the clusters derived by community detection algorithms.

Figure 6-2. The graph model

Example Graph Data: The Software Dependency Graph | 113

Let’s create graphs in Spark and Neo4j from the example CSV files.

Importing the Data into Apache Spark
We’ll first import the packages we need from Apache Spark and the GraphFrames
package:

from graphframes import *

The following function creates a GraphFrame from the example CSV files:

def create_software_graph():
 nodes = spark.read.csv("data/sw-nodes.csv", header=True)
 relationships = spark.read.csv("data/sw-relationships.csv", header=True)
 return GraphFrame(nodes, relationships)

Now let’s call that function:

g = create_software_graph()

Importing the Data into Neo4j
Next we’ll do the same for Neo4j. The following query imports the nodes:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "sw-nodes.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MERGE (:Library {id: row.id})

And this imports the relationships:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "sw-relationships.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MATCH (source:Library {id: row.src})
MATCH (destination:Library {id: row.dst})
MERGE (source)-[:DEPENDS_ON]->(destination)

Now that we’ve got our graphs loaded it’s on to the algorithms!

Triangle Count and Clustering Coefficient
The Triangle Count and Clustering Coefficient algorithms are presented together
because they are so often used together. Triangle Count determines the number of tri‐
angles passing through each node in the graph. A triangle is a set of three nodes,
where each node has a relationship to all other nodes. Triangle Count can also be run
globally for evaluating our overall dataset.

114 | Chapter 6: Community Detection Algorithms

Networks with a high number of triangles are more likely to exhibit
small-world structures and behaviors.

The goal of the Clustering Coefficient algorithm is to measure how tightly a group is
clustered compared to how tightly it could be clustered. The algorithm uses Triangle
Count in its calculations, which provides a ratio of existing triangles to possible rela‐
tionships. A maximum value of 1 indicates a clique where every node is connected to
every other node.

There are two types of clustering coefficients: local clustering and global clustering.

Local Clustering Coefficient
The local clustering coefficient of a node is the likelihood that its neighbors are also
connected. The computation of this score involves triangle counting.

The clustering coefficient of a node can be found by multiplying the number of trian‐
gles passing through the node by two and then diving that by the maximum number
of relationships in the group, which is always the degree of that node, minus one.
Examples of different triangles and clustering coefficients for a node with five rela‐
tionships are portrayed in Figure 6-3.

Figure 6-3. Triangle counts and clustering coefficients for node u

Note in Figure 6-3, we use a node with five relationships which makes it appear that
the clustering coefficient will always equate to 10% of the number of triangles. We can
see this is not the case when we alter the number of relationships. If we change the
second example to have four relationships (and the same two triangles) then the coef‐
ficient is 0.33.

The clustering coefficient for a node uses the formula:

Triangle Count and Clustering Coefficient | 115

CC u =
2Ru

ku ku − 1

where:

• u is a node.
• R(u) is the number of relationships through the neighbors of u (this can be

obtained by using the number of triangles passing through u).
• k(u) is the degree of u.

Global Clustering Coefficient
The global clustering coefficient is the normalized sum of the local clustering coeffi‐
cients.

Clustering coefficients give us an effective means to find obvious groups like cliques,
where every node has a relationship with all other nodes, but we can also specify
thresholds to set levels (say, where nodes are 40% connected).

When Should I Use Triangle Count and Clustering Coefficient?
Use Triangle Count when you need to determine the stability of a group or as part of
calculating other network measures such as the clustering coefficient. Triangle count‐
ing is popular in social network analysis, where it is used to detect communities.

Clustering Coefficient can provide the probability that randomly chosen nodes will
be connected. You can also use it to quickly evaluate the cohesiveness of a specific
group or your overall network. Together these algorithms are used to estimate resil‐
iency and look for network structures.

Example use cases include:

• Identifying features for classifying a given website as spam content. This is
described in “Efficient Semi-Streaming Algorithms for Local Triangle Counting
in Massive Graphs”, a paper by L. Becchetti et al.

• Investigating the community structure of Facebook’s social graph, where
researchers found dense neighborhoods of users in an otherwise sparse global
graph. Find this study in the paper “The Anatomy of the Facebook Social Graph”,
by J. Ugander et al.

• Exploring the thematic structure of the web and detecting communities of pages
with common topics based on the reciprocal links between them. For more infor‐
mation, see “Curvature of Co-Links Uncovers Hidden Thematic Layers in the
World Wide Web”, by J.-P. Eckmann and E. Moses.

116 | Chapter 6: Community Detection Algorithms

Triangle Count with Apache Spark
Now we’re ready to execute the Triangle Count algorithm. We can use the following
code to do this:

result = g.triangleCount()
(result.sort("count", ascending=False)
 .filter('count > 0')
 .show())

If we run that code in pyspark we’ll see this output:

count id
1 jupyter

1 python-dateutil

1 six

1 ipykernel

1 matplotlib

1 jpy-console

A triangle in this graph would indicate that two of a node’s neighbors are also neigh‐
bors. Six of our libraries participate in such triangles.

What if we want to know which nodes are in those triangles? That’s where a triangle
stream comes in. For this, we need Neo4j.

Triangles with Neo4j
Getting a stream of the triangles isn’t available using Spark, but we can return it using
Neo4j:

CALL algo.triangle.stream("Library","DEPENDS_ON")
YIELD nodeA, nodeB, nodeC
RETURN algo.getNodeById(nodeA).id AS nodeA,
 algo.getNodeById(nodeB).id AS nodeB,
 algo.getNodeById(nodeC).id AS nodeC

Running this procedure gives the following result:

nodeA nodeB nodeC
matplotlib six python-dateutil

jupyter jpy-console ipykernel

We see the same six libraries as we did before, but now we know how they’re connec‐
ted. matplotlib, six, and python-dateutil form one triangle. jupyter, jpy-console, and
ipykernel form the other.

Triangle Count and Clustering Coefficient | 117

We can see these triangles visually in Figure 6-4.

Figure 6-4. Triangles in the software dependency graph

Local Clustering Coefficient with Neo4j
We can also work out the local clustering coefficient. The following query will calcu‐
late this for each node:

CALL algo.triangleCount.stream('Library', 'DEPENDS_ON')
YIELD nodeId, triangles, coefficient
WHERE coefficient > 0
RETURN algo.getNodeById(nodeId).id AS library, coefficient
ORDER BY coefficient DESC

Running this procedure gives the following result:

library coefficient
ipykernel 1.0

jupyter 0.3333333333333333

jpy-console 0.3333333333333333

six 0.3333333333333333

python-dateutil 0.3333333333333333

118 | Chapter 6: Community Detection Algorithms

library coefficient
matplotlib 0.16666666666666666

ipykernel has a score of 1, which means that all ipykernel’s neighbors are neighbors of
each other. We can clearly see that in Figure 6-4. This tells us that the community
directly around ipykernel is very cohesive.

We’ve filtered out nodes with a coefficient score of 0 in this code sample, but nodes
with low coefficients may also be interesting. A low score can be an indicator that a
node is a structural hole—a node that is well connected to nodes in different com‐
munities that aren’t otherwise connected to each other. This is a method for finding
potential bridges that we discussed in Chapter 5.

Strongly Connected Components
The Strongly Connected Components (SCC) algorithm is one of the earliest graph
algorithms. SCC finds sets of connected nodes in a directed graph where each node is
reachable in both directions from any other node in the same set. Its runtime opera‐
tions scale well, proportional to the number of nodes. In Figure 6-5 you can see that
the nodes in an SCC group don’t need to be immediate neighbors, but there must be
directional paths between all nodes in the set.

Figure 6-5. Strongly connected components

Strongly Connected Components | 119

Decomposing a directed graph into its strongly connected compo‐
nents is a classic application of the Depth First Search algorithm.
Neo4j uses DFS under the hood as part of its implementation of the
SCC algorithm.

When Should I Use Strongly Connected Components?
Use Strongly Connected Components as an early step in graph analysis to see how a
graph is structured or to identify tight clusters that may warrant independent investi‐
gation. A component that is strongly connected can be used to profile similar behav‐
ior or inclinations in a group for applications such as recommendation engines.

Many community detection algorithms like SCC are used to find and collapse clusters
into single nodes for further intercluster analysis. You can also use SCC to visualize
cycles for analyses like finding processes that might deadlock because each subpro‐
cess is waiting for another member to take action.

Example use cases include:

• Finding the set of firms in which every member directly and/or indirectly owns
shares in every other member, as in “The Network of Global Corporate Control”,
an analysis of powerful transnational corporations by S. Vitali, J. B. Glattfelder,
and S. Battiston.

• Computing the connectivity of different network configurations when measuring
routing performance in multihop wireless networks. Read more in “Routing Per‐
formance in the Presence of Unidirectional Links in Multihop Wireless Net‐
works”, by M. K. Marina and S. R. Das.

• Acting as the first step in many graph algorithms that work only on strongly con‐
nected graphs. In social networks we find many strongly connected groups. In
these sets people often have similar preferences, and the SCC algorithm is used to
find such groups and suggest pages to like or products to purchase to the people
in the group who have not yet done so.

Some algorithms have strategies for escaping infinite loops, but if
we’re writing our own algorithms or finding nonterminating pro‐
cesses, we can use SCC to check for cycles.

Strongly Connected Components with Apache Spark
Starting with Apache Spark, we’ll first import the packages we need from Spark and
the GraphFrames package:

120 | Chapter 6: Community Detection Algorithms

from graphframes import *
from pyspark.sql import functions as F

Now we’re ready to execute the Strongly Connected Components algorithm. We’ll use
it to work out whether there are any circular dependencies in our graph.

Two nodes can only be in the same strongly connected component
if there are paths between them in both directions.

We write the following code to do this:

result = g.stronglyConnectedComponents(maxIter=10)
(result.sort("component")
 .groupby("component")
 .agg(F.collect_list("id").alias("libraries"))
 .show(truncate=False))

If we run that code in pyspark we’ll see this output:

component libraries
180388626432 [jpy-core]

223338299392 [spacy]

498216206336 [numpy]

523986010112 [six]

549755813888 [pandas]

558345748480 [nbconvert]

661424963584 [ipykernel]

721554505728 [jupyter]

764504178688 [jpy-client]

833223655424 [pytz]

910533066752 [python-dateutil]

936302870528 [pyspark]

944892805120 [matplotlib]

1099511627776 [jpy-console]

1279900254208 [py4j]

You might notice that every library node is assigned to a unique component. This is
the partition or subgroup it belongs to, and as we (hopefully!) expected, every node is
in its own partition. This means our software project has no circular dependencies
amongst these libraries.

Strongly Connected Components | 121

Strongly Connected Components with Neo4j
Let’s run the same algorithm using Neo4j. Execute the following query to run the
algorithm:

CALL algo.scc.stream("Library", "DEPENDS_ON")
YIELD nodeId, partition
RETURN partition, collect(algo.getNodeById(nodeId)) AS libraries
ORDER BY size(libraries) DESC

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

This is the output we’ll see when we run the query:

partition libraries
8 [ipykernel]

11 [six]

2 [matplotlib]

5 [jupyter]

14 [python-dateutil]

13 [numpy]

4 [py4j]

7 [nbconvert]

1 [pyspark]

10 [jpy-core]

9 [jpy-client]

3 [spacy]

12 [pandas]

6 [jpy-console]

0 [pytz]

As with the Spark example, every node is in its own partition.

So far the algorithm has only revealed that our Python libraries are very well behaved,
but let’s create a circular dependency in the graph to make things more interesting.
This should mean that we’ll end up with some nodes in the same partition.

The following query adds an extra library that creates a circular dependency between
py4j and pyspark:

122 | Chapter 6: Community Detection Algorithms

MATCH (py4j:Library {id: "py4j"})
MATCH (pyspark:Library {id: "pyspark"})
MERGE (extra:Library {id: "extra"})
MERGE (py4j)-[:DEPENDS_ON]->(extra)
MERGE (extra)-[:DEPENDS_ON]->(pyspark)

We can clearly see the circular dependency that got created in Figure 6-6.

Figure 6-6. A circular dependency between pyspark, py4j, and extra

Now if we run the SCC algorithm again we’ll see a slightly different result:

partition libraries
1 [pyspark, py4j, extra]

8 [ipykernel]

11 [six]

2 [matplotlib]

5 [jupyter]

14 [numpy]

13 [pandas]

7 [nbconvert]

10 [jpy-core]

9 [jpy-client]

3 [spacy]

15 [python-dateutil]

6 [jpy-console]

0 [pytz]

pyspark, py4j, and extra are all part of the same partition, and SCCs helped us find
the circular dependency!

Strongly Connected Components | 123

Before we move on to the next algorithm we’ll delete the extra library and its relation‐
ships from the graph:

MATCH (extra:Library {id: "extra"})
DETACH DELETE extra

Connected Components
The Connected Components algorithm (sometimes called Union Find or Weakly
Connected Components) finds sets of connected nodes in an undirected graph where
each node is reachable from any other node in the same set. It differs from the SCC
algorithm because it only needs a path to exist between pairs of nodes in one direc‐
tion, whereas SCC needs a path to exist in both directions. Bernard A. Galler and
Michael J. Fischer first described this algorithm in their 1964 paper, “An Improved
Equivalence Algorithm”.

When Should I Use Connected Components?
As with SCC, Connected Components is often used early in an analysis to understand
a graph’s structure. Because it scales efficiently, consider this algorithm for graphs
requiring frequent updates. It can quickly show new nodes in common between
groups, which is useful for analysis such as fraud detection.

Make it a habit to run Connected Components to test whether a graph is connected
as a preparatory step for general graph analysis. Performing this quick test can avoid
accidentally running algorithms on only one disconnected component of a graph and
getting incorrect results.

Example use cases include:

• Keeping track of clusters of database records, as part of the deduplication pro‐
cess. Deduplication is an important task in master data management applica‐
tions; the approach is described in more detail in “An Efficient Domain-
Independent Algorithm for Detecting Approximately Duplicate Database
Records”, by A. Monge and C. Elkan.

• Analyzing citation networks. One study uses Connected Components to work
out how well connected a network is, and then to see whether the connectivity
remains if “hub” or “authority” nodes are moved from the graph. This use case is
explained further in “Characterizing and Mining Citation Graph of Computer
Science Literature”, a paper by Y. An, J. C. M. Janssen, and E. E. Milios.

124 | Chapter 6: Community Detection Algorithms

Connected Components with Apache Spark
Starting with Apache Spark, we’ll first import the packages we need from Spark and
the GraphFrames package:

from pyspark.sql import functions as F

Now we’re ready to execute the Connected Components algorithm.

Two nodes can be in the same connected component if there is a
path between them in either direction.

We write the following code to do this:

result = g.connectedComponents()
(result.sort("component")
 .groupby("component")
 .agg(F.collect_list("id").alias("libraries"))
 .show(truncate=False))

If we run that code in pyspark we’ll see this output:

component libraries
180388626432 [jpy-core, nbconvert, ipykernel, jupyter, jpy-client, jpy-console]

223338299392 [spacy, numpy, six, pandas, pytz, python-dateutil, matplotlib]

936302870528 [pyspark, py4j]

The results show three clusters of nodes, which can also be seen in Figure 6-7.

Connected Components | 125

Figure 6-7. Clusters found by the Connected Components algorithm

In this example it’s very easy to see that there are three components just by visual
inspection. This algorithm shows its value more on larger graphs, where visual
inspection isn’t possible or is very time-consuming.

Connected Components with Neo4j
We can also execute this algorithm in Neo4j by running the following query:

CALL algo.unionFind.stream("Library", "DEPENDS_ON")
YIELD nodeId,setId
RETURN setId, collect(algo.getNodeById(nodeId)) AS libraries
ORDER BY size(libraries) DESC

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

Here’s the output:

126 | Chapter 6: Community Detection Algorithms

setId libraries
2 [pytz, matplotlib, spacy, six, pandas, numpy, python-dateutil]

5 [jupyter, jpy-console, nbconvert, ipykernel, jpy-client, jpy-core]

1 [pyspark, py4j]

As expected, we get exactly the same results as we did with Spark.

Both of the community detection algorithms that we’ve covered so far are determinis‐
tic: they return the same results each time we run them. Our next two algorithms are
examples of nondeterministic algorithms, where we may see different results if we
run them multiple times, even on the same data.

Label Propagation
The Label Propagation algorithm (LPA) is a fast algorithm for finding communities
in a graph. In LPA, nodes select their group based on their direct neighbors. This pro‐
cess is well suited to networks where groupings are less clear and weights can be used
to help a node determine which community to place itself within. It also lends itself
well to semisupervised learning because you can seed the process with preassigned,
indicative node labels.

The intuition behind this algorithm is that a single label can quickly become domi‐
nant in a densely connected group of nodes, but it will have trouble crossing a
sparsely connected region. Labels get trapped inside a densely connected group of
nodes, and nodes that end up with the same label when the algorithm finishes are
considered part of the same community. The algorithm resolves overlaps, where
nodes are potentially part of multiple clusters, by assigning membership to the label
neighborhood with the highest combined relationship and node weight.

LPA is a relatively new algorithm proposed in 2007 by U. N. Raghavan, R. Albert, and
S. Kumara, in a paper titled “Near Linear Time Algorithm to Detect Community
Structures in Large-Scale Networks”.

Figure 6-8 depicts two variations of Label Propagation, a simple push method and the
more typical pull method that relies on relationship weights. The pull method lends
itself well to parallelization.

Label Propagation | 127

Figure 6-8. Two variations of Label Propagation

The steps often used for the Label Propagation pull method are:

1. Every node is initialized with a unique label (an identifier), and, optionally pre‐
liminary “seed” labels can be used.

2. These labels propagate through the network.
3. At every propagation iteration, each node updates its label to match the one with

the maximum weight, which is calculated based on the weights of neighbor nodes
and their relationships. Ties are broken uniformly and randomly.

4. LPA reaches convergence when each node has the majority label of its neighbors.

128 | Chapter 6: Community Detection Algorithms

As labels propagate, densely connected groups of nodes quickly reach a consensus on
a unique label. At the end of the propagation, only a few labels will remain, and nodes
that have the same label belong to the same community.

Semi-Supervised Learning and Seed Labels
In contrast to other algorithms, Label Propagation can return different community
structures when run multiple times on the same graph. The order in which LPA eval‐
uates nodes can have an influence on the final communities it returns.

The range of solutions is narrowed when some nodes are given preliminary labels
(i.e., seed labels), while others are unlabeled. Unlabeled nodes are more likely to
adopt the preliminary labels.

This use of Label Propagation can be considered a semi-supervised learning method to
find communities. Semi-supervised learning is a class of machine learning tasks and
techniques that operate on a small amount of labeled data, along with a larger amount
of unlabeled data. We can also run the algorithm repeatedly on graphs as they evolve.

Finally, LPA sometimes doesn’t converge on a single solution. In this situation, our
community results will continually flip between a few remarkably similar communi‐
ties and the algorithm would never complete. Seed labels help guide it toward a solu‐
tion. Spark and Neo4j use a set maximum number of iterations to avoid never-ending
execution. You should test the iteration setting for your data to balance accuracy and
execution time.

When Should I Use Label Propagation?
Use Label Propagation in large-scale networks for initial community detection, espe‐
cially when weights are available. This algorithm can be parallelized and is therefore
extremely fast at graph partitioning.

Example use cases include:

• Assigning polarity of tweets as a part of semantic analysis. In this scenario, posi‐
tive and negative seed labels from a classifier are used in combination with the
Twitter follower graph. For more information, see “Twitter Polarity Classification
with Label Propagation over Lexical Links and the Follower Graph”, by M. Sper‐
iosu et al.

• Finding potentially dangerous combinations of possible co-prescribed drugs,
based on the chemical similarity and side effect profiles. See “Label Propagation
Prediction of Drug–Drug Interactions Based on Clinical Side Effects”, a paper by
P. Zhang et al.

Label Propagation | 129

• Inferring dialogue features and user intention for a machine learning model. For
more information, see “Feature Inference Based on Label Propagation on Wiki‐
data Graph for DST”, a paper by Y. Murase et al.

Label Propagation with Apache Spark
Starting with Apache Spark, we’ll first import the packages we need from Spark and
the GraphFrames package:

from pyspark.sql import functions as F

Now we’re ready to execute the Label Propagation algorithm. We write the following
code to do this:

result = g.labelPropagation(maxIter=10)
(result
.sort("label")
.groupby("label")
.agg(F.collect_list("id"))
.show(truncate=False))

If we run that code in pyspark we’ll see this output:

label collect_list(id)
180388626432 [jpy-core, jpy-console, jupyter]

223338299392 [matplotlib, spacy]

498216206336 [python-dateutil, numpy, six, pytz]

549755813888 [pandas]

558345748480 [nbconvert, ipykernel, jpy-client]

936302870528 [pyspark]

1279900254208 [py4j]

Compared to Connected Components, we have more clusters of libraries in this
example. LPA is less strict than Connected Components with respect to how it deter‐
mines clusters. Two neighbors (directly connected nodes) may be found to be in dif‐
ferent clusters using Label Propagation. However, using Connected Components a
node would always be in the same cluster as its neighbors because that algorithm
bases grouping strictly on relationships.

In our example, the most obvious difference is that the Jupyter libraries have been
split into two communities—one containing the core parts of the library and the
other the client-facing tools.

130 | Chapter 6: Community Detection Algorithms

Label Propagation with Neo4j
Now let’s try the same algorithm with Neo4j. We can execute LPA by running the fol‐
lowing query:

CALL algo.labelPropagation.stream("Library", "DEPENDS_ON",
 { iterations: 10 })
YIELD nodeId, label
RETURN label,
 collect(algo.getNodeById(nodeId).id) AS libraries
ORDER BY size(libraries) DESC

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

iterations: 10

The maximum number of iterations to run

These are the results we’d see:

label libraries
11 [matplotlib, spacy, six, pandas, python-dateutil]

10 [jupyter, jpy-console, nbconvert, jpy-client, jpy-core]

4 [pyspark, py4j]

8 [ipykernel]

13 [numpy]

0 [pytz]

The results, which can also be seen visually in Figure 6-9, are fairly similar to those
we got with Apache Spark.

Label Propagation | 131

Figure 6-9. Clusters found by the Label Propagation algorithm

We can also run the algorithm assuming that the graph is undirected, which means
that nodes will try to adopt labels from the libraries they depend on as well as ones
that depend on them.

To do this, we pass the DIRECTION:BOTH parameter to the algorithm:

CALL algo.labelPropagation.stream("Library", "DEPENDS_ON",
 { iterations: 10, direction: "BOTH" })
YIELD nodeId, label
RETURN label,
 collect(algo.getNodeById(nodeId).id) AS libraries
ORDER BY size(libraries) DESC

If we run that, we’ll get the following output:

label libraries
11 [pytz, matplotlib, spacy, six, pandas, numpy, python-dateutil]

10 [nbconvert, jpy-client, jpy-core]

6 [jupyter, jpy-console, ipykernel]

4 [pyspark, py4j]

132 | Chapter 6: Community Detection Algorithms

The number of clusters has reduced from six to four, and all the nodes in the matplot‐
lib part of the graph are now grouped together. This can be seen more clearly in
Figure 6-10.

Figure 6-10. Clusters found by the Label Propagation algorithm, when ignoring relation‐
ship direction

Although the results of running Label Propagation on this data are similar for undir‐
ected and directed calculation, on complicated graphs you will see more significant
differences. This is because ignoring direction causes nodes to try and adopt more
labels, regardless of the relationship source.

Louvain Modularity
The Louvain Modularity algorithm finds clusters by comparing community density
as it assigns nodes to different groups. You can think of this as a “what if ” analysis to
try various groupings with the goal of reaching a global optimum.

Proposed in 2008, the Louvain algorithm is one of the fastest modularity-based algo‐
rithms. As well as detecting communities, it also reveals a hierarchy of communities

Louvain Modularity | 133

at different scales. This is useful for understanding the structure of a network at dif‐
ferent levels of granularity.

Louvain quantifies how well a node is assigned to a group by looking at the density of
connections within a cluster in comparison to an average or random sample. This
measure of community assignment is called modularity.

Quality-based grouping via modularity
Modularity is a technique for uncovering communities by partitioning a graph into
more coarse-grained modules (or clusters) and then measuring the strength of the
groupings. As opposed to just looking at the concentration of connections within a
cluster, this method compares relationship densities in given clusters to densities
between clusters. The measure of the quality of those groupings is called modularity.

Modularity algorithms optimize communities locally and then globally, using multi‐
ple iterations to test different groupings and increasing coarseness. This strategy
identifies community hierarchies and provides a broad understanding of the overall
structure. However, all modularity algorithms suffer from two drawbacks:

• They merge smaller communities into larger ones.
• A plateau can occur where several partition options are present with similar

modularity, forming local maxima and preventing progress.

For more information, see the paper “The Performance of Modularity Maximization
in Practical Contexts”, by B. H. Good, Y.-A. de Montjoye, and A. Clauset.

Calculating Modularity
A simple calculation of modularity is based on the fraction of the relationships within
the given groups minus the expected fraction if relationships were distributed at ran‐
dom between all nodes. The value is always between 1 and –1, with positive values
indicating more relationship density than you’d expect by chance and negative values
indicating less density. Figure 6-11 illustrates several different modularity scores
based on node groupings.

134 | Chapter 6: Community Detection Algorithms

Figure 6-11. Four modularity scores based on different partitioning choices

The formula for the modularity of a group is:

M = ∑
c = 1

nc Lc
L −

kc
2L

2

where:

• L is the number of relationships in the entire group.
• Lc is the number of relationships in a partition.

• kc is the total degree of nodes in a partition.

The calculation for the optimal partition at the top of Figure 6-11 is as follows:

• The dark partition is 7
13 − 15

2 13
2

= 0 . 205

• The light partition is 5
13 − 11

2 13
2

= 0 . 206

• These are added together for M = 0 . 205 + 0 . 206 = 0 . 41

Louvain Modularity | 135

Initially the Louvain Modularity algorithm optimizes modularity locally on all nodes,
which finds small communities; then each small community is grouped into a larger
conglomerate node and the first step is repeated until we reach a global optimum.

The algorithm consists of repeated application of two steps, as illustrated in
Figure 6-12.

Figure 6-12. The Louvain algorithm process

The Louvain algorithm’s steps include:

1. A “greedy” assignment of nodes to communities, favoring local optimizations of
modularity.

136 | Chapter 6: Community Detection Algorithms

2. The definition of a more coarse-grained network based on the communities
found in the first step. This coarse-grained network will be used in the next itera‐
tion of the algorithm.

These two steps are repeated until no further modularity-increasing reassignments of
communities are possible.

Part of the first optimization step is evaluating the modularity of a group. Louvain
uses the following formula to accomplish this:

Q = 1
2m ∑u, v Auv −

kukv
2m δ cu, cv

where:

• u and v are nodes.
• m is the total relationship weight across the entire graph (2m is a common nor‐

malization value in modularity formulas).

• Auv −
kukv
2m is the strength of the relationship between u and v compared to what

we would expect with a random assignment (tends toward averages) of those
nodes in the network.
— Auv is the weight of the relationship between u and v.

— ku is the sum of relationship weights for u.

— kv is the sum of relationship weights for v.

• δ cu, cv is equal to 1 if u and v are assigned to the same community, and 0 if they
are not.

Another part of that first step evaluates the change in modularity if a node is moved
to another group. Louvain uses a more complicated variation of this formula and
then determines the best group assignment.

When Should I Use Louvain?
Use Louvain Modularity to find communities in vast networks. This algorithm
applies a heuristic, as opposed to exact, modularity, which is computationally expen‐
sive. Louvain can therefore be used on large graphs where standard modularity algo‐
rithms may struggle.

Louvain is also very helpful for evaluating the structure of complex networks, in par‐
ticular uncovering many levels of hierarchies–such as what you might find in a crimi‐
nal organization. The algorithm can provide results where you can zoom in on
different levels of granularity and find subcommunities within subcommunities
within subcommunities.

Louvain Modularity | 137

Example use cases include:

• Detecting cyberattacks. The Louvain algorithm was used in a 2016 study by S. V.
Shanbhaq of fast community detection in large-scale cybernetworks for cyberse‐
curity applications. Once these communities have been detected they can be used
to detect cyberattacks.

• Extracting topics from online social platforms, like Twitter and YouTube, based
on the co-occurence of terms in documents as part of the topic modeling process.
This approach is described in a paper by G. S. Kido, R. A. Igawa, and S. Barbon
Jr., “Topic Modeling Based on Louvain Method in Online Social Networks”.

• Finding hierarchical community structures within the brain’s functional network,
as described in “Hierarchical Modularity in Human Brain Functional Networks”
by D. Meunier et al.

Modularity optimization algorithms, including Louvain, suffer
from two issues. First, the algorithms can overlook small commun‐
ities within large networks. You can overcome this problem by
reviewing the intermediate consolidation steps. Second, in large
graphs with overlapping communities, modularity optimizers may
not correctly determine the global maxima. In the latter case, we
recommend using any modularity algorithm as a guide for gross
estimation but not complete accuracy.

Louvain with Neo4j
Let’s see the Louvain algorithm in action. We can execute the following query to run
the algorithm over our graph:

CALL algo.louvain.stream("Library", "DEPENDS_ON")
YIELD nodeId, communities
RETURN algo.getNodeById(nodeId).id AS libraries, communities

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

These are the results:

libraries communities
pytz [0, 0]

138 | Chapter 6: Community Detection Algorithms

libraries communities
pyspark [1, 1]

matplotlib [2, 0]

spacy [2, 0]

py4j [1, 1]

jupyter [3, 2]

jpy-console [3, 2]

nbconvert [4, 2]

ipykernel [3, 2]

jpy-client [4, 2]

jpy-core [4, 2]

six [2, 0]

pandas [0, 0]

numpy [2, 0]

python-dateutil [2, 0]

The communities column describes the community that nodes fall into at two levels.
The last value in the array is the final community and the other one is an intermedi‐
ate community.

The numbers assigned to the intermediate and final communities are simply labels
with no measurable meaning. Treat these as labels that indicate which community
nodes belong to such as “belongs to a community labeled 0”, “a community labeled 4”,
and so forth.

For example, matplotlib has a result of [2,0]. This means that matplotlib’s final com‐
munity is labeled 0 and its intermediate community is labeled 2.

It’s easier to see how this works if we store these communities using the write version
of the algorithm and then query it afterwards. The following query will run the Lou‐
vain algorithm and store the result in the communities property on each node:

CALL algo.louvain("Library", "DEPENDS_ON")

We could also store the resulting communities using the streaming version of the
algorithm, followed by calling the SET clause to store the result. The following query
shows how we could do this:

CALL algo.louvain.stream("Library", "DEPENDS_ON")
YIELD nodeId, communities
WITH algo.getNodeById(nodeId) AS node, communities
SET node.communities = communities

Once we’ve run either of those queries, we can write the following query to find the
final clusters:

Louvain Modularity | 139

MATCH (l:Library)
RETURN l.communities[-1] AS community, collect(l.id) AS libraries
ORDER BY size(libraries) DESC

l.communities[-1] returns the last item from the underlying array that this property
stores.

Running the query yields this output:

community libraries
0 [pytz, matplotlib, spacy, six, pandas, numpy, python-dateutil]

2 [jupyter, jpy-console, nbconvert, ipykernel, jpy-client, jpy-core]

1 [pyspark, py4j]

This clustering is the same as we saw with the connected components algorithm.

matplotlib is in a community with pytz, spacy, six, pandas, numpy, and python-
dateutil. We can see this more clearly in Figure 6-13.

140 | Chapter 6: Community Detection Algorithms

Figure 6-13. Clusters found by the Louvain algorithm

An additional feature of the Louvain algorithm is that we can see the intermediate
clustering as well. This will show us finer-grained clusters than the final layer did:

MATCH (l:Library)
RETURN l.communities[0] AS community, collect(l.id) AS libraries
ORDER BY size(libraries) DESC

Running that query gives this output:

community libraries
2 [matplotlib, spacy, six, python-dateutil]

4 [nbconvert, jpy-client, jpy-core]

Louvain Modularity | 141

community libraries
3 [jupyter, jpy-console, ipykernel]

1 [pyspark, py4j]

0 [pytz, pandas]

5 [numpy]

The libraries in the matplotlib community have now broken down into three smaller
communities:

• matplotlib, spacy, six, and python-dateutil
• pytz and pandas
• numpy

We can see this breakdown visually in Figure 6-14.

Figure 6-14. Intermediate clusters found by the Louvain algorithm

142 | Chapter 6: Community Detection Algorithms

Although this graph only showed two layers of hierarchy, if we ran this algorithm on
a larger graph we would see a more complex hierarchy. The intermediate clusters that
Louvain reveals can be very useful for detecting fine-grained communities that may
not be detected by other community detection algorithms.

Validating Communities
Community detection algorithms generally have the same goal: to identify groups.
However, because different algorithms begin with different assumptions, they may
uncover different communities. This makes choosing the right algorithm for a partic‐
ular problem more challenging and a bit of an exploration.

Most community detection algorithms do reasonably well when relationship density
is high within groups compared to their surroundings, but real-world networks are
often less distinct. We can validate the accuracy of the communities found by com‐
paring our results to a benchmark based on data with known communities.

Two of the best-known benchmarks are the Girvan-Newman (GN) and Lancichi‐
netti–Fortunato–Radicchi (LFR) algorithms. The reference networks that these algo‐
rithms generate are quite different: GN generates a random network which is more
homogeneous, whereas LFR creates a more heterogeneous graph where node degrees
and community size are distributed according to a power law.

Since the accuracy of our testing depends on the benchmark used, it’s important to
match our benchmark to our dataset. As much as possible, look for similar densities,
relationship distributions, community definitions, and related domains.

Summary
Community detection algorithms are useful for understanding the way that nodes are
grouped together in a graph.

In this chapter, we started by learning about the Triangle Count and Clustering Coef‐
ficient algorithms. We then moved on to two deterministic community detection
algorithms: Strongly Connected Components and Connected Components. These
algorithms have strict definitions of what constitutes a community and are very use‐
ful for getting a feel for the graph structure early in the graph analytics pipeline.

We finished with Label Propagation and Louvain, two nondeterministic algorithms
which are better able to detect finer-grained communities. Louvain also showed us a
hierarchy of communities at different scales.

In the next chapter, we’ll take a much larger dataset and learn how to combine the
algorithms together to gain even more insight into our connected data.

Validating Communities | 143

CHAPTER 7

Graph Algorithms in Practice

The approach we take to graph analysis evolves as we become more familiar with the
behavior of different algorithms on specific datasets. In this chapter, we’ll run through
several examples to give you a better feeling for how to tackle large-scale graph data
analysis using datasets from Yelp and the US Department of Transportation. We’ll
walk through Yelp data analysis in Neo4j that includes a general overview of the data,
combining algorithms to make trip recommendations, and mining user and business
data for consulting. In Spark, we’ll look into US airline data to understand traffic pat‐
terns and delays as well as how airports are connected by different airlines.

Because pathfinding algorithms are straightforward, our examples will use these cen‐
trality and community detection algorithms:

• PageRank to find influential Yelp reviewers and then correlate their ratings for
specific hotels

• Betweenness Centrality to uncover reviewers connected to multiple groups and
then extract their preferences

• Label Propagation with a projection to create supercategories of similar Yelp
businesses

• Degree Centrality to quickly identify airport hubs in the US transport dataset
• Strongly Connected Components to look at clusters of airport routes in the US

Analyzing Yelp Data with Neo4j
Yelp helps people find local businesses based on reviews, preferences, and recommen‐
dations. Over 180 million reviews had been written on the platform as of the end of

145

2018. Since 2013, Yelp has run the Yelp Dataset challenge, a competition that encour‐
ages people to explore and research Yelp’s open dataset.

As of Round 12 (conducted in 2018) of the challenge, the open dataset contained:

• Over 7 million reviews plus tips
• Over 1.5 million users and 280,000 pictures
• Over 188,000 businesses with 1.4 million attributes
• 10 metropolitan areas

Since its launch, the dataset has become popular, with hundreds of academic papers
written using this material. The Yelp dataset represents real data that is very well
structured and highly interconnected. It’s a great showcase for graph algorithms that
you can also download and explore.

Yelp Social Network
As well as writing and reading reviews about businesses, users of Yelp form a social
network. Users can send friend requests to other users they’ve come across while
browsing Yelp.com, or they can connect their address books or Facebook graphs.

The Yelp dataset also includes a social network. Figure 7-1 is a screen capture of the
Friends section of Mark’s Yelp profile.

Figure 7-1. Mark’s Yelp profile

Apart from the fact that Mark needs a few more friends, we’re ready to start. To illus‐
trate how we might analyze Yelp data in Neo4j, we’ll use a scenario where we work for
a travel information business. We’ll first explore the Yelp data, and then look at how

146 | Chapter 7: Graph Algorithms in Practice

to help people plan trips with our app. We will walk through finding good recom‐
mendations for places to stay and things to do in major cities like Las Vegas.

Another part of our business scenario will involve consulting to travel-destination
businesses. In one example we’ll help hotels identify influential visitors and then busi‐
nesses that they should target for cross-promotion programs.

Data Import
There are many different methods for importing data into Neo4j, including the
Import tool, the LOAD CSV command that we’ve seen in earlier chapters, and Neo4j
drivers.

For the Yelp dataset we need to do a one-off import of a large amount of data, so the
Import tool is the best choice. See “Neo4j Bulk Data Import and Yelp” on page 225 for
more details.

Graph Model
The Yelp data is represented in a graph model as shown in Figure 7-2.

Figure 7-2. The Yelp graph model

Our graph contains User labeled nodes, which have FRIENDS relationships with other
Users. Users also write Reviews and tips about Businesses. All of the metadata is
stored as properties of nodes, except for business categories, which are represented by
separate Category nodes. For location data we’ve extracted City, Area, and Country
attributes into the subgraph. In other use cases it might make sense to extract other
attributes to nodes such as dates, or collapse nodes to relationships such as reviews.

The Yelp dataset also includes user tips and photos, but we won’t use those in our
example.

Analyzing Yelp Data with Neo4j | 147

A Quick Overview of the Yelp Data
Once we have the data loaded in Neo4j, we’ll execute some exploratory queries. We’ll
ask how many nodes are in each category or what types of relations exist, to get a feel
for the Yelp data. Previously we’ve shown Cypher queries for our Neo4j examples, but
we might be executing these from another programming language. As Python is the
go-to language for data scientists, we’ll use Neo4j’s Python driver in this section when
we want to connect the results to other libraries from the Python ecosystem. If we
just want to show the result of a query we’ll use Cypher directly.

We’ll also show how to combine Neo4j with the popular pandas library, which is
effective for data wrangling outside of the database. We’ll see how to use the tabulate
library to prettify the results we get from pandas, and how to create visual representa‐
tions of data using matplotlib.

We’ll also be using Neo4j’s APOC library of procedures to help us write even more
powerful Cypher queries. There’s more information about APOC in “APOC and
Other Neo4j Tools” on page 228.

Let’s first install the Python libraries:

pip install neo4j-driver tabulate pandas matplotlib

Once we’ve done that we’ll import those libraries:

from neo4j.v1 import GraphDatabase
import pandas as pd
from tabulate import tabulate

Importing matplotlib can be fiddly on macOS, but the following lines should do the
trick:

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

If you’re running on another operating system, the middle line may not be required.
Now let’s create an instance of the Neo4j driver pointing at a local Neo4j database:

driver = GraphDatabase.driver("bolt://localhost", auth=("neo4j", "neo"))

You’ll need to update the initialization of the driver to use your
own host and credentials.

To get started, let’s look at some general numbers for nodes and relationships. The
following code calculates the cardinalities of node labels (i.e., counts the number of
nodes for each label) in the database:

148 | Chapter 7: Graph Algorithms in Practice

result = {"label": [], "count": []}
with driver.session() as session:
 labels = [row["label"] for row in session.run("CALL db.labels()")]
 for label in labels:
 query = f"MATCH (:`{label}`) RETURN count(*) as count"
 count = session.run(query).single()["count"]
 result["label"].append(label)
 result["count"].append(count)

df = pd.DataFrame(data=result)
print(tabulate(df.sort_values("count"), headers='keys',
 tablefmt='psql', showindex=False))

If we run that code we’ll see how many nodes we have for each label:

label count
Country 17

Area 54

City 1093

Category 1293

Business 174567

User 1326101

Review 5261669

We could also create a visual representation of the cardinalities, with the following
code:

plt.style.use('fivethirtyeight')

ax = df.plot(kind='bar', x='label', y='count', legend=None)

ax.xaxis.set_label_text("")
plt.yscale("log")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

We can see the chart that gets generated by this code in Figure 7-3. Note that this
chart is using log scale.

Analyzing Yelp Data with Neo4j | 149

Figure 7-3. The number of nodes for each label category

Similarly, we can calculate the cardinalities of relationships:

result = {"relType": [], "count": []}
with driver.session() as session:
 rel_types = [row["relationshipType"] for row in session.run
 ("CALL db.relationshipTypes()")]
 for rel_type in rel_types:
 query = f"MATCH ()-[:`{rel_type}`]->() RETURN count(*) as count"
 count = session.run(query).single()["count"]
 result["relType"].append(rel_type)
 result["count"].append(count)

df = pd.DataFrame(data=result)
print(tabulate(df.sort_values("count"), headers='keys',
 tablefmt='psql', showindex=False))

If we run that code we’ll see the number of each type of relationship:

relType count
IN_COUNTRY 54

IN_AREA 1154

IN_CITY 174566

IN_CATEGORY 667527

WROTE 5261669

REVIEWS 5261669

FRIENDS 10645356

150 | Chapter 7: Graph Algorithms in Practice

We can see a chart of the cardinalities in Figure 7-4. As with the node cardinalities
chart, this chart is using log scale.

Figure 7-4. The number of relationships by relationship type

These queries shouldn’t reveal anything surprising, but they’re useful to get a feel for
what’s in the data. This also serves as a quick check that the data imported correctly.

We assume Yelp has many hotel reviews, but it makes sense to check before we focus
on that sector. We can find out how many hotel businesses are in that data and how
many reviews they have by running the following query:

MATCH (category:Category {name: "Hotels"})
RETURN size((category)<-[:IN_CATEGORY]-()) AS businesses,
 size((:Review)-[:REVIEWS]->(:Business)-[:IN_CATEGORY]->
 (category)) AS reviews

Here’s the result:

businesses reviews
2683 183759

We have many businesses to work with, and a lot of reviews! In the next section we’ll
explore the data further with our business scenario.

Analyzing Yelp Data with Neo4j | 151

Trip Planning App
To add well-liked recommendations to our app, we start by finding the most-rated
hotels as a heuristic for popular choices for reservations. We can add how well they’ve
been rated to understand the actual experience. To see the 10 most-reviewed hotels
and plot their rating distributions, we use the following code:

Find the 10 hotels with the most reviews
query = """
MATCH (review:Review)-[:REVIEWS]->(business:Business),
 (business)-[:IN_CATEGORY]->(category:Category {name: $category}),
 (business)-[:IN_CITY]->(:City {name: $city})
RETURN business.name AS business, collect(review.stars) AS allReviews
ORDER BY size(allReviews) DESC
LIMIT 10
"""

fig = plt.figure()
fig.set_size_inches(10.5, 14.5)
fig.subplots_adjust(hspace=0.4, wspace=0.4)

with driver.session() as session:
 params = { "city": "Las Vegas", "category": "Hotels"}
 result = session.run(query, params)
 for index, row in enumerate(result):
 business = row["business"]
 stars = pd.Series(row["allReviews"])

 total = stars.count()
 average_stars = stars.mean().round(2)

 # Calculate the star distribution
 stars_histogram = stars.value_counts().sort_index()
 stars_histogram /= float(stars_histogram.sum())

 # Plot a bar chart showing the distribution of star ratings
 ax = fig.add_subplot(5, 2, index+1)
 stars_histogram.plot(kind="bar", legend=None, color="darkblue",
 title=f"{business}\nAve:
 {average_stars}, Total: {total}")

plt.tight_layout()
plt.show()

We’ve constrained by city and category to focus on Las Vegas hotels. We run that code
we get the chart in Figure 7-5. Note that the x-axis represents the hotel’s star rating
and the y-axis represents the overall percentage of each rating.

152 | Chapter 7: Graph Algorithms in Practice

Figure 7-5. The 10 most-reviewed hotels, with the number of stars on the x-axis and
their overall rating percentage on the y-axis

Analyzing Yelp Data with Neo4j | 153

These hotels have lots of reviews, far more than anyone would be likely to read. It
would be better to show our users the content from the most relevant reviews and
make them more prominent on our app. To do this analysis, we’ll move from basic
graph exploration to using graph algorithms.

Finding influential hotel reviewers
One way we can decide which reviews to post is by ordering reviews based on the
influence of the reviewer on Yelp. We’ll run the PageRank algorithm over the projected
graph of all users that have reviewed at least three hotels. Remember from earlier
chapters that a projection can help filter out inessential information as well as add
relationship data (sometimes inferred). We’ll use Yelp’s friend graph (introduced in
“Yelp Social Network” on page 146) as the relationships between users. The PageRank
algorithm will uncover those reviewers with more sway over more users, even if they
are not direct friends.

If two people are Yelp friends there are two FRIENDS relationships
between them. For example, if A and B are friends there will be a
FRIENDS relationship from A to B and another from B to A.

We need to write a query that projects a subgraph of users with more than three
reviews and then executes the PageRank algorithm over that projected subgraph.

It’s easier to understand how the subgraph projection works with a small example.
Figure 7-6 shows a graph of three mutual friends—Mark, Arya, and Praveena. Mark
and Praveena have both reviewed three hotels and will be part of the projected graph.
Arya, on the other hand, has only reviewed one hotel and will therefore be excluded
from the projection.

154 | Chapter 7: Graph Algorithms in Practice

Figure 7-6. A sample Yelp graph

Our projected graph will only include Mark and Praveena, as shown in Figure 7-7.

Figure 7-7. Our sample projected graph

Now that we’ve seen how graph projections work, let’s move forward. The following
query executes the PageRank algorithm over our projected graph and stores the
result in the hotelPageRank property on each node:

CALL algo.pageRank(
 'MATCH (u:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: $category})
 WITH u, count(*) AS reviews
 WHERE reviews >= $cutOff
 RETURN id(u) AS id',
 'MATCH (u1:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: $category})
 MATCH (u1)-[:FRIENDS]->(u2)
 RETURN id(u1) AS source, id(u2) AS target',

Analyzing Yelp Data with Neo4j | 155

 {graph: "cypher", write: true, writeProperty: "hotelPageRank",
 params: {category: "Hotels", cutOff: 3}}
)

You might have noticed that we didn’t set the damping factor or maximum iteration
limit discussed in Chapter 5. If not explicitly set, Neo4j defaults to a 0.85 damping
factor with maxIterations set to 20`.

Now let’s look at the distribution of the PageRank values so we’ll know how to filter
our data:

MATCH (u:User)
WHERE exists(u.hotelPageRank)
RETURN count(u.hotelPageRank) AS count,
 avg(u.hotelPageRank) AS ave,
 percentileDisc(u.hotelPageRank, 0.5) AS `50%`,
 percentileDisc(u.hotelPageRank, 0.75) AS `75%`,
 percentileDisc(u.hotelPageRank, 0.90) AS `90%`,
 percentileDisc(u.hotelPageRank, 0.95) AS `95%`,
 percentileDisc(u.hotelPageRank, 0.99) AS `99%`,
 percentileDisc(u.hotelPageRank, 0.999) AS `99.9%`,
 percentileDisc(u.hotelPageRank, 0.9999) AS `99.99%`,
 percentileDisc(u.hotelPageRank, 0.99999) AS `99.999%`,
 percentileDisc(u.hotelPageRank, 1) AS `100%`

If we run that query we’ll get this output:

count ave 50% 75% 90% 95% 99% 99.9% 99.99% 99.999% 100%
1326101 0.1614898 0.15 0.15 0.157497 0.181875 0.330081 1.649511 6.825738 15.27376 22.98046

To interpret this percentile table, the 90% value of 0.157497 means that 90% of users
had a lower PageRank score. 99.99% reflects the influence rank for the top 0.0001%
reviewers and 100% is simply the highest PageRank score.

It’s interesting that 90% of our users have a score of under 0.16, which is close to the
overall average—and only marginally more than the 0.15 that they are initialized with
by the PageRank algorithm. It seems like this data reflects a power-law distribution
with a few very influential reviewers.

Because we’re interested in finding only the most influential users, we’ll write a query
that only finds users with a PageRank score in the top 0.001% of all users. The follow‐
ing query finds reviewers with a PageRank score higher than 1.64951 (notice that’s the
99.9% group):

// Only find users that have a hotelPageRank score in the top 0.001% of users
MATCH (u:User)
WHERE u.hotelPageRank > 1.64951

// Find the top 10 of those users
WITH u ORDER BY u.hotelPageRank DESC

156 | Chapter 7: Graph Algorithms in Practice

LIMIT 10

RETURN u.name AS name,
 u.hotelPageRank AS pageRank,
 size((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"})) AS hotelReviews,
 size((u)-[:WROTE]->()) AS totalReviews,
 size((u)-[:FRIENDS]-()) AS friends

If we run that query we’ll get the results seen here:

name pageRank hotelReviews totalReviews friends
Phil 17.361242 15 134 8154

Philip 16.871013 21 620 9634

Carol 12.416060999999997 6 119 6218

Misti 12.239516000000004 19 730 6230

Joseph 12.003887499999998 5 32 6596

Michael 11.460049 13 51 6572

J 11.431505999999997 103 1322 6498

Abby 11.376136999999998 9 82 7922

Erica 10.993773 6 15 7071

Randy 10.748785999999999 21 125 7846

These results show us that Phil is the most credible reviewer, although he hasn’t
reviewed many hotels. He’s likely connected to some very influential people, but if we
wanted a stream of new reviews, his profile wouldn’t be the best selection. Philip has a
slightly lower score, but has the most friends and has written five times more reviews
than Phil. While J has written the most reviews of all and has a reasonable number of
friends, J’s PageRank score isn’t the highest—but it’s still in the top 10. For our app we
choose to highlight hotel reviews from Phil, Philip, and J to give us the right mix of
influencers and number of reviews.

Now that we’ve improved our in-app recommendations with relevant reviews, let’s
turn to the other side of our business: consulting.

Travel Business Consulting
As part of our consulting service, hotels subscribe to be alerted when an influential
visitor writes about their stay so they can take any necessary action. First, we’ll look at
ratings of the Bellagio, sorted by the most influential reviewers:

query = """\
MATCH (b:Business {name: $hotel})
MATCH (b)<-[:REVIEWS]-(review)<-[:WROTE]-(user)
WHERE exists(user.hotelPageRank)
RETURN user.name AS name,

Analyzing Yelp Data with Neo4j | 157

 user.hotelPageRank AS pageRank,
 review.stars AS stars
"""

with driver.session() as session:
 params = { "hotel": "Bellagio Hotel" }
 df = pd.DataFrame([dict(record) for record in session.run(query, params)])
 df = df.round(2)
 df = df[["name", "pageRank", "stars"]]

top_reviews = df.sort_values(by=["pageRank"], ascending=False).head(10)
print(tabulate(top_reviews, headers='keys', tablefmt='psql', showindex=False))

If we run that code we’ll get this output:

name pageRank stars
Misti 12.239516000000004 5

Michael 11.460049 4

J 11.431505999999997 5

Erica 10.993773 4

Christine 10.740770499999998 4

Jeremy 9.576763499999998 5

Connie 9.118103499999998 5

Joyce 7.621449000000001 4

Henry 7.299146 5

Flora 6.7570075 4

Note that these results are different from our previous table of the best hotel review‐
ers. That’s because here we are only looking at reviewers that have rated the Bellagio.

Things are looking good for the hotel customer service team at the Bellagio—the top
10 influencers all give their hotel good rankings. They may want to encourage these
people to visit again and share their experiences.

Are there any influential guests who haven’t had such a good experience? We can run
the following code to find the guests with the highest PageRank that rated their expe‐
rience with fewer than four stars:

query = """\
MATCH (b:Business {name: $hotel})
MATCH (b)<-[:REVIEWS]-(review)<-[:WROTE]-(user)
WHERE exists(user.hotelPageRank) AND review.stars < $goodRating
RETURN user.name AS name,
 user.hotelPageRank AS pageRank,
 review.stars AS stars
"""

158 | Chapter 7: Graph Algorithms in Practice

with driver.session() as session:
 params = { "hotel": "Bellagio Hotel", "goodRating": 4 }
 df = pd.DataFrame([dict(record) for record in session.run(query, params)])
 df = df.round(2)
 df = df[["name", "pageRank", "stars"]]

top_reviews = df.sort_values(by=["pageRank"], ascending=False).head(10)
print(tabulate(top_reviews, headers='keys', tablefmt='psql', showindex=False))

If we run that code we’ll get the following results:

name pageRank stars
Chris 5.84 3

Lorrie 4.95 2

Dani 3.47 1

Victor 3.35 3

Francine 2.93 3

Rex 2.79 2

Jon 2.55 3

Rachel 2.47 3

Leslie 2.46 2

Benay 2.46 3

Our highest-ranked users giving the Bellagio lower ratings, Chris and Lorrie, are
amongst the top 1,000 most influential users (as per the results of our earlier query),
so perhaps a personal outreach is warranted. Also, because many reviewers write dur‐
ing their stay, real-time alerts about influencers may facilitate even more positive
interactions.

Bellagio cross-promotion
After we helped them find influential reviewers, the Bellagio has now asked us to help
identify other businesses for cross-promotion with help from well-connected cus‐
tomers. In our scenario, we recommend that they increase their customer base by
attracting new guests from different types of communities as a greenfield opportu‐
nity. We can use the Betweenness Centrality algorithm that we discussed earlier to
work out which Bellagio reviewers are not only well connected across the whole Yelp
network, but might also act as a bridge between different groups.

We’re only interested in finding influencers in Las Vegas, so we’ll first tag those users:

MATCH (u:User)
WHERE exists((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CITY]->
 (:City {name: "Las Vegas"}))
SET u:LasVegas

Analyzing Yelp Data with Neo4j | 159

It would take a long time to run the Betweenness Centrality algorithm over our Las
Vegas users, so instead we’ll use the the RA-Brandes variant. This algorithm calculates
a betweenness score by sampling nodes and only exploring shortest paths to a certain
depth.

After some experimentation, we improved results with a few parameters set differ‐
ently than the default values. We’ll use shortest paths of up to 4 hops (maxDepth of 4)
and sample 20% of the nodes (probability of 0.2). Note that increasing the number
of hops and nodes will generally increase the accuracy, but at the cost of more time to
compute the results. For any particular problem, the optimal parameters typically
require testing to identify the point of diminishing returns.

The following query will execute the algorithm and store the result in the between
property:

CALL algo.betweenness.sampled('LasVegas', 'FRIENDS',
 {write: true, writeProperty: "between", maxDepth: 4, probability: 0.2}
)

Before we use these scores in our queries, let’s write a quick exploratory query to see
how the scores are distributed:

MATCH (u:User)
WHERE exists(u.between)
RETURN count(u.between) AS count,
 avg(u.between) AS ave,
 toInteger(percentileDisc(u.between, 0.5)) AS `50%`,
 toInteger(percentileDisc(u.between, 0.75)) AS `75%`,
 toInteger(percentileDisc(u.between, 0.90)) AS `90%`,
 toInteger(percentileDisc(u.between, 0.95)) AS `95%`,
 toInteger(percentileDisc(u.between, 0.99)) AS `99%`,
 toInteger(percentileDisc(u.between, 0.999)) AS `99.9%`,
 toInteger(percentileDisc(u.between, 0.9999)) AS `99.99%`,
 toInteger(percentileDisc(u.between, 0.99999)) AS `99.999%`,
 toInteger(percentileDisc(u.between, 1)) AS p100

If we run that query we’ll see the following output:

count ave 50% 75% 90% 95% 99% 99.9% 99.99% 99.999% 100%
506028 320538.6014 0 10005 318944 1001655 4436409 34854988 214080923 621434012 1998032952

Half of our users have a score of 0, meaning they are not well connected at all. The
top 1 percentile (99% column) are on at least 4 million shortest paths between our set
of 500,000 users. Considered together, we know that most of our users are poorly
connected, but a few exert a lot of control over information; this is a classic behavior
of small-world networks.

We can find out who our superconnectors are by running the following query:

160 | Chapter 7: Graph Algorithms in Practice

MATCH(u:User)-[:WROTE]->()-[:REVIEWS]->(:Business {name:"Bellagio Hotel"})
WHERE exists(u.between)
RETURN u.name AS user,
 toInteger(u.between) AS betweenness,
 u.hotelPageRank AS pageRank,
 size((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"}))
 AS hotelReviews
ORDER BY u.between DESC
LIMIT 10

The output is as follows:

user betweenness pageRank hotelReviews
Misti 841707563 12.239516000000004 19

Christine 236269693 10.740770499999998 16

Erica 235806844 10.993773 6

Mike 215534452 NULL 2

J 192155233 11.431505999999997 103

Michael 161335816 5.105143 31

Jeremy 160312436 9.576763499999998 6

Michael 139960910 11.460049 13

Chris 136697785 5.838922499999999 5

Connie 133372418 9.118103499999998 7

We see some of the same people here that we saw earlier in our PageRank query, with
Mike being an interesting exception. He was excluded from that calculation because
he hasn’t reviewed enough hotels (three was the cutoff), but it seems like he’s quite
well connected in the world of Las Vegas Yelp users.

In an effort to reach a wider variety of customers, we’ll look at other preferences these
“connectors” display to see what we should promote. Many of these users have also
reviewed restaurants, so we write the following query to find out which ones they like
best:

// Find the top 50 users who have reviewed the Bellagio
MATCH (u:User)-[:WROTE]->()-[:REVIEWS]->(:Business {name:"Bellagio Hotel"})
WHERE u.between > 4436409
WITH u ORDER BY u.between DESC LIMIT 50

// Find the restaurants those users have reviewed in Las Vegas
MATCH (u)-[:WROTE]->(review)-[:REVIEWS]-(business)
WHERE (business)-[:IN_CATEGORY]->(:Category {name: "Restaurants"})
AND (business)-[:IN_CITY]->(:City {name: "Las Vegas"})

// Only include restaurants that have more than 3 reviews by these users
WITH business, avg(review.stars) AS averageReview, count(*) AS numberOfReviews

Analyzing Yelp Data with Neo4j | 161

WHERE numberOfReviews >= 3

RETURN business.name AS business, averageReview, numberOfReviews
ORDER BY averageReview DESC, numberOfReviews DESC
LIMIT 10

This query finds our top 50 influential connectors, and finds the top 10 Las Vegas res‐
taurants where at least 3of them have rated the restaurant. If we run it, we’ll see the
output shown here:

business averageReview numberOfReviews
Jean Georges Steakhouse 5.0 6

Sushi House Goyemon 5.0 6

Art of Flavors 5.0 4

é by José Andrés 5.0 4

Parma By Chef Marc 5.0 4

Yonaka Modern Japanese 5.0 4

Kabuto 5.0 4

Harvest by Roy Ellamar 5.0 3

Portofino by Chef Michael LaPlaca 5.0 3

Montesano’s Eateria 5.0 3

We can now recommend that the Bellagio run a joint promotion with these restau‐
rants to attract new guests from groups they might not typically reach. Superconnec‐
tors who rate the Bellagio well become our proxy for estimating which restaurants
might catch the eye of new types of target visitors.

Now that we have helped the Bellagio reach new groups, we’re going to see how we
can use community detection to further improve our app.

Finding Similar Categories
While our end users are using the app to find hotels, we want to showcase other busi‐
nesses they might be interested in. The Yelp dataset contains more than 1,000 cate‐
gories, and it seems likely that some of those categories are similar to each other. We’ll
use that similarity to make in-app recommendations for new businesses that our
users will likely find interesting.

Our graph model doesn’t have any relationships between categories, but we can use
the ideas described in “Monopartite, Bipartite, and k-Partite Graphs” on page 24 to
build a category similarity graph based on how businesses categorize themselves.

For example, imagine that only one business categorizes itself under both Hotels and
Historical Tours, as seen in Figure 7-8.

162 | Chapter 7: Graph Algorithms in Practice

Figure 7-8. A business with two categories

This would result in a projected graph that has a link between Hotels and Historical
Tours with a weight of 1, as seen in Figure 7-9.

Figure 7-9. A projected categories graph

In this case, we don’t actually have to create the similarity graph—instead, we can run
a community detection algorithm such as Label Propagation over a projected similar‐
ity graph. Using Label Propagation will effectively cluster businesses around the
supercategory with which they have most in common:

CALL algo.labelPropagation.stream(
 'MATCH (c:Category) RETURN id(c) AS id',
 'MATCH (c1:Category)<-[:IN_CATEGORY]-()-[:IN_CATEGORY]->(c2:Category)
 WHERE id(c1) < id(c2)
 RETURN id(c1) AS source, id(c2) AS target, count(*) AS weight',
 {graph: "cypher"}
)
YIELD nodeId, label
MATCH (c:Category) WHERE id(c) = nodeId
MERGE (sc:SuperCategory {name: "SuperCategory-" + label})
MERGE (c)-[:IN_SUPER_CATEGORY]->(sc)

Let’s give those supercategories a friendlier name—the name of their largest category
works well here:

MATCH (sc:SuperCategory)<-[:IN_SUPER_CATEGORY]-(category)
WITH sc, category, size((category)<-[:IN_CATEGORY]-()) as size
ORDER BY size DESC

Analyzing Yelp Data with Neo4j | 163

WITH sc, collect(category.name)[0] as biggestCategory
SET sc.friendlyName = "SuperCat " + biggestCategory

We can see a sample of categories and supercategories in Figure 7-10.

Figure 7-10. Categories and supercategories

The following query finds the most prevalent similar categories to Hotels in Las
Vegas:

MATCH (hotels:Category {name: "Hotels"}),
 (lasVegas:City {name: "Las Vegas"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-
 (otherCategory)
RETURN otherCategory.name AS otherCategory,
 size((otherCategory)<-[:IN_CATEGORY]-(:Business)-
 [:IN_CITY]->(lasVegas)) AS businesses
ORDER BY count DESC
LIMIT 10

If we run that query we’ll see the following output:

otherCategory businesses
Tours 189

Car Rental 160

164 | Chapter 7: Graph Algorithms in Practice

otherCategory businesses
Limos 84

Resorts 73

Airport Shuttles 52

Taxis 35

Vacation Rentals 29

Airports 25

Airlines 23

Motorcycle Rental 19

Do these results seem odd? Obviously taxis and tours aren’t hotels, but remember
that this is based on self-reported categorizations. What the Label Propagation algo‐
rithm is really showing us in this similarity group are adjacent businesses and serv‐
ices.

Now let’s find some businesses with an above-average rating in each of those cate‐
gories:

// Find businesses in Las Vegas that have the same SuperCategory as Hotels
MATCH (hotels:Category {name: "Hotels"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-
 (otherCategory),
 (otherCategory)<-[:IN_CATEGORY]-(business)
WHERE (business)-[:IN_CITY]->(:City {name: "Las Vegas"})

// Select 10 random categories and calculate the 90th percentile star rating
WITH otherCategory, count(*) AS count,
 collect(business) AS businesses,
 percentileDisc(business.averageStars, 0.9) AS p90Stars
ORDER BY rand() DESC
LIMIT 10

// Select businesses from each of those categories that have an average rating
// higher than the 90th percentile using a pattern comprehension
WITH otherCategory, [b in businesses where b.averageStars >= p90Stars]
 AS businesses

// Select one business per category
WITH otherCategory, businesses[toInteger(rand() * size(businesses))] AS business

RETURN otherCategory.name AS otherCategory,
 business.name AS business,
 business.averageStars AS averageStars

In this query we use pattern comprehension for the first time. Pattern comprehension
is a syntax construction for creating a list based on pattern matching. It finds a speci‐
fied pattern using a MATCH clause with a WHERE clause for predicates and then yields a

Analyzing Yelp Data with Neo4j | 165

custom projection. This Cypher feature was added based on inspiration from
GraphQL, a query language for APIs.

If we run that query we see the following result:

otherCategory business averageStars
Motorcycle Rental Adrenaline Rush Slingshot Rentals 5.0

Snorkeling Sin City Scuba 5.0

Guest Houses Hotel Del Kacvinsky 5.0

Car Rental The Lead Team 5.0

Food Tours Taste BUZZ Food Tours 5.0

Airports Signature Flight Support 5.0

Public Transportation JetSuiteX 4.6875

Ski Resorts Trikke Las Vegas 4.833333333333332

Town Car Service MW Travel Vegas 4.866666666666665

Campgrounds McWilliams Campground 3.875

We can then make real-time recommendations based on a user’s immediate app
behavior. For example, while users are looking at Las Vegas hotels, we can now high‐
light a variety of adjacent Las Vegas businesses with good ratings. We can generalize
these approaches to any business category, such as restaurants or theaters, in any
location.

Reader Exercises
• Can you plot how the reviews for a city’s hotels vary over time?
• What about for a particular hotel or other business?
• Are there any trends (seasonal or otherwise) in popularity?
• Do the most influential reviewers connect (out-link) to only other influential

reviewers?

Analyzing Airline Flight Data with Apache Spark
In this section, we’ll use a different scenario to illustrate the analysis of US airport
data with Spark. Imagine you’re a data scientist with a considerable travel schedule
and would like to dig into information about airline flights and delays. We’ll first
explore airport and flight information and then look deeper into delays at two specific
airports. Community detection will be used to analyze routes and find the best use of
our frequent flyer points.

166 | Chapter 7: Graph Algorithms in Practice

The US Bureau of Transportation Statistics makes available a significant amount of
transportation information. For our analysis, we’ll use their May 2018 air travel on-
time performance data, which includes flights originating and ending in the United
States in that month. To add more detail about airports, such as location information,
we’ll also load data from a separate source, OpenFlights.

Let’s load the data in Spark. As was the case in previous sections, our data is in CSV
files that are available on the book’s Github repository.

nodes = spark.read.csv("data/airports.csv", header=False)

cleaned_nodes = (nodes.select("_c1", "_c3", "_c4", "_c6", "_c7")
 .filter("_c3 = 'United States'")
 .withColumnRenamed("_c1", "name")
 .withColumnRenamed("_c4", "id")s
 .withColumnRenamed("_c6", "latitude")
 .withColumnRenamed("_c7", "longitude")
 .drop("_c3"))
cleaned_nodes = cleaned_nodes[cleaned_nodes["id"] != "\\N"]

relationships = spark.read.csv("data/188591317_T_ONTIME.csv", header=True)

cleaned_relationships = (relationships
 .select("ORIGIN", "DEST", "FL_DATE", "DEP_DELAY",
 "ARR_DELAY", "DISTANCE", "TAIL_NUM", "FL_NUM",
 "CRS_DEP_TIME", "CRS_ARR_TIME",
 "UNIQUE_CARRIER")
 .withColumnRenamed("ORIGIN", "src")
 .withColumnRenamed("DEST", "dst")
 .withColumnRenamed("DEP_DELAY", "deptDelay")
 .withColumnRenamed("ARR_DELAY", "arrDelay")
 .withColumnRenamed("TAIL_NUM", "tailNumber")
 .withColumnRenamed("FL_NUM", "flightNumber")
 .withColumnRenamed("FL_DATE", "date")
 .withColumnRenamed("CRS_DEP_TIME", "time")
 .withColumnRenamed("CRS_ARR_TIME", "arrivalTime")
 .withColumnRenamed("DISTANCE", "distance")
 .withColumnRenamed("UNIQUE_CARRIER", "airline")
 .withColumn("deptDelay",
 F.col("deptDelay").cast(FloatType()))
 .withColumn("arrDelay",
 F.col("arrDelay").cast(FloatType()))
 .withColumn("time", F.col("time").cast(IntegerType()))
 .withColumn("arrivalTime",
 F.col("arrivalTime").cast(IntegerType()))
)

g = GraphFrame(cleaned_nodes, cleaned_relationships)

We have to do some cleanup on the nodes because some airports don’t have valid air‐
port codes. We’ll give the columns more descriptive names and convert some items

Analyzing Airline Flight Data with Apache Spark | 167

into appropriate numeric types. We also need to make sure that we have columns
named id, dst, and src, as this is expected by Spark’s GraphFrames library.

We’ll also create a separate DataFrame that maps airline codes to airline names. We’ll
use this later in this chapter:

airlines_reference = (spark.read.csv("data/airlines.csv")
 .select("_c1", "_c3")
 .withColumnRenamed("_c1", "name")
 .withColumnRenamed("_c3", "code"))

airlines_reference = airlines_reference[airlines_reference["code"] != "null"]

Exploratory Analysis
Let’s start with some exploratory analysis to see what the data looks like.

First let’s see how many airports we have:

g.vertices.count()

1435

And how many connections do we have between these airports?

g.edges.count()

616529

Popular Airports
Which airports have the most departing flights? We can work out the number of out‐
going flights from an airport using the Degree Centrality algorithm:

airports_degree = g.outDegrees.withColumnRenamed("id", "oId")

full_airports_degree = (airports_degree
 .join(g.vertices, airports_degree.oId == g.vertices.id)
 .sort("outDegree", ascending=False)
 .select("id", "name", "outDegree"))

full_airports_degree.show(n=10, truncate=False)

If we run that code we’ll see the following output:

id name outDegree
ATL Hartsfield Jackson Atlanta International Airport 33837

ORD Chicago O’Hare International Airport 28338

DFW Dallas Fort Worth International Airport 23765

CLT Charlotte Douglas International Airport 20251

DEN Denver International Airport 19836

168 | Chapter 7: Graph Algorithms in Practice

id name outDegree
LAX Los Angeles International Airport 19059

PHX Phoenix Sky Harbor International Airport 15103

SFO San Francisco International Airport 14934

LGA La Guardia Airport 14709

IAH George Bush Intercontinental Houston Airport 14407

Most large US cities show up on this list—Chicago, Atlanta, Los Angeles, and New
York all have popular airports. We can also create a visual representation of the out‐
going flights using the following code:

plt.style.use('fivethirtyeight')

ax = (full_airports_degree
 .toPandas()
 .head(10)
 .plot(kind='bar', x='id', y='outDegree', legend=None))

ax.xaxis.set_label_text("")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

The resulting chart can be seen in Figure 7-11.

Figure 7-11. Outgoing flights by airport

Analyzing Airline Flight Data with Apache Spark | 169

It’s quite striking how suddenly the number of flights drops off. Denver International
Airport (DEN), the fifth most popular airport, has just over half as many outgoing
fights as Hartsfield Jackson Atlanta International Airport (ATL), in first place.

Delays from ORD
In our scenario, we frequently travel between the west and east coasts and want to see
delays through a midpoint hub like Chicago O’Hare International Airport (ORD).
This dataset contains flight delay data, so we can dive right in.

The following code finds the average delay of flights departing from ORD grouped by
the destination airport:

delayed_flights = (g.edges
 .filter("src = 'ORD' and deptDelay > 0")
 .groupBy("dst")
 .agg(F.avg("deptDelay"), F.count("deptDelay"))
 .withColumn("averageDelay",
 F.round(F.col("avg(deptDelay)"), 2))
 .withColumn("numberOfDelays",
 F.col("count(deptDelay)")))

(delayed_flights
 .join(g.vertices, delayed_flights.dst == g.vertices.id)
 .sort(F.desc("averageDelay"))
 .select("dst", "name", "averageDelay", "numberOfDelays")
 .show(n=10, truncate=False))

Once we’ve calculated the average delay grouped by destination we join the resulting
Spark DataFrame with a DataFrame containing all vertices, so that we can print the
full name of the destination airport.

Running this code returns the 10 destinations with the worst delays:

dst name averageDelay numberOfDelays
CKB North Central West Virginia Airport 145.08 12

OGG Kahului Airport 119.67 9

MQT Sawyer International Airport 114.75 12

MOB Mobile Regional Airport 102.2 10

TTN Trenton Mercer Airport 101.18 17

AVL Asheville Regional Airport 98.5 28

ISP Long Island Mac Arthur Airport 94.08 13

ANC Ted Stevens Anchorage International Airport 83.74 23

BTV Burlington International Airport 83.2 25

CMX Houghton County Memorial Airport 79.18 17

170 | Chapter 7: Graph Algorithms in Practice

This is interesting, but one data point really stands out: 12 flights from ORD to CKB
have been delayed by more than 2 hours on average! Let’s find the flights between
those airports and see what’s going on:

from_expr = 'id = "ORD"'
to_expr = 'id = "CKB"'
ord_to_ckb = g.bfs(from_expr, to_expr)

ord_to_ckb = ord_to_ckb.select(
 F.col("e0.date"),
 F.col("e0.time"),
 F.col("e0.flightNumber"),
 F.col("e0.deptDelay"))

We can then plot the flights with the following code:

ax = (ord_to_ckb
 .sort("date")
 .toPandas()
 .plot(kind='bar', x='date', y='deptDelay', legend=None))

ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

If we run that code we’ll get the chart in Figure 7-12.

Analyzing Airline Flight Data with Apache Spark | 171

Figure 7-12. Flights from ORD to CKB

About half of the flights were delayed, but the delay of more than 14 hours on May 2,
2018, has massively skewed the average.

What if we want to find delays coming into and going out of a coastal airport? Those
airports are often affected by adverse weather conditions, so we might be able to find
some interesting delays.

Bad Day at SFO
Let’s consider delays at an airport known for fog-related “low ceiling” issues: San
Francisco International Airport (SFO). One method for analysis would be to look at
motifs, which are recurrent subgraphs or patterns.

The equivalent to motifs in Neo4j is graph patterns, which are
found using the MATCH clause or with pattern expressions in
Cypher.

172 | Chapter 7: Graph Algorithms in Practice

GraphFrames lets us search for motifs, so we can use the structure of flights as part of
a query. Let’s use motifs to find the most-delayed flights going into and out of SFO on
May 11, 2018. The following code will find these delays:

motifs = (g.find("(a)-[ab]->(b); (b)-[bc]->(c)")
 .filter("""(b.id = 'SFO') and
 (ab.date = '2018-05-11' and bc.date = '2018-05-11') and
 (ab.arrDelay > 30 or bc.deptDelay > 30) and
 (ab.flightNumber = bc.flightNumber) and
 (ab.airline = bc.airline) and
 (ab.time < bc.time)"""))

The motif (a)-[ab]->(b); (b)-[bc]->(c) finds flights coming into and out from
the same airport. We then filter the resulting pattern to find flights with:

• A sequence where the first flight arrives at SFO and the second flight departs
from SFO

• Delays of over 30 minutes when arriving at or departing from SFO
• The same flight number and airline

We can then take the result and select the columns we’re interested in:

result = (motifs.withColumn("delta", motifs.bc.deptDelay - motifs.ab.arrDelay)
 .select("ab", "bc", "delta")
 .sort("delta", ascending=False))

result.select(
 F.col("ab.src").alias("a1"),
 F.col("ab.time").alias("a1DeptTime"),
 F.col("ab.arrDelay"),
 F.col("ab.dst").alias("a2"),
 F.col("bc.time").alias("a2DeptTime"),
 F.col("bc.deptDelay"),
 F.col("bc.dst").alias("a3"),
 F.col("ab.airline"),
 F.col("ab.flightNumber"),
 F.col("delta")
).show()

We’re also calculating the delta between the arriving and departing flights to see
which delays we can truly attribute to SFO.

If we execute this code we’ll get the following result:

airline flightNumber a1 a1DeptTime arrDelay a2 a2DeptTime deptDelay a3 delta
WN 1454 PDX 1130 -18.0 SFO 1350 178.0 BUR 196.0

OO 5700 ACV 1755 -9.0 SFO 2235 64.0 RDM 73.0

UA 753 BWI 700 -3.0 SFO 1125 49.0 IAD 52.0

Analyzing Airline Flight Data with Apache Spark | 173

airline flightNumber a1 a1DeptTime arrDelay a2 a2DeptTime deptDelay a3 delta
UA 1900 ATL 740 40.0 SFO 1110 77.0 SAN 37.0

WN 157 BUR 1405 25.0 SFO 1600 39.0 PDX 14.0

DL 745 DTW 835 34.0 SFO 1135 44.0 DTW 10.0

WN 1783 DEN 1830 25.0 SFO 2045 33.0 BUR 8.0

WN 5789 PDX 1855 119.0 SFO 2120 117.0 DEN -2.0

WN 1585 BUR 2025 31.0 SFO 2230 11.0 PHX -20.0

The worst offender, WN 1454, is shown in the top row; it arrived early but departed
almost three hours late. We can also see that there are some negative values in the
arrDelay column; this means that the flight into SFO was early.

Also notice that some flights, such as WN 5789 and WN 1585, made up time while
on the ground in SFO, as shown with a negative delta.

Interconnected Airports by Airline
Now let’s say we’ve traveled a lot, and those frequent flyer points we’re determined to
use to see as many destinations as efficiently as possible are soon to expire. If we start
from a specific US airport, how many different airports can we visit and come back to
the starting airport using the same airline?

Let’s first identify all the airlines and work out how many flights there are on each of
them:

airlines = (g.edges
 .groupBy("airline")
 .agg(F.count("airline").alias("flights"))
 .sort("flights", ascending=False))

full_name_airlines = (airlines_reference
 .join(airlines, airlines.airline
 == airlines_reference.code)
 .select("code", "name", "flights"))

And now let’s create a bar chart showing our airlines:

ax = (full_name_airlines.toPandas()
 .plot(kind='bar', x='name', y='flights', legend=None))

ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

If we run that query we’ll get the output in Figure 7-13.

174 | Chapter 7: Graph Algorithms in Practice

Figure 7-13. The number of flights by airline

Now let’s write a function that uses the Strongly Connected Components algorithm to
find airport groupings for each airline where all the airports have flights to and from
all the other airports in that group:

def find_scc_components(g, airline):
 # Create a subgraph containing only flights on the provided airline
 airline_relationships = g.edges[g.edges.airline == airline]
 airline_graph = GraphFrame(g.vertices, airline_relationships)

 # Calculate the Strongly Connected Components
 scc = airline_graph.stronglyConnectedComponents(maxIter=10)

 # Find the size of the biggest component and return that
 return (scc
 .groupBy("component")
 .agg(F.count("id").alias("size"))
 .sort("size", ascending=False)
 .take(1)[0]["size"])

We can write the following code to create a DataFrame containing each airline and
the number of airports of its largest strongly connected component:

Analyzing Airline Flight Data with Apache Spark | 175

Calculate the largest strongly connected component for each airline
airline_scc = [(airline, find_scc_components(g, airline))
 for airline in airlines.toPandas()["airline"].tolist()]
airline_scc_df = spark.createDataFrame(airline_scc, ['id', 'sccCount'])

Join the SCC DataFrame with the airlines DataFrame so that we can show
the number of flights an airline has alongside the number of
airports reachable in its biggest component
airline_reach = (airline_scc_df
 .join(full_name_airlines, full_name_airlines.code == airline_scc_df.id)
 .select("code", "name", "flights", "sccCount")
 .sort("sccCount", ascending=False))

And now let’s create a bar chart showing our airlines:

ax = (airline_reach.toPandas()
 .plot(kind='bar', x='name', y='sccCount', legend=None))

ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

If we run that query we’ll get the output in Figure 7-14.

Figure 7-14. The number of reachable airports by airline

176 | Chapter 7: Graph Algorithms in Practice

SkyWest has the largest community, with over 200 strongly connected airports. This
might partially reflect its business model as an affiliate airline which operates aircraft
used on flights for partner airlines. Southwest, on the other hand, has the highest
number of flights but only connects around 80 airports.

Now let’s say most of the frequent flyer points we have are with Delta Airlines (DL).
Can we find airports that form communities within the network for that particular
airline carrier?

airline_relationships = g.edges.filter("airline = 'DL'")
airline_graph = GraphFrame(g.vertices, airline_relationships)

clusters = airline_graph.labelPropagation(maxIter=10)
(clusters
 .sort("label")
 .groupby("label")
 .agg(F.collect_list("id").alias("airports"),
 F.count("id").alias("count"))
 .sort("count", ascending=False)
 .show(truncate=70, n=10))

If we run that query we’ll see the following output:

label airports count
1606317768706 [IND, ORF, ATW, RIC, TRI, XNA, ECP, AVL, JAX, SYR, BHM, GSO, MEM, C… 89

1219770712067 [GEG, SLC, DTW, LAS, SEA, BOS, MSN, SNA, JFK, TVC, LIH, JAC, FLL, M… 53

17179869187 [RHV] 1

25769803777 [CWT] 1

25769803776 [CDW] 1

25769803782 [KNW] 1

25769803778 [DRT] 1

25769803779 [FOK] 1

25769803781 [HVR] 1

42949672962 [GTF] 1

Most of the airports DL uses have clustered into two groups; let’s drill down into
those. There are too many airports to show here, so we’ll just show the airports with
the biggest degree (ingoing and outgoing flights). We can write the following code to
calculate airport degree:

all_flights = g.degrees.withColumnRenamed("id", "aId")

We’ll then combine this with the airports that belong to the largest cluster:

(clusters
 .filter("label=1606317768706")
 .join(all_flights, all_flights.aId == result.id)

Analyzing Airline Flight Data with Apache Spark | 177

 .sort("degree", ascending=False)
 .select("id", "name", "degree")
 .show(truncate=False))

If we run that query we’ll get this output:

id name degree
DFW Dallas Fort Worth International Airport 47514

CLT Charlotte Douglas International Airport 40495

IAH George Bush Intercontinental Houston Airport 28814

EWR Newark Liberty International Airport 25131

PHL Philadelphia International Airport 20804

BWI Baltimore/Washington International Thurgood Marshall Airport 18989

MDW Chicago Midway International Airport 15178

BNA Nashville International Airport 12455

DAL Dallas Love Field 12084

IAD Washington Dulles International Airport 11566

STL Lambert St Louis International Airport 11439

HOU William P Hobby Airport 9742

IND Indianapolis International Airport 8543

PIT Pittsburgh International Airport 8410

CLE Cleveland Hopkins International Airport 8238

CMH Port Columbus International Airport 7640

SAT San Antonio International Airport 6532

JAX Jacksonville International Airport 5495

BDL Bradley International Airport 4866

RSW Southwest Florida International Airport 4569

In Figure 7-15 we can see that this cluster is actually focused on the East Coast to the
Midwest of the United States.

178 | Chapter 7: Graph Algorithms in Practice

Figure 7-15. Cluster 1606317768706 airports

And now let’s do the same thing with the second-largest cluster:

(clusters
 .filter("label=1219770712067")
 .join(all_flights, all_flights.aId == result.id)
 .sort("degree", ascending=False)
 .select("id", "name", "degree")
 .show(truncate=False))

If we run that query we get this output:

id name degree
ATL Hartsfield Jackson Atlanta International Airport 67672

ORD Chicago O’Hare International Airport 56681

DEN Denver International Airport 39671

LAX Los Angeles International Airport 38116

PHX Phoenix Sky Harbor International Airport 30206

SFO San Francisco International Airport 29865

LGA La Guardia Airport 29416

LAS McCarran International Airport 27801

DTW Detroit Metropolitan Wayne County Airport 27477

MSP Minneapolis-St Paul International/Wold-Chamberlain Airport 27163

BOS General Edward Lawrence Logan International Airport 26214

Analyzing Airline Flight Data with Apache Spark | 179

id name degree
SEA Seattle Tacoma International Airport 24098

MCO Orlando International Airport 23442

JFK John F Kennedy International Airport 22294

DCA Ronald Reagan Washington National Airport 22244

SLC Salt Lake City International Airport 18661

FLL Fort Lauderdale Hollywood International Airport 16364

SAN San Diego International Airport 15401

MIA Miami International Airport 14869

TPA Tampa International Airport 12509

In Figure 7-16 we can see that this cluster is apparently more hub-focused, with some
additional northwestern stops along the way.

Figure 7-16. Cluster 1219770712067 airports

The code we used to generate these maps is available in the book’s GitHub repository.

When checking the DL website for frequent flyer programs, we notice a use-two-get-
one-free promotion. If we use our points for two flights, we get another for free—but

180 | Chapter 7: Graph Algorithms in Practice

only if we fly within one of the two clusters! Perhaps it’s a better use of our time, and
certainly our points, to stay in a cluster.

Reader Exercises
• Use a Shortest Path algorithm to evaluate the number of flights from your home

to the Bozeman Yellowstone International Airport (BZN).
• Are there any differences if you use relationship weights?

Summary
In the last few chapters we’ve provided details on how key graph algorithms for path‐
finding, centrality, and community detection work in Apache Spark and Neo4j. In
this chapter we walked through workflows that included using several algorithms in
context with other tasks and analysis. We used a travel business scenario to analyze
Yelp data in Neo4j and a personal air travel scenario to evaluate US airline data in
Spark.

Next, we’ll look at a use for graph algorithms that’s becoming increasingly important:
graph-enhanced machine learning.

Analyzing Airline Flight Data with Apache Spark | 181

CHAPTER 8

Using Graph Algorithms to Enhance
Machine Learning

We’ve covered several algorithms that learn and update state at each iteration, such as
Label Propagation; however, up until this point, we’ve emphasized graph algorithms
for general analytics. Because there’s increasing application of graphs in machine
learning (ML), we’ll now look at how graph algorithms can be used to enhance ML
workflows.

In this chapter, we focus on the most practical way to start improving ML predictions
using graph algorithms: connected feature extraction and its use in predicting rela‐
tionships. First, we’ll cover some basic ML concepts and the importance of contextual
data for better predictions. Then there’s a quick survey of ways graph features are
applied, including uses for spammer fraud, detection, and link prediction.

We’ll demonstrate how to create a machine learning pipeline and then train and eval‐
uate a model for link prediction, integrating Neo4j and Spark in our workflow. Our
example will be based on the Citation Network Dataset, which contains authors,
papers, author relationships, and citation relationships. We’ll use several models to
predict whether research authors are likely to collaborate in the future, and show how
graph algorithms improve the results.

Machine Learning and the Importance of Context
Machine learning is not artificial intelligence (AI), but a method for achieving AI. ML
uses algorithms to train software through specific examples and progressive improve‐
ments based on expected outcome—without explicit programming of how to accom‐
plish these better results. Training involves providing a lot of data to a model and
enabling it to learn how to process and incorporate that information.

183

In this sense, learning means that algorithms iterate, continually making changes to
get closer to an objective goal, such as reducing classification errors in comparison to
the training data. ML is also dynamic, with the ability to modify and optimize itself
when presented with more data. This can take place in pre-usage training on many
batches or as online learning during usage.

Recent successes in ML predictions, accessibility of large datasets, and parallel com‐
pute power have made ML more practical for those developing probabilistic models
for AI applications. As machine learning becomes more widespread, it’s important to
remember its fundamental goal: making choices similarly to the way humans do. If
we forget that goal, we may end up with just another version of highly targeted, rules-
based software.

In order to increase machine learning accuracy while also making solutions more
broadly applicable, we need to incorporate a lot of contextual information—just as
people should use context for better decisions. Humans use their surrounding con‐
text, not just direct data points, to figure out what’s essential in a situation, estimate
missing information, and determine how to apply lessons to new situations. Context
helps us improve predictions.

Graphs, Context, and Accuracy
Without peripheral and related information, solutions that attempt to predict behav‐
ior or make recommendations for varying circumstances require more exhaustive
training and prescriptive rules. This is partly why AI is good at specific, well-defined
tasks, but struggles with ambiguity. Graph-enhanced ML can help fill in that missing
contextual information that is so important for better decisions.

We know from graph theory and from real life that relationships are often the stron‐
gest predictors of behavior. For example, if one person votes, there’s an increased like‐
lihood that their friends, family, and even coworkers will vote. Figure 8-1 illustrates a
ripple effect based on reported voting and Facebook friends from the 2012 research
paper “A 61-Million-Person Experiment in Social Influence and Political Mobiliza‐
tion”, by R. Bond et al.

184 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Figure 8-1. People are influenced to vote by their social networks. In this example,
friends two hops away had more total impact than direct relationships.

The authors found that friends reporting voting influenced an additional 1.4% of
users to also claim they’d voted and, interestingly, friends of friends added another
1.7%. Small percentages can have a significant impact, and we can see in Figure 8-1
that people at two hops out had in total more impact than the direct friends alone.
Voting and other examples of how our social networks impact us are covered in the
book Connected, by Nicholas Christakis and James Fowler (Little, Brown and Com‐
pany).

Adding graph features and context improves predictions, especially in situations
where connections matter. For example, retail companies personalize product recom‐
mendations with not only historical data but also contextual data about customer
similarities and online behavior. Amazon’s Alexa uses several layers of contextual
models that demonstrate improved accuracy. In 2018, Amazon also introduced “con‐
text carryover” to incorporate previous references in a conversation when answering
new questions.

Unfortunately, many machine learning approaches today miss a lot of rich contextual
information. This stems from ML’s reliance on input data built from tuples, leaving
out a lot of predictive relationships and network data. Furthermore, contextual infor‐
mation is not always readily available or is too difficult to access and process. Even
finding connections that are four or more hops away can be a challenge at scale for
traditional methods. Using graphs, we can more easily reach and incorporate connec‐
ted data.

Connected Feature Extraction and Selection
Feature extraction and selection helps us take raw data and create a suitable subset
and format for training our machine learning models. It’s a foundational step that,

Connected Feature Extraction and Selection | 185

when well executed, leads to ML that produces more consistently accurate predic‐
tions.

Feature Extraction and Selection
Feature extraction is a way to distill large volumes of data and attributes down to a set
of representative descriptive attributes. The process derives numerical values (fea‐
tures) for distinctive characteristics or patterns in input data so that we can differenti‐
ate categories in other data. It’s used when data is difficult for a model to analyze
directly—perhaps because of size, format, or the need for incidental comparisons.

Feature selection is the process of determining the subset of extracted features that are
most important or influential to a target goal. It’s used to surface predictive impor‐
tance as well as for efficiency. For example, if we have 20 features and 13 of them
together explain 92% of what we need to predict, we can eliminate 7 features in our
model.

Putting together the right mix of features can increase accuracy because it fundamen‐
tally influences how our models learn. Because even modest improvements can make
a significant difference, our focus in this chapter is on connected features. Connected
features are features extracted from the structure of the data. These features can be
derived from graph-local queries based on parts of the graph surrounding a node, or
graph-global queries that use graph algorithms to identify predictive elements within
data based on relationships for connected feature extraction.

And it’s not only important to get the right combination of features, but also to elimi‐
nate unnecessary features to reduce the likelihood that our models will be hypertarge‐
ted. This keeps us from creating models that only work well on our training data
(known as overfitting) and significantly expands applicability. We can also use graph
algorithms to evaluate those features and determine which ones are most influential
to our model for connected feature selection. For example, we can map features to
nodes in a graph, create relationships based on similar features, and then compute the
centrality of features. Feature relationships can be defined by the ability to preserve
cluster densities of data points. This method is described using datasets with high
dimension and low sample size in “Unsupervised Graph-Based Feature Selection Via
Subspace and PageRank Centrality”, by K. Henniab, N. Mezghani, and C. Gouin-
Vallerand.

Graph Embedding
Graph embedding is the representation of the nodes and relationships in a graph as
feature vectors. These are merely collections of features that have dimensional map‐
pings, such as the (x,y,z) coordinates shown in Figure 8-2.

186 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Figure 8-2. Graph embedding maps graph data into feature vectors that can be visual‐
ized as multidimensional coordinates.

Graph embedding uses graph data slightly differently than in connected feature
extraction. It enables us to represent entire graphs, or subsets of graph data, in a
numerical format ready for machine learning tasks. This is especially useful for unsu‐
pervised learning, where the data is not categorized because it pulls in more contex‐
tual information through relationships. Graph embedding is also useful for data
exploration, computing similarity between entities, and reducing dimensionality to
aid in statistical analysis.

This is a quickly evolving space with several options, including node2vec, struc2vec,
GraphSAGE, DeepWalk, and DeepGL.

Now let’s look at some of the types of connected features and how they are used.

Graphy Features
Graphy features include any number of connection-related metrics about our graph,
such as the number of relationships going into or out of nodes, a count of potential
triangles, and neighbors in common. In our example, we’ll start with these measures
because they are simple to gather and a good test of early hypotheses.

In addition, when we know precisely what we’re looking for, we can use feature engi‐
neering. For instance, if we want to know how many people have a fraudulent
account at up to four hops out. This approach uses graph traversal to very efficiently
find deep paths of relationships, looking at things such as labels, attributes, counts,
and inferred relationships.

We can also easily automate these processes and deliver those predictive graphy fea‐
tures into our existing pipeline. For example, we could abstract a count of fraudster

Connected Feature Extraction and Selection | 187

relationships and add that number as a node attribute to be used for other machine
learning tasks.

Graph Algorithm Features
We can also use graph algorithms to find features where we know the general struc‐
ture we’re looking for but not the exact pattern. As an illustration, let’s say we know
certain types of community groupings are indicative of fraud; perhaps there’s a proto‐
typical density or hierarchy of relationships. In this case, we don’t want a rigid feature
of an exact organization but rather a flexible and globally relevant structure. We’ll use
community detection algorithms to extract connected features in our example, but
centrality algorithms, like PageRank, are also frequently applied.

Furthermore, approaches that combine several types of connected features seem to
outperform sticking to one single method. For example, we could combine connected
features to predict fraud with indicators based on communities found via the Louvain
algorithm, influential nodes using PageRank, and the measure of known fraudsters at
three hops out.

A combined approach is demonstrated in Figure 8-3, where the authors combine
graph algorithms like PageRank and Coloring with graphy measure such as in-degree
and out-degree. This diagram is taken from the paper “Collective Spammer Detection
in Evolving Multi-Relational Social Networks”, by S. Fakhraei et al.

The Graph Structure section illustrates connected feature extraction using several
graph algorithms. Interestingly, the authors found extracting connected features from
multiple types of relationships even more predictive than simply adding more fea‐
tures. The Report Subgraph section shows how graph features are converted into fea‐
tures that the ML model can use. By combining multiple methods in a graph-
enhanced ML workflow, the authors were able to improve prior detection methods
and classify 70% of spammers that had previously required manual labeling, with
90% accuracy.

Even once we have extracted connected features, we can improve our training by
using graph algorithms like PageRank to prioritize the features with the most influ‐
ence. This enables us to adequately represent our data while eliminating noisy vari‐
ables that could degrade results or slow processing. With this type of information, we
can also identify features with high co-occurrence for further model tuning via fea‐
ture reduction. This method is outlined in the research paper “Using PageRank in
Feature Selection”, by D. Ienco, R. Meo, and M. Botta.

188 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Figure 8-3. Connected feature extraction can be combined with other predictive methods
to improve results. AUPR refers to the area under the precision-recall curve, with higher
numbers preferred.

We’ve discussed how connected features are applied to scenarios involving fraud and
spammer detection. In these situations, activities are often hidden in multiple layers
of obfuscation and network relationships. Traditional feature extraction and selection
methods may be unable to detect that behavior without the contextual information
that graphs bring.

Another area where connected features enhance machine learning (and the focus of
the rest of this chapter) is link prediction. Link prediction is a way to estimate how
likely a relationship is to form in the future, or whether it should already be in our
graph but is missing due to incomplete data. Since networks are dynamic and can
grow fairly quickly, being able to predict links that will soon be added has broad
applicability, from product recommendations to drug retargeting and even inferring
criminal relationships.

Connected features from graphs are often used to improve link prediction using basic
graphy features as well as features extracted from centrality and community algo‐
rithms. Link prediction based on node proximity or similarity is also standard; in the
paper “The Link Prediction Problem for Social Networks” D. Liben-Nowell and J.
Kleinberg suggest that the network structure alone may contain enough latent infor‐
mation to detect node proximity and outperform more direct measures.

Now that we’ve looked at ways connected features can enhance machine learning, let’s
dive into our link prediction example and see how we can apply graph algorithms to
improve our predictions.

Connected Feature Extraction and Selection | 189

Graphs and Machine Learning in Practice: Link Prediction
The rest of the chapter will demonstrate a hands-on example, based on the Citation
Network Dataset, a research dataset extracted from DBLP, ACM, and MAG. The
dataset is described in the paper “ArnetMiner: Extraction and Mining of Academic
Social Networks”, by J. Tang et al. The latest version contains 3,079,007 papers,
1,766,547 authors, 9,437,718 author relationships, and 25,166,994 citation relation‐
ships.

We’ll be working with a subset focused on articles that appeared in the following pub‐
lications:

• Lecture Notes in Computer Science
• Communications of the ACM
• International Conference on Software Engineering
• Advances in Computing and Communications

Our resulting dataset contains 51,956 papers, 80,299 authors, 140,575 author relation‐
ships, and 28,706 citation relationships. We’ll create a coauthors graph based on
authors who have collaborated on papers and then predict future collaborations
between pairs of authors. We’re only interested in collaborations between authors
who haven’t collaborated before—we’re not concerned with multiple collaborations
between pairs of authors.

In the remainder of the chapter, we’ll set up the required tools and import the data
into Neo4j. Then we’ll cover how to properly balance data and split samples into
Spark DataFrames for training and testing. After that, we explain our hypothesis and
methods for link prediction before creating a machine learning pipeline in Spark.
Finally, we’ll walk through training and evaluating various prediction models, starting
with basic graphy features and adding more graph algorithm features extracted using
Neo4j.

Tools and Data
Let’s get started by setting up our tools and data. Then we’ll explore our dataset and
create a machine learning pipeline.

Before we do anything else, let’s set up the libraries used in this chapter:

py2neo
A Neo4j Python library that integrates well with the Python data science ecosys‐
tem

190 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

pandas
A high-performance library for data wrangling outside of a database with easy-
to-use data structures and data analysis tools

Spark MLlib
Spark’s machine learning library

We use MLlib as an example of a machine learning library. The
approach shown in this chapter could be used in combination with
other ML libraries, such as scikit-learn.

All the code shown will be run within the pyspark REPL. We can launch the REPL by
running the following command:

export SPARK_VERSION="spark-2.4.0-bin-hadoop2.7"
./${SPARK_VERSION}/bin/pyspark \
 --driver-memory 2g \
 --executor-memory 6g \
 --packages julioasotodv:spark-tree-plotting:0.2

This is similar to the command we used to launch the REPL in Chapter 3, but instead
of GraphFrames, we’re loading the spark-tree-plotting package. At the time of
writing the latest released version of Spark is spark-2.4.0-bin-hadoop2.7, but as that
may have changed by the time you read this, be sure to change the SPARK_VERSION
environment variable appropriately.

Once we’ve launched that we’ll import the following libraries that we’ll be using:

from py2neo import Graph
import pandas as pd
from numpy.random import randint

from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.evaluation import BinaryClassificationEvaluator

from pyspark.sql.types import *
from pyspark.sql import functions as F

from sklearn.metrics import roc_curve, auc
from collections import Counter

from cycler import cycler
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

Graphs and Machine Learning in Practice: Link Prediction | 191

And now let’s create a connection to our Neo4j database:

graph = Graph("bolt://localhost:7687", auth=("neo4j", "neo"))

Importing the Data into Neo4j
Now we’re ready to load the data into Neo4j and create a balanced split for our train‐
ing and testing. We need to download the ZIP file of Version 10 of the dataset, unzip
it, and place the contents in our import folder. We should have the following files:

• dblp-ref-0.json
• dblp-ref-1.json
• dblp-ref-2.json
• dblp-ref-3.json

Once we have those files in the import folder, we need to add the following property
to our Neo4j settings file so that we can process them using the APOC library:

apoc.import.file.enabled=true
apoc.import.file.use_neo4j_config=true

First we’ll create constraints to ensure we don’t create duplicate articles or authors:

CREATE CONSTRAINT ON (article:Article)
ASSERT article.index IS UNIQUE;

CREATE CONSTRAINT ON (author:Author)
ASSERT author.name IS UNIQUE;

Now we can run the following query to import the data from the JSON files:

CALL apoc.periodic.iterate(
 'UNWIND ["dblp-ref-0.json","dblp-ref-1.json",
 "dblp-ref-2.json","dblp-ref-3.json"] AS file
 CALL apoc.load.json("file:///" + file)
 YIELD value
 WHERE value.venue IN ["Lecture Notes in Computer Science",
 "Communications of The ACM",
 "international conference on software engineering",
 "advances in computing and communications"]
 return value',
 'MERGE (a:Article {index:value.id})
 ON CREATE SET a += apoc.map.clean(value,["id","authors","references"],[0])
 WITH a,value.authors as authors
 UNWIND authors as author
 MERGE (b:Author{name:author})
 MERGE (b)<-[:AUTHOR]-(a)'
, {batchSize: 10000, iterateList: true});

This results in the graph schema seen in Figure 8-4.

192 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Figure 8-4. The citation graph

This is a simple graph that connects articles and authors, so we’ll add more informa‐
tion we can infer from relationships to help with predictions.

The Coauthorship Graph
We want to predict future collaborations between authors, so we’ll start by creating a
coauthorship graph. The following Neo4j Cypher query will create a CO_AUTHOR rela‐
tionship between every pair of authors that have collaborated on a paper:

MATCH (a1)<-[:AUTHOR]-(paper)-[:AUTHOR]->(a2:Author)
WITH a1, a2, paper
ORDER BY a1, paper.year
WITH a1, a2, collect(paper)[0].year AS year, count(*) AS collaborations
MERGE (a1)-[coauthor:CO_AUTHOR {year: year}]-(a2)
SET coauthor.collaborations = collaborations;

The year property that we set on the CO_AUTHOR relationship in the query is the earli‐
est year when those two authors collaborated. We’re only interested in the first time
that a pair of authors have collaborated—subsequent collaborations aren’t relevant.

Figure 8-5 is in an example of part of the graph that gets created. We can already see
some interesting community structures.

Graphs and Machine Learning in Practice: Link Prediction | 193

Figure 8-5. The coauthor graph

Each circle in this diagram represents one author and the lines between them are
CO_AUTHOR relationships, so we have four authors that have all collaborated with each
other on the left, and then on the right two examples of three authors who have colla‐
borated. Now that we have our data loaded and a basic graph, let’s create the two data‐
sets we’ll need for training and testing.

Creating Balanced Training and Testing Datasets
With link prediction problems we want to try and predict the future creation of links.
This dataset works well for that because we have dates on the articles that we can use
to split our data. We need to work out which year we’ll use to define our training/test
split. We’ll train our model on everything before that year and then test it on the links
created after that date.

Let’s start by finding out when the articles were published. We can write the following
query to get a count of the number of articles, grouped by year:

query = """
MATCH (article:Article)
RETURN article.year AS year, count(*) AS count
ORDER BY year
"""

by_year = graph.run(query).to_data_frame()

194 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Let’s visualize this as a bar chart, with the following code:

plt.style.use('fivethirtyeight')
ax = by_year.plot(kind='bar', x='year', y='count', legend=None, figsize=(15,8))
ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

We can see the chart generated by executing this code in Figure 8-6.

Figure 8-6. Articles by year

Very few articles were published before 1997, and then there were a lot published
between 2001 and 2006, before a dip and then a gradual climb since 2011 (excluding
2013). It looks like 2006 could be a good year to split our data for training our model
and making predictions. Let’s check how many papers were published before that
year and how many during and after. We can write the following query to compute
this:

MATCH (article:Article)
RETURN article.year < 2006 AS training, count(*) AS count

The result of this is as follows, where true means a paper was published before 2006:

training count
false 21059

true 30897

Not bad! 60% of the papers were published before 2006 and 40% during or after 2006.
This is a fairly balanced split of data for our training and testing.

Graphs and Machine Learning in Practice: Link Prediction | 195

So now that we have a good split of papers, let’s use the same 2006 split for coauthor‐
ship. We’ll create a CO_AUTHOR_EARLY relationship between pairs of authors whose
first collaboration was before 2006:

MATCH (a1)<-[:AUTHOR]-(paper)-[:AUTHOR]->(a2:Author)
WITH a1, a2, paper
ORDER BY a1, paper.year
WITH a1, a2, collect(paper)[0].year AS year, count(*) AS collaborations
WHERE year < 2006
MERGE (a1)-[coauthor:CO_AUTHOR_EARLY {year: year}]-(a2)
SET coauthor.collaborations = collaborations;

And then we’ll create a CO_AUTHOR_LATE relationship between pairs of authors whose
first collaboration was during or after 2006:

MATCH (a1)<-[:AUTHOR]-(paper)-[:AUTHOR]->(a2:Author)
WITH a1, a2, paper
ORDER BY a1, paper.year
WITH a1, a2, collect(paper)[0].year AS year, count(*) AS collaborations
WHERE year >= 2006
MERGE (a1)-[coauthor:CO_AUTHOR_LATE {year: year}]-(a2)
SET coauthor.collaborations = collaborations;

Before we build our training and test sets, let’s check how many pairs of nodes we
have that have links between them. The following query will find the number of
CO_AUTHOR_EARLY pairs:

MATCH ()-[:CO_AUTHOR_EARLY]->()
RETURN count(*) AS count

Running that query will return the result shown here:

count
81096

And this query will find the number of CO_AUTHOR_LATE pairs:

MATCH ()-[:CO_AUTHOR_LATE]->()
RETURN count(*) AS count

Running that query returns this result:

count
74128

Now we’re ready to build our training and test datasets.

196 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Balancing and splitting data

The pairs of nodes with CO_AUTHOR_EARLY and CO_AUTHOR_LATE relationships
between them will act as our positive examples, but we’ll also need to create some
negative examples. Most real-world networks are sparse, with concentrations of rela‐
tionships, and this graph is no different. The number of examples where two nodes
do not have a relationship is much larger than the number that do have a relationship.

If we query our CO_AUTHOR_EARLY data, we’ll find there are 45,018 authors with that
type of relationship but only 81,096 relationships between authors. That might not
sound imbalanced, but it is: the potential maximum number of relationships that our
graph could have is (45018 * 45017) / 2 = 1,013,287,653, which means there are a lot
of negative examples (no links). If we used all the negative examples to train our
model, we’d have a severe class imbalance problem. A model could achieve extremely
high accuracy by predicting that every pair of nodes doesn’t have a relationship.

In their paper “New Perspectives and Methods in Link Prediction”, R. Lichtenwalter,
J. Lussier, and N. Chawla describe several methods to address this challenge. One of
these approaches is to build negative examples by finding nodes within our neighbor‐
hood that we aren’t currently connected to.

We will build our negative examples by finding pairs of nodes that are a mix of
between two and three hops away from each other, excluding those pairs that already
have a relationship. We’ll then downsample those pairs of nodes so that we have an
equal number of positive and negative examples.

We have 314,248 pairs of nodes that don’t have a relationship
between each other at a distance of two hops. If we increase the dis‐
tance to three hops, we have 967,677 pairs of nodes.

The following function will be used to downsample the negative examples:

def down_sample(df):
 copy = df.copy()
 zero = Counter(copy.label.values)[0]
 un = Counter(copy.label.values)[1]
 n = zero - un
 copy = copy.drop(copy[copy.label == 0].sample(n=n, random_state=1).index)
 return copy.sample(frac=1)

This function works out the difference between the number of positive and negative
examples, and then samples the negative examples so that there are equal numbers.
We can then run the following code to build a training set with balanced positive and
negative examples:

Graphs and Machine Learning in Practice: Link Prediction | 197

train_existing_links = graph.run("""
MATCH (author:Author)-[:CO_AUTHOR_EARLY]->(other:Author)
RETURN id(author) AS node1, id(other) AS node2, 1 AS label
""").to_data_frame()

train_missing_links = graph.run("""
MATCH (author:Author)
WHERE (author)-[:CO_AUTHOR_EARLY]-()
MATCH (author)-[:CO_AUTHOR_EARLY*2..3]-(other)
WHERE not((author)-[:CO_AUTHOR_EARLY]-(other))
RETURN id(author) AS node1, id(other) AS node2, 0 AS label
""").to_data_frame()

train_missing_links = train_missing_links.drop_duplicates()
training_df = train_missing_links.append(train_existing_links, ignore_index=True)
training_df['label'] = training_df['label'].astype('category')
training_df = down_sample(training_df)
training_data = spark.createDataFrame(training_df)

We’ve now coerced the label column to be a category, where 1 indicates that there is
a link between a pair of nodes, and 0 indicates that there is not a link. We can look at
the data in our DataFrame by running the following code:

training_data.show(n=5)

node1 node2 label
10019 28091 1

10170 51476 1

10259 17140 0

10259 26047 1

10293 71349 1

The results show us a list of node pairs and whether they have a coauthor relation‐
ship; for example, nodes 10019 and 28091 have a 1 label, indicating a collaboration.

Now let’s execute the following code to check the summary of contents for the Data‐
Frame:

training_data.groupby("label").count().show()

Here’s the result:

label count
0 81096

1 81096

198 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

We’ve created our training set with the same number of positive and negative sam‐
ples. Now we need to do the same for the test set. The following code will build a test
set with balanced positive and negative examples:

test_existing_links = graph.run("""
MATCH (author:Author)-[:CO_AUTHOR_LATE]->(other:Author)
RETURN id(author) AS node1, id(other) AS node2, 1 AS label
""").to_data_frame()

test_missing_links = graph.run("""
MATCH (author:Author)
WHERE (author)-[:CO_AUTHOR_LATE]-()
MATCH (author)-[:CO_AUTHOR*2..3]-(other)
WHERE not((author)-[:CO_AUTHOR]-(other))
RETURN id(author) AS node1, id(other) AS node2, 0 AS label
""").to_data_frame()

test_missing_links = test_missing_links.drop_duplicates()
test_df = test_missing_links.append(test_existing_links, ignore_index=True)
test_df['label'] = test_df['label'].astype('category')
test_df = down_sample(test_df)
test_data = spark.createDataFrame(test_df)

We can execute the following code to check the contents of the DataFrame:

test_data.groupby("label").count().show()

Which gives the following result:

label count
0 74128

1 74128

Now that we have balanced training and test datasets, let’s look at our methods for
predicting links.

How We Predict Missing Links
We need to start with some basic assumptions about what elements in our data might
predict whether two authors will become coauthors at a later date. Our hypothesis
would vary by domain and problem, but in this case, we believe the most predictive
features will be related to communities. We’ll begin with the assumption that the fol‐
lowing elements increase the probability that authors become coauthors:

• More coauthors in common
• Potential triadic relationships between authors
• Authors with more relationships

Graphs and Machine Learning in Practice: Link Prediction | 199

• Authors in the same community
• Authors in the same, tighter community

We’ll build graph features based on our assumptions and use those to train a binary
classifier. Binary classification is a type of ML with the task of predicting which of two
predefined groups an element belongs to based on a rule. We’re using the classifier for
the task of predicting whether a pair of authors will have a link or not, based on a
classification rule. For our examples, a value of 1 means there is a link (coauthorship),
and a value of 0 means there isn’t a link (no coauthorship).

We’ll implement our binary classifier as a random forest in Spark. A random forest is
an ensemble learning method for classification, regression, and other tasks, as illus‐
trated in Figure 8-7.

Figure 8-7. A random forest builds a collection of decision trees and then aggregates
results for a majority vote (for classification) or an average value (for regression).

Our random forest classifier will take the results from the multiple decision trees we
train and then use voting to predict a classification—in our example, whether there is
a link (coauthorship) or not.

Now let’s create our workflow.

Creating a Machine Learning Pipeline
We’ll create our machine learning pipeline based on a random forest classifier in
Spark. This method is well suited as our dataset will be comprised of a mix of strong
and weak features. While the weak features will sometimes be helpful, the random
forest method will ensure we don’t create a model that only fits our training data.

200 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

To create our ML pipeline, we’ll pass in a list of features as the fields variable—these
are the features that our classifier will use. The classifier expects to receive those fea‐
tures as a single column called features, so we use the VectorAssembler to trans‐
form the data into the required format.

The following code creates a machine learning pipeline and sets up our parameters
using MLlib:

def create_pipeline(fields):
 assembler = VectorAssembler(inputCols=fields, outputCol="features")
 rf = RandomForestClassifier(labelCol="label", featuresCol="features",
 numTrees=30, maxDepth=10)
 return Pipeline(stages=[assembler, rf])

The RandomForestClassifier uses these parameters:

labelCol

The name of the field containing the variable we want to predict; i.e., whether a
pair of nodes have a link

featuresCol

The name of the field containing the variables that will be used to predict
whether a pair of nodes have a link

numTrees

The number of decision trees that form the random forest

maxDepth

The maximum depth of the decision trees

We chose the number of decision trees and their depth based on experimentation. We
can think about hyperparameters like the settings of an algorithm that can be adjus‐
ted to optimize performance. The best hyperparameters are often difficult to deter‐
mine ahead of time, and tuning a model usually requires some trial and error.

We’ve covered the basics and set up our pipeline, so let’s dive into creating our model
and evaluating how well it performs.

Predicting Links: Basic Graph Features
We’ll start by creating a simple model that tries to predict whether two authors will
have a future collaboration based on features extracted from common authors, pref‐
erential attachment, and the total union of neighbors:

Common authors
Finds the number of potential triangles between two authors. This captures the
idea that two authors who have coauthors in common may be introduced and
collaborate in the future.

Graphs and Machine Learning in Practice: Link Prediction | 201

Preferential attachment
Produces a score for each pair of authors by multiplying the number of coauthors
each has. The intuition is that authors are more likely to collaborate with some‐
one who already coauthors a lot of papers.

Total union of neighbors
Finds the total number of coauthors that each author has, minus the duplicates.

In Neo4j, we can compute these values using Cypher queries. The following function
will compute these measures for the training set:

def apply_graphy_training_features(data):
 query = """
 UNWIND $pairs AS pair
 MATCH (p1) WHERE id(p1) = pair.node1
 MATCH (p2) WHERE id(p2) = pair.node2
 RETURN pair.node1 AS node1,
 pair.node2 AS node2,
 size([(p1)-[:CO_AUTHOR_EARLY]-(a)-
 [:CO_AUTHOR_EARLY]-(p2) | a]) AS commonAuthors,
 size((p1)-[:CO_AUTHOR_EARLY]-()) * size((p2)-
 [:CO_AUTHOR_EARLY]-()) AS prefAttachment,
 size(apoc.coll.toSet(
 [(p1)-[:CO_AUTHOR_EARLY]-(a) | id(a)] +
 [(p2)-[:CO_AUTHOR_EARLY]-(a) | id(a)]
)) AS totalNeighbors
 """
 pairs = [{"node1": row["node1"], "node2": row["node2"]}
 for row in data.collect()]
 features = spark.createDataFrame(graph.run(query,
 {"pairs": pairs}).to_data_frame())
 return data.join(features, ["node1", "node2"])

And the following function will compute them for the test set:

def apply_graphy_test_features(data):
 query = """
 UNWIND $pairs AS pair
 MATCH (p1) WHERE id(p1) = pair.node1
 MATCH (p2) WHERE id(p2) = pair.node2
 RETURN pair.node1 AS node1,
 pair.node2 AS node2,
 size([(p1)-[:CO_AUTHOR]-(a)-[:CO_AUTHOR]-(p2) | a]) AS commonAuthors,
 size((p1)-[:CO_AUTHOR]-()) * size((p2)-[:CO_AUTHOR]-())
 AS prefAttachment,
 size(apoc.coll.toSet(
 [(p1)-[:CO_AUTHOR]-(a) | id(a)] + [(p2)-[:CO_AUTHOR]-(a) | id(a)]
)) AS totalNeighbors
 """
 pairs = [{"node1": row["node1"], "node2": row["node2"]}
 for row in data.collect()]
 features = spark.createDataFrame(graph.run(query,

202 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

 {"pairs": pairs}).to_data_frame())
 return data.join(features, ["node1", "node2"])

Both of these functions take in a DataFrame that contains pairs of nodes in the col‐
umns node1 and node2. We then build an array of maps containing these pairs and
compute each of the measures for each pair of nodes.

The UNWIND clause is particularly useful in this chapter for taking a
large collection of node pairs and returning all their features in one
query.

We can apply these functions in Spark to our training and test DataFrames with the
following code:

training_data = apply_graphy_training_features(training_data)
test_data = apply_graphy_test_features(test_data)

Let’s explore the data in our training set. The following code will plot a histogram of
the frequency of commonAuthors:

plt.style.use('fivethirtyeight')
fig, axs = plt.subplots(1, 2, figsize=(18, 7), sharey=True)
charts = [(1, "have collaborated"), (0, "haven't collaborated")]

for index, chart in enumerate(charts):
 label, title = chart
 filtered = training_data.filter(training_data["label"] == label)
 common_authors = filtered.toPandas()["commonAuthors"]
 histogram = common_authors.value_counts().sort_index()
 histogram /= float(histogram.sum())
 histogram.plot(kind="bar", x='Common Authors', color="darkblue",
 ax=axs[index], title=f"Authors who {title} (label={label})")
 axs[index].xaxis.set_label_text("Common Authors")

plt.tight_layout()
plt.show()

We can see the chart generated in Figure 8-8.

Graphs and Machine Learning in Practice: Link Prediction | 203

Figure 8-8. Frequency of commonAuthors

On the left we see the frequency of commonAuthors when authors have collaborated,
and on the right we see the frequency of commonAuthors when they haven’t. For those
who haven’t collaborated (right side) the maximum number of common authors is 9,
but 95% of the values are 1 or 0. It’s not surprising that of the people who have not
collaborated on a paper, most also do not have many other coauthors in common. For
those who have collaborated (left side), 70% have less than five coauthors in com‐
mon, with a spike between one and two other coauthors.

Now we want to train a model to predict missing links. The following function does
this:

def train_model(fields, training_data):
 pipeline = create_pipeline(fields)
 model = pipeline.fit(training_data)
 return model

We’ll start by creating a basic model that only uses commonAuthors. We can create that
model by running this code:

basic_model = train_model(["commonAuthors"], training_data)

With our model trained, let’s check how it performs against some dummy data. The
following code evaluates the code against different values for commonAuthors:

eval_df = spark.createDataFrame(
 [(0,), (1,), (2,), (10,), (100,)],
 ['commonAuthors'])

(basic_model.transform(eval_df)
 .select("commonAuthors", "probability", "prediction")
 .show(truncate=False))

Running that code will give the following result:

204 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

commonAuthors probability prediction
0 [0.7540494940434322,0.24595050595656787] 0.0

1 [0.7540494940434322,0.24595050595656787] 0.0

2 [0.0536835525078107,0.9463164474921892] 1.0

10 [0.0536835525078107,0.9463164474921892] 1.0

If we have a commonAuthors value of less than 2 there’s a 75% probability that there
won’t be a relationship between the authors, so our model predicts 0. If we have a
commonAuthors value of 2 or more there’s a 94% probability that there will be a rela‐
tionship between the authors, so our model predicts 1.

Let’s now evaluate our model against the test set. Although there are several ways to
evaluate how well a model performs, most are derived from a few baseline predictive
metrics, as outlined in Table 8-1:

Table 8-1. Predictive metrics

Measure Formula Description

Accuracy TruePositives + TrueNegatives
TotalPredictions

The fraction of predictions our model gets right, or the total number of
correct predictions divided by the total number of predictions. Note
that accuracy alone can be misleading, especially when our data is
unbalanced. For example, if we have a dataset containing 95 cats and 5
dogs and our model predicts that every image is a cat we’ll have a 95%
accuracy score despite correctly identifying none of the dogs.

Precision TruePositives
TruePositives + FalsePositives

The proportion of positive identifications that are correct. A low
precision score indicates more false positives. A model that produces no
false positives has a precision of 1.0.

Recall (true
positive rate)

TruePositives
TruePositives + FalseNegatives

The proportion of actual positives that are identified correctly. A low
recall score indicates more false negatives. A model that produces no
false negatives has a recall of 1.0.

False positive
rate

FalsePositives
FalsePositives + TrueNegatives

The proportion of incorrect positives that are identified. A high score
indicates more false positives.

Receiver
operating
characteristic
(ROC) curve

X-Y chart ROC curve is a plot of the Recall (true positive rate) against the False
Positive rate at different classification thresholds. The area under the
curve (AUC) measures the two-dimensional area underneath the ROC
curve from an X-Y axis (0,0) to (1,1).

We’ll use accuracy, precision, recall, and ROC curves to evaluate our models. Accu‐
racy is a coarse measure, so we’ll focus on increasing our overall precision and recall
measures. We’ll use the ROC curves to compare how individual features change pre‐
dictive rates.

Graphs and Machine Learning in Practice: Link Prediction | 205

Depending on our goals we may want to favor different measures.
For example, we may want to eliminate all false negatives for dis‐
ease indicators, but we wouldn’t want to push predictions of every‐
thing into a positive result. There may be multiple thresholds we
set for different models that pass some results through to secon‐
dary inspection on the likelihood of false results.
Lowering classification thresholds results in more overall positive
results, thus increasing both false positives and true positives.

Let’s use the following function to compute these predictive measures:

def evaluate_model(model, test_data):
 # Execute the model against the test set
 predictions = model.transform(test_data)

 # Compute true positive, false positive, false negative counts
 tp = predictions[(predictions.label == 1) &
 (predictions.prediction == 1)].count()
 fp = predictions[(predictions.label == 0) &
 (predictions.prediction == 1)].count()
 fn = predictions[(predictions.label == 1) &
 (predictions.prediction == 0)].count()

 # Compute recall and precision manually
 recall = float(tp) / (tp + fn)
 precision = float(tp) / (tp + fp)

 # Compute accuracy using Spark MLLib's binary classification evaluator
 accuracy = BinaryClassificationEvaluator().evaluate(predictions)

 # Compute false positive rate and true positive rate using sklearn functions
 labels = [row["label"] for row in predictions.select("label").collect()]
 preds = [row["probability"][1] for row in predictions.select
 ("probability").collect()]
 fpr, tpr, threshold = roc_curve(labels, preds)
 roc_auc = auc(fpr, tpr)

 return { "fpr": fpr, "tpr": tpr, "roc_auc": roc_auc, "accuracy": accuracy,
 "recall": recall, "precision": precision }

We’ll then write a function to display the results in an easier-to-consume format:

def display_results(results):
 results = {k: v for k, v in results.items() if k not in
 ["fpr", "tpr", "roc_auc"]}
 return pd.DataFrame({"Measure": list(results.keys()),
 "Score": list(results.values())})

We can call the function with this code and display the results:

basic_results = evaluate_model(basic_model, test_data)
display_results(basic_results)

206 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

The predictive measures for the common authors model are:

measure score
accuracy 0.864457

recall 0.753278

precision 0.968670

This is not a bad start given that we’re predicting future collaboration based only on
the number of common authors in our pairs of authors. However, we get a bigger pic‐
ture if we consider these measures in context with one another. For example, this
model has a precision of 0.968670, which means it’s very good at predicting that links
exist. However, our recall is 0.753278, which means it’s not good at predicting when
links do not exist.

We can also plot the ROC curve (correlation of true positives and False positives)
using the following functions:

def create_roc_plot():
 plt.style.use('classic')
 fig = plt.figure(figsize=(13, 8))
 plt.xlim([0, 1])
 plt.ylim([0, 1])
 plt.ylabel('True Positive Rate')
 plt.xlabel('False Positive Rate')
 plt.rc('axes', prop_cycle=(cycler('color',
 ['r', 'g', 'b', 'c', 'm', 'y', 'k'])))
 plt.plot([0, 1], [0, 1], linestyle='--', label='Random score
 (AUC = 0.50)')
 return plt, fig

def add_curve(plt, title, fpr, tpr, roc):
 plt.plot(fpr, tpr, label=f"{title} (AUC = {roc:0.2})")

We call it like this:

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
 basic_results["fpr"], basic_results["tpr"], basic_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the ROC curve for our basic model in Figure 8-9.

Graphs and Machine Learning in Practice: Link Prediction | 207

Figure 8-9. The ROC curve for basic model

The common authors model gives us a 0.86 area under the curve (AUC) score.
Although this gives us one overall predictive measure, we need the chart (or other
measures) to evaluate whether this fits our goal. In Figure 8-9 we see that as we get
close to an 80% true positive rate (recall) our false positive rate reaches about 20%.
That could be problematic in scenarios like fraud detection where false positives are
expensive to chase.

Now let’s use the other graphy features to see if we can improve our predictions.
Before we train our model, let’s see how the data is distributed. We can run the fol‐
lowing code to show descriptive statistics for each of our graphy features:

(training_data.filter(training_data["label"]==1)
 .describe()
 .select("summary", "commonAuthors", "prefAttachment", "totalNeighbors")
 .show())

(training_data.filter(training_data["label"]==0)
 .describe()
 .select("summary", "commonAuthors", "prefAttachment", "totalNeighbors")
 .show())

We can see the results of running those bits of code in the following tables:

summary commonAuthors prefAttachment totalNeighbors
count 81096 81096 81096

mean 3.5959233501035808 69.93537289138798 10.082408503502021

208 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

summary commonAuthors prefAttachment totalNeighbors
stddev 4.715942231635516 171.47092255919472 8.44109970920685

min 0 1 2

max 44 3150 90

summary commonAuthors prefAttachment totalNeighbors
count 81096 81096 81096

mean 0.37666469369635985 48.18137762651672 12.97586810693499

stddev 0.6194576095461857 94.92635344980489 10.082991078685803

min 0 1 1

max 9 1849 89

Features with larger differences between links (coauthorship) and no link (no coau‐
thorship) should be more predictive because the divide is greater. The average value
for prefAttachment is higher for authors who have collaborated versus those who
haven’t. That difference is even more substantial for commonAuthors. We notice that
there isn’t much difference in the values for totalNeighbors, which probably means
this feature won’t be very predictive. Also interesting is the large standard deviation as
well as the minimum and maximum values for preferential attachment. This is what
we might expect for small-world networks with concentrated hubs (superconnec‐
tors).

Now let’s train a new model, adding preferential attachment and total union of neigh‐
bors, by running the following code:

fields = ["commonAuthors", "prefAttachment", "totalNeighbors"]
graphy_model = train_model(fields, training_data)

And now let’s evaluate the model and display the results:

graphy_results = evaluate_model(graphy_model, test_data)
display_results(graphy_results)

The predictive measures for the graphy model are:

measure score
accuracy 0.978351

recall 0.924226

precision 0.943795

Our accuracy and recall have increased substantially, but the precision has dropped a
bit and we’re still misclassifying about 8% of the links. Let’s plot the ROC curve and
compare our basic and graphy models by running the following code:

Graphs and Machine Learning in Practice: Link Prediction | 209

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
 basic_results["fpr"], basic_results["tpr"],
 basic_results["roc_auc"])

add_curve(plt, "Graphy",
 graphy_results["fpr"], graphy_results["tpr"],
 graphy_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the output in Figure 8-10.

Figure 8-10. The ROC curve for the graphy model

Overall it looks like we’re headed in the right direction and it’s helpful to visualize
comparisons to get a feel for how different models impact our results.

Now that we have more than one feature, we want to evaluate which features are
making the most difference. We’ll use feature importance to rank the impact of differ‐
ent features to our model’s prediction. This enables us to evaluate the influence on
results that different algorithms and statistics have.

210 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

To compute feature importance, the random forest algorithm in
Spark averages the reduction in impurity across all trees in the for‐
est. The impurity is the frequency at which randomly assigned
labels are incorrect.
Feature rankings are in comparison to the group of features we’re
evaluating, always normalized to 1. If we rank one feature, its fea‐
ture importance is 1.0 as it has 100% of the influence on the model.

The following function creates a chart showing the most influential features:

def plot_feature_importance(fields, feature_importances):
 df = pd.DataFrame({"Feature": fields, "Importance": feature_importances})
 df = df.sort_values("Importance", ascending=False)
 ax = df.plot(kind='bar', x='Feature', y='Importance', legend=None)
 ax.xaxis.set_label_text("")
 plt.tight_layout()
 plt.show()

And we call it like this:

rf_model = graphy_model.stages[-1]
plot_feature_importance(fields, rf_model.featureImportances)

The results of running that function can be seen in Figure 8-11.

Graphs and Machine Learning in Practice: Link Prediction | 211

Figure 8-11. Feature importance: graphy model

Of the three features we’ve used so far, commonAuthors is the most important feature
by a large margin.

To understand how our predictive models are created, we can visualize one of the
decision trees in our random forest using the spark-tree-plotting library. The follow‐
ing code generates a GraphViz file:

from spark_tree_plotting import export_graphviz

dot_string = export_graphviz(rf_model.trees[0],
 featureNames=fields, categoryNames=[], classNames=["True", "False"],
 filled=True, roundedCorners=True, roundLeaves=True)

with open("/tmp/rf.dot", "w") as file:
 file.write(dot_string)

We can then generate a visual representation of that file by running the following
command from the terminal:

dot -Tpdf /tmp/rf.dot -o /tmp/rf.pdf

The output of that command can be seen in Figure 8-12.

212 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Figure 8-12. Visualizing a decision tree

Imagine that we’re using this decision tree to predict whether a pair of nodes with the
following features are linked:

commonAuthors prefAttachment totalNeighbors
10 12 5

Our random forest walks through several steps to create a prediction:

1. We start from node 0, where we have more than 1.5 commonAuthors, so we follow
the False branch down to node 2.

2. We have more than 2.5 commonAuthors here, so we follow the False branch to
node 6.

3. We have a score of less than 15.5 for prefAttachment, which takes us to node 9.
4. Node 9 is a leaf node in this decision tree, which means that we don’t have to

check any more conditions—the value of Prediction (i.e., True) on this node is
the decision tree’s prediction.

5. Finally, the random forest evaluates the item being predicted against a collection
of these decision trees and makes its prediction based on the most popular out‐
come.

Now let’s look at adding more graph features.

Graphs and Machine Learning in Practice: Link Prediction | 213

Predicting Links: Triangles and the Clustering Coefficient
Recommendation solutions often base predictions on some form of triangle metric,
so let’s see if they further help with our example. We can compute the number of tri‐
angles that a node is a part of and its clustering coefficient by executing the following
query:

CALL algo.triangleCount('Author', 'CO_AUTHOR_EARLY', { write:true,
 writeProperty:'trianglesTrain', clusteringCoefficientProperty:
 'coefficientTrain'});

CALL algo.triangleCount('Author', 'CO_AUTHOR', { write:true,
 writeProperty:'trianglesTest', clusteringCoefficientProperty:
 'coefficientTest'});

The following function will add these features to our DataFrames:

def apply_triangles_features(data, triangles_prop, coefficient_prop):
 query = """
 UNWIND $pairs AS pair
 MATCH (p1) WHERE id(p1) = pair.node1
 MATCH (p2) WHERE id(p2) = pair.node2
 RETURN pair.node1 AS node1,
 pair.node2 AS node2,
 apoc.coll.min([p1[$trianglesProp], p2[$trianglesProp]])
 AS minTriangles,
 apoc.coll.max([p1[$trianglesProp], p2[$trianglesProp]])
 AS maxTriangles,
 apoc.coll.min([p1[$coefficientProp], p2[$coefficientProp]])
 AS minCoefficient,
 apoc.coll.max([p1[$coefficientProp], p2[$coefficientProp]])
 AS maxCoefficient
 """
 params = {
 "pairs": [{"node1": row["node1"], "node2": row["node2"]}
 for row in data.collect()],
 "trianglesProp": triangles_prop,
 "coefficientProp": coefficient_prop
 }
 features = spark.createDataFrame(graph.run(query, params).to_data_frame())
 return data.join(features, ["node1", "node2"])

Notice that we’ve used min and max prefixes for our triangle count
and clustering coefficient algorithms. We need a way to prevent our
model from learning based on the order authors in pairs are passed
in from our undirected graph. To do this, we’ve split these features
by the authors with minimum and maximum counts.

We can apply this function to our training and test DataFrames with the following
code:

214 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

training_data = apply_triangles_features(training_data,
 "trianglesTrain", "coefficientTrain")
test_data = apply_triangles_features(test_data,
 "trianglesTest", "coefficientTest")

And run this code to show descriptive statistics for each of our triangle features:

(training_data.filter(training_data["label"]==1)
 .describe()
 .select("summary", "minTriangles", "maxTriangles",
 "minCoefficient", "maxCoefficient")
 .show())

(training_data.filter(training_data["label"]==0)
 .describe()
 .select("summary", "minTriangles", "maxTriangles", "minCoefficient",
 "maxCoefficient")
 .show())

We can see the results of running those bits of code in the following tables.

summary minTriangles maxTriangles minCoefficient maxCoefficient
count 81096 81096 81096 81096

mean 19.478260333431983 27.73590559337082 0.5703773654487051 0.8453786164620439

stddev 65.7615282768483 74.01896188921927 0.3614610553659958 0.2939681857356519

min 0 0 0.0 0.0

max 622 785 1.0 1.0

summary minTriangles maxTriangles minCoefficient maxCoefficient
count 81096 81096 81096 81096

mean 5.754661142349808 35.651980368945445 0.49048921333297446 0.860283935358397

stddev 20.639236521699 85.82843448272624 0.3684138346533951 0.2578219623967906

min 0 0 0.0 0.0

max 617 785 1.0 1.0

Notice in this comparison that there isn’t as great a difference between the coauthor‐
ship and no-coauthorship data. This could mean that these features aren’t as predic‐
tive.

We can train another model by running the following code:

fields = ["commonAuthors", "prefAttachment", "totalNeighbors",
 "minTriangles", "maxTriangles", "minCoefficient", "maxCoefficient"]
triangle_model = train_model(fields, training_data)

And now let’s evaluate the model and display the results:

triangle_results = evaluate_model(triangle_model, test_data)
display_results(triangle_results)

Graphs and Machine Learning in Practice: Link Prediction | 215

The predictive measures for the triangles model are shown in this table:

measure score
accuracy 0.992924

recall 0.965384

precision 0.958582

Our predictive measures have increased well by adding each new feature to the previ‐
ous model. Let’s add our triangles model to our ROC curve chart with the following
code:

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
 basic_results["fpr"], basic_results["tpr"], basic_results["roc_auc"])

add_curve(plt, "Graphy",
 graphy_results["fpr"], graphy_results["tpr"],
 graphy_results["roc_auc"])

add_curve(plt, "Triangles",
 triangle_results["fpr"], triangle_results["tpr"],
 triangle_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the output in Figure 8-13.

216 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

Figure 8-13. The ROC curve for triangles model

Our models have generally improved, and we’re in the high 90s for predictive meas‐
ures. This is when things usually get difficult, because the easiest gains are made but
there’s still room for improvement. Let’s see how the important features have
changed:

rf_model = triangle_model.stages[-1]
plot_feature_importance(fields, rf_model.featureImportances)

The results of running that function can be seen in Figure 8-14.

Graphs and Machine Learning in Practice: Link Prediction | 217

Figure 8-14. Feature importance: triangles model

The common authors feature still has the greatest single impact on our model. Per‐
haps we need to look at new areas and see what happens when we add community
information.

Predicting Links: Community Detection
We hypothesize that nodes that are in the same community are more likely to have a
link between them if they don’t already. Moreover, we believe that the tighter a com‐
munity is, the more likely links are.

First, we’ll compute more coarse-grained communities using the Label Propagation
algorithm in Neo4j. We do this by running the following query, which will store the
community in the property partitionTrain for the training set and partitionTest
for the test set:

CALL algo.labelPropagation("Author", "CO_AUTHOR_EARLY", "BOTH",
 {partitionProperty: "partitionTrain"});

CALL algo.labelPropagation("Author", "CO_AUTHOR", "BOTH",
 {partitionProperty: "partitionTest"});

218 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

We’ll also compute finer-grained groups using the Louvain algorithm. The Louvain
algorithm returns intermediate clusters, and we’ll store the smallest of these clusters
in the property louvainTrain for the training set and louvainTest for the test set:

CALL algo.louvain.stream("Author", "CO_AUTHOR_EARLY",
 {includeIntermediateCommunities:true})
YIELD nodeId, community, communities
WITH algo.getNodeById(nodeId) AS node, communities[0] AS smallestCommunity
SET node.louvainTrain = smallestCommunity;

CALL algo.louvain.stream("Author", "CO_AUTHOR",
 {includeIntermediateCommunities:true})
YIELD nodeId, community, communities
WITH algo.getNodeById(nodeId) AS node, communities[0] AS smallestCommunity
SET node.louvainTest = smallestCommunity;

We’ll now create the following function to return the values from these algorithms:

def apply_community_features(data, partition_prop, louvain_prop):
 query = """
 UNWIND $pairs AS pair
 MATCH (p1) WHERE id(p1) = pair.node1
 MATCH (p2) WHERE id(p2) = pair.node2
 RETURN pair.node1 AS node1,
 pair.node2 AS node2,
 CASE WHEN p1[$partitionProp] = p2[$partitionProp] THEN
 1 ELSE 0 END AS samePartition,
 CASE WHEN p1[$louvainProp] = p2[$louvainProp] THEN
 1 ELSE 0 END AS sameLouvain
 """
 params = {
 "pairs": [{"node1": row["node1"], "node2": row["node2"]} for
 row in data.collect()],
 "partitionProp": partition_prop,
 "louvainProp": louvain_prop
 }
 features = spark.createDataFrame(graph.run(query, params).to_data_frame())
 return data.join(features, ["node1", "node2"])

We can apply this function to our training and test DataFrames in Spark with the fol‐
lowing code:

training_data = apply_community_features(training_data,
 "partitionTrain", "louvainTrain")
test_data = apply_community_features(test_data, "partitionTest", "louvainTest")

And we can run this code to see whether pairs of nodes belong in the same partition:

plt.style.use('fivethirtyeight')
fig, axs = plt.subplots(1, 2, figsize=(18, 7), sharey=True)
charts = [(1, "have collaborated"), (0, "haven't collaborated")]

for index, chart in enumerate(charts):
 label, title = chart

Graphs and Machine Learning in Practice: Link Prediction | 219

 filtered = training_data.filter(training_data["label"] == label)
 values = (filtered.withColumn('samePartition',
 F.when(F.col("samePartition") == 0, "False")
 .otherwise("True"))
 .groupby("samePartition")
 .agg(F.count("label").alias("count"))
 .select("samePartition", "count")
 .toPandas())
 values.set_index("samePartition", drop=True, inplace=True)
 values.plot(kind="bar", ax=axs[index], legend=None,
 title=f"Authors who {title} (label={label})")
 axs[index].xaxis.set_label_text("Same Partition")

plt.tight_layout()
plt.show()

We see the results of running that code in Figure 8-15.

Figure 8-15. Same partitions

It looks like this feature could be quite predictive—authors who have collaborated are
much more likely to be in the same partition than those who haven’t. We can do the
same thing for the Louvain clusters by running the following code:

plt.style.use('fivethirtyeight')
fig, axs = plt.subplots(1, 2, figsize=(18, 7), sharey=True)
charts = [(1, "have collaborated"), (0, "haven't collaborated")]

for index, chart in enumerate(charts):
 label, title = chart
 filtered = training_data.filter(training_data["label"] == label)
 values = (filtered.withColumn('sameLouvain',
 F.when(F.col("sameLouvain") == 0, "False")
 .otherwise("True"))
 .groupby("sameLouvain")
 .agg(F.count("label").alias("count"))
 .select("sameLouvain", "count")
 .toPandas())

220 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

 values.set_index("sameLouvain", drop=True, inplace=True)
 values.plot(kind="bar", ax=axs[index], legend=None,
 title=f"Authors who {title} (label={label})")
 axs[index].xaxis.set_label_text("Same Louvain")

plt.tight_layout()
plt.show()

We can see the results of running that code in Figure 8-16.

Figure 8-16. Same Louvain clusters

It looks like this feature could be quite predictive as well—authors who have collabo‐
rated are likely to be in the same cluster, and those who haven’t are very unlikely to be
in the same cluster.

We can train another model by running the following code:

fields = ["commonAuthors", "prefAttachment", "totalNeighbors",
 "minTriangles", "maxTriangles", "minCoefficient", "maxCoefficient",
 "samePartition", "sameLouvain"]
community_model = train_model(fields, training_data)

And now let’s evaluate the model and display the results:

community_results = evaluate_model(community_model, test_data)
display_results(community_results)

The predictive measures for the community model are:

measure score
accuracy 0.995771

recall 0.957088

precision 0.978674

Graphs and Machine Learning in Practice: Link Prediction | 221

Some of our measures have improved, so for comparison let’s plot the ROC curve for
all our models by running the following code:

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
 basic_results["fpr"], basic_results["tpr"], basic_results["roc_auc"])

add_curve(plt, "Graphy",
 graphy_results["fpr"], graphy_results["tpr"],
 graphy_results["roc_auc"])

add_curve(plt, "Triangles",
 triangle_results["fpr"], triangle_results["tpr"],
 triangle_results["roc_auc"])

add_curve(plt, "Community",
 community_results["fpr"], community_results["tpr"],
 community_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the output in Figure 8-17.

Figure 8-17. The ROC curve for the community model

We can see improvements with the addition of the community model, so let’s see
which are the most important features:

222 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

rf_model = community_model.stages[-1]
plot_feature_importance(fields, rf_model.featureImportances)

The results of running that function can be seen in Figure 8-18.

Figure 8-18. Feature importance: community model

Although the common authors model is overall very important, it’s good to avoid
having an overly dominant element that might skew predictions on new data. Com‐
munity detection algorithms had a lot of influence in our last model with all the fea‐
tures included, and this helps round out our predictive approach.

We’ve seen in our examples that simple graph-based features are a good start, and
then as we add more graphy and graph algorithm–based features, we continue to
improve our predictive measures. We now have a good, balanced model for predict‐
ing coauthorship links.

Using graphs for connected feature extraction can significantly improve our predic‐
tions. The ideal graph features and algorithms vary depending on the attributes of the
data, including the network domain and graph shape. We suggest first considering
the predictive elements within your data and testing hypotheses with different types
of connected features before fine-tuning.

Graphs and Machine Learning in Practice: Link Prediction | 223

Reader Exercises
There are several areas to investigate, and ways to build other models. Here are some
ideas for further exploration:

• How predictive is our model on conference data that we did not include?
• When testing new data, what happens when we remove some features?
• Does splitting the years differently for training and testing impact our predic‐

tions?
• This dataset also has citations between papers; can we use that data to generate

different features or predict future citations?

Summary
In this chapter, we looked at using graph features and algorithms to enhance machine
learning. We covered a few preliminary concepts and then walked through a detailed
example integrating Neo4j and Apache Spark for link prediction. We illustrated how
to evaluate random forest classifier models and incorporate various types of connec‐
ted features to improve our results.

Wrapping Things Up
In this book, we covered graph concepts as well as processing platforms and analytics.
We then walked through many practical examples of how to use graph algorithms in
Apache Spark and Neo4j. We finished with a look at how graphs enhance machine
learning.

Graph algorithms are the powerhouse behind the analysis of real-world systems—
from preventing fraud and optimizing call routing to predicting the spread of the flu.
We hope you join us and develop your own unique solutions that take advantage of
today’s highly connected data.

224 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning

APPENDIX A

Additional Information and Resources

In this section, we quickly cover additional information that may be helpful for some
readers. We’ll look at other types of algorithms, another way to import data into
Neo4j, and another procedure library. There are also some resources for finding data‐
sets, platform assistance, and training.

Other Algorithms
Many algorithms can be used with graph data. In this book, we’ve focused on those
that are most representative of classic graph algorithms and those of most use to
application developers. Some algorithms, such as coloring and heuristics, have been
omitted because they are either of more interest in academic cases or can be easily
derived.

Other algorithms, such as edge-based community detection, are interesting but have
yet to be implemented in Neo4j or Apache Spark. We expect the list of graph algo‐
rithms used in both platforms to increase as the use of graph analytics grows.

There are also categories of algorithms that are used with graphs but aren’t strictly
graphy in nature. For example, we looked at a few algorithms used in the context of
machine learning in Chapter 8. Another area of note is similarity algorithms, which
are often applied to recommendations and link prediction. Similarity algorithms
work out which nodes most resemble each other by using various methods to com‐
pare items like node attributes.

Neo4j Bulk Data Import and Yelp
Importing data into Neo4j with the Cypher query language uses a transactional
approach. Figure A-1 illustrates a high-level overview of this process.

225

Figure A-1. Cypher-based import

While this method works well for incremental data loading or bulk loading of up to
10 million records, the Neo4j Import tool is a better choice when importing initial
bulk datasets. This tool creates the store files directly, skipping the transaction log, as
shown in Figure A-2.

Figure A-2. Using the Neo4j Import tool

The Neo4j Import tool processes CSV files and expects these files to have specific
headers. Figure A-3 shows an example of CSV files that can be processed by the tool.

226 | Appendix A: Additional Information and Resources

Figure A-3. Format of CSV files that Neo4j Import processes

The size of the Yelp dataset means the Neo4j Import tool is the best choice for getting
the data into Neo4j. The data is in JSON format, so first we need to convert it into the
format that the Neo4j Import tool expects. Figure A-4 shows an example of the JSON
that we need to transform.

Figure A-4. Transforming JSON to CSV

Using Python, we can create a simple script to convert the data to a CSV file. Once
we’ve transformed the data into that format we can import it into Neo4j. Detailed
instructions explaining how to do this are in the book’s the book’s resources reposi‐
tory.

Additional Information and Resources | 227

APOC and Other Neo4j Tools
Awesome Procedures on Cypher (APOC) is a library that contains more than 450
procedures and functions to help with common tasks such as data integration, data
cleaning, and data conversion, and general help functions. APOC is the standard
library for Neo4j.

Neo4j also has other tools that can be used in conjunction with their graph algo‐
rithms library such as an algorithms “playground” app for code-free exploration.
These can be found on their developer site for graph algorithms.

Finding Datasets
Finding a graphy dataset that aligns with testing goals or hypotheses can be challeng‐
ing. In addition to reviewing research papers, consider exploring indexes for network
datasets:

• The Stanford Network Analysis Project (SNAP) includes several datasets along
with related papers and usage guides.

• The Colorado Index of Complex Networks (ICON) is a searchable index of
research-quality network datasets from various domains of network science.

• The Koblenz Network Collection (KONECT) includes large network datasets of
various types in order to perform research in network science.

Most datasets will require some massaging to transform them into a more useful for‐
mat.

Assistance with the Apache Spark and Neo4j Platforms
There are many online resources for the Apache Spark and Neo4j platforms. If you
have specific questions, we encourage you to reach out their respective communities:

• For general Spark questions, subscribe to users@spark.apache.org at the Spark
Community page.

• For GraphFrames questions, use the GitHub issue tracker.
• For all Neo4j questions (including about graph algorithms), visit the Neo4j Com‐

munity online.

228 | Appendix A: Additional Information and Resources

Training
There are a number of excellent resources for getting started with graph analytics. A
search for courses or books on graph algorithms, network science, and analysis of
networks will uncover many options. A few great examples for online learning
include:

• Coursera’s Applied Social Network Analysis in Python course
• Leonid Zhukov’s Social Network Analysis YouTube series
• Stanford’s Analysis of Networks course includes video lectures, reading lists, and

other resources
• Complexity Explorer offers online courses in complexity science

Additional Information and Resources | 229

Index

A
A* algorithm

Shortest Path, 56-58
with Neo4j, 57

actual density, 24
acyclic graphs, 18

cyclic graphs vs., 22-23
trees and, 23

aggregateMessages, 54, 67, 86
airline flight data

analyzing with Apache Spark, 166-181
delays from ORD, 170-172
exploratory analysis, 168
fog-related delays from SFO, 172-174
interconnected airports by airline, 174-181
popular airports, 168-170

Alexa, 185
algorithm-centric processing, 30
All Pairs Shortest Path (APSP) algorithm, 40,

60-65
sequence of operations, 60-62
when to use, 62
with Apache Spark, 62
with Neo4j, 63-65

Amazon, 185
anti-money laundering (AML) analysis, xiv
Apache Spark

about, 32-34
All Pairs Shortest Path algorithm with, 62
analyzing airline flight data with, 166-181

(see also airline flight data)
Breadth First Search with, 46
Closeness Centrality with, 86-88
Connected Components with, 125-126

Degree Centrality with, 83
importing social graph data into, 80
importing software dependency graph data

into, 114
importing transport dataset into, 43
installing, 34
Label Propagation with, 130
online resources, 228
PageRank with, 103-105
personalized PageRank with, 107
Shortest Path algorithm (weighted), 54-56
Single Source Shortest Path algorithm with,

67-69
Spark Graph project, 33
Strongly Connected Components with, 120
Triangle Count with, 117
when to use, 31

Approximate Betweenness Centrality, 160
artificial intelligence (AI), 183
average degree, 81
average shortest path, 27
Awesome Procedures on Cypher (APOC)

library, 35, 148, 192, 228

B
Bacon number, 50
Barabási, Albert-László, 11
Betweenness Centrality algorithm, 78, 92-99

bridges and control points, 93
calculating, 93
when to use, 94
with Neo4j, 95-97
with Yelp dataset, 159-162

binary classification, 200

231

bipartite graphs, 18, 25
Boruvka, Otakar, 70
Breadth First Search (BFS), 45-47
bridges, 93
Bridges of Königsberg problem, 2, 49
bulk data import, Neo4j Import tool for,

225-227
Bulk Synchronous Parallel (BSP), 30

C
cancer research, xiv
Centrality algorithms, 27, 77-108

Betweenness Centrality, 92-99
Closeness Centrality, 84-92
Degree Centrality, 81-84
overview, 78
Randomized-Approximate Brandes, 98
social graph data for, 79-81

Chicago O'Hare International Airport (ORD),
data in delays from, 170-172

citation networks, 124
Clauset, A., 5
clique, 23
Closeness Centrality algorithm, 78, 84-92

Harmonic Centrality variation, 91
Wasserman Faust variation, 89-91
when to use, 85
with Apache Spark, 86-88
with Neo4j, 88

Clustering Coefficient algorithm, 109
(see also Triangle Count and Clustering

Coefficient algorithms)
clusters, defined, 19
Colorado Index of Complex Networks (ICON),

228
community detection algorithms, 27, 109-143

Connected Components, 124-127
for link prediction, 218-223
Label Propagation algorithm, 127-133
Louvain Modularity, 133-143
software dependency graph data for,

112-114
Strongly Connected Components, 119-124
Triangle Count and Clustering Coefficient,

114-119
validating communities, 143

complete graph, 23
components, defined, 19

Configuration that Outperforms a Single
Thread (COST), 29

Connected Components algorithm, 109,
124-127
when to use, 124
with Apache Spark, 125-126
with Neo4j, 126

connected graphs, 19
context, xiv, 183
costs, 50, 57
cycles, 22
cyclic graphs, 18
Cypher, 33, 166, 225
Cypher for Apache Spark (CAPS), 33

D
D'Orazio, Francesco, 10
damping/dampening factor, 102, 104
DataFrame, 32
datasets, sources for, 228
deduplication, 124
Degree Centrality algorithm, 78, 81-84

reach of a node, 81
when to use, 82
with airport data, 168-170
with Apache Spark, 83

degree distribution, 81
degree of a node, 81
delta-stepping algorithm, 69
dense graphs, 18, 23
density of relationships, 111
Depth First Search (DFS), 48-49, 120
diameter of a graph, 27
Dijkstra, Edsger, 50
Dijkstra’s algorithm (see Shortest Path algo‐

rithm)
directed acyclic graph (DAG), 22
directed graphs, 18, 21
directional relationships, xiii
disconnected graphs, 19
distance (term), 50

E
Eguíluz, Víctor M., 4
entity relationship diagram (ERD), xiii
Erdös, Paul, 51
Euler, Leonhard, 2
Eulerian path, 49

232 | Index

F
Facebook, 184
Faust, Katherine, 89
feature extraction, 186
feature importance, 210
feature selection, 186
feature vectors, 186
features

connected feature extraction/selection,
185-189

graph algorithm features, 188
graphy, 187

Fischer, Michael J., 124
Fleurquin, Pablo, 4
foodweb, 5
Freeman, Linton C., 81, 93

G
Galler, Bernard A., 124
Girvan–Newman (GN) benchmark, 143
global clustering coefficient, 116
global patterns, 6
Google

PageRank, 99
Pregel, 30

Grandjean, Martin, 4
graph algorithms (generally)

about, 3-5
centrality, 27
community detection, 27
defined, 3

(see also specific algorithms)
importance of, 8-12
in practice, 145-181
pathfinding, 27
types of, 27

graph analytics
about, 3-5
defined, 3
use cases, 12

graph compute engines, 31
graph databases, 31
graph embedding, defined, 186
graph global, 6, 186
graph local, 6, 186
graph platforms

Apache Spark, 32-34
Neo4j, 34-37
platform considerations, 29

representative platforms, 31-37
selecting a platform, 31

graph processing, 6-8, 30
Graph search algorithms, 39-49

defined, 39
Graph Search algorithms, 40

Breadth First Search, 45-47
Depth First Search, 48-49
transport graph data for, 41-44

graph theory, 15-28
about, 15-28
origins of, 2
terminology, 15
types and structures, 16

graph traversal algorithms
Breadth First Search, 45-47
Depth First Search, 48-49

graph-centric processing, 30
GraphFrames, 32, 103, 114
graphs (generally)

about, 2
acyclic vs. cyclic, 18, 22-23
bipartite, 18, 25
common attributes, 18
connected vs. disconnected, 19
flavors of, 18-25
k-partite, 18, 25
monopartite, 18, 24
sparse vs. dense, 23
undirected vs. directed, 18, 21
unweighted vs. weighted, 18, 19

graphy datasets, 228
graphy features, 187

H
Hamiltonian path, 49
Harmonic Centrality closeness algorithm, 91
Hart, Peter, 57
hop (term), 21, 50
hybrid transactional and analytical processing

(HTAP), 7

I
impurity, 211
in-links, 21
influence, 99
islands, 19

Index | 233

K
k-partite graphs, 18, 25
Koblenz Network Collection (KONECT), 228
Königsberg Bridges problem, 2, 49

L
Label Propagation algorithm (LPA), 109,

127-133
pull method, 128
push method, 127
seed labels, 129
semi-supervised learning, 129
when to use, 129
with Apache Spark, 130
with Neo4j, 131-133
with Yelp dataset, 163-165

label, defined, 15
labeled property graph model, 15
Lancichinetti–Fortunato–Radicchi (LFR)

benchmark, 143
landmarks, 62
Latora, V., 91
leaf nodes, 22
Lee, C. Y., 45
link prediction, 190-223

balancing/splitting data for training/testing,
197-199

basic graph features for, 201-213
coauthorship graph, 193
community detection, 218-223
creating balanced training and testing data‐

sets, 194-199
creating machine learning pipeline, 200
defined, 189
importing data into Neo4j, 192
predicting missing links, 199
tools and data, 190-192
Triangles and Clustering Coefficient,

214-218
literature-based discovery (LBD), xiv
local clustering coefficient, 115, 118
Louvain Modularity algorithm, 109, 133-143

for link prediction, 219-221
quality-based grouping via modularity,

134-137
when to use, 137
with Neo4j, 138-143

M
machine learning (ML)

connected feature extraction/selection,
185-189

graph embeddings, 186
graphs, context, and accuracy, 184
importance of context in, 183
link prediction, 183

Marchiori, M., 91
marketing campaigns, xiv
matplotlib, 148
maximum density, 24
Minimum Spanning Tree algorithm, 40, 70-73

when to use, 71
with Neo4j, 72

modularity, 134
(see also Louvain Modularity algorithm)
calculating, 134-135
quality-based grouping and, 134-137

money laundering, xiv
monopartite graphs, 18, 24
Moore, C., 5
Moore, Edward F., 45
multigraph, 17

N
negative weights, 51
Neo4j

A* algorithm with, 57
All Pairs Shortest Path algorithm with,

63-65
analyzing Yelp data with, 145-166

(see also Yelp dataset)
Betweenness Centrality with, 95-97
Closeness Centrality with, 88
Connected Components with, 126
importing Citation Network Dataset into,

192
importing social graph data into, 81
importing software dependency graph data

into, 114
importing transport dataset into, 44
Label Propagation with, 131-133
local clustering coefficient with, 118
Louvain Modularity with, 138-143
Minimum Spanning Tree algorithm with, 72
online resources, 228
PageRank with, 105-107
Random Walk algorithm with, 74

234 | Index

Randomized-Approximate Brandes with, 98
Shortest Path algorithm (unweighted),

51-53
Shortest Path algorithm (weighted), 53
Single Source Shortest Path algorithm with,

69
Strongly Connected Components with,

122-124
Triangles with, 117
when to use, 32
Yen's k-Shortest Paths algorithm, 58

Neo4j Algorithms library
Shortest Path (unweighted), 51-53
Shortest Path (weighted), 53

Neo4j Desktop, 36
Neo4j Graph Platform, 34-37
Neo4j Import tool, 225-227
Network Science, 4
networks

graph as representation of, 3
types and structures, 16

Newman, M. E. J., 5
Nilsson, Nils, 57
node-centric processing, 30
nodes

Centrality and, 77
defined, 2

O
online analytical processing (OLAP), 7
online learning, 229
online transaction processing (OLTP), 7
out-links, 21

P
Page, Larry, 99
PageRank, 78, 99-108

and influence, 99
convergence implementation, 105
formula for, 100
iteration/random surfers/rank sinks, 102
Personalized PageRank variant, 107
when to use, 103
with Apache Spark, 103-105
with fixed number of iterations, 104
with Neo4j, 105-107
with Yelp dataset, 154-157

pandas library, 148
Pareto distribution, 11

path, defined, 16
Pathfinding algorithms, 27, 39-44

All Pairs Shortest Path, 60-65
Minimum Spanning Tree algorithm, 70-73
Random Walk algorithm, 73-75
Shortest Path, 49-60
Single Source Shortest Path, 65-70
transport graph data for, 41-44
weighted graphs and, 20

Pearson, Karl, 73
Personalized PageRank (PPR), 103, 107
pivotal nodes, 93
power law, 11
preferential attachment, 9
Pregel, 30
Prim's algorithm, 70
product recommendation engines, 185
properties, defined, 16
pseudograph, 17
pyspark REPL, 34

Q
quality-based grouping, 134-137

R
Raghavan, Usha Nandini, 127
Ramasco, José J., 4
random forest, 200, 213
random network, 18
Random Walk algorithm, 40, 73-75

when to use, 74
with Neo4j, 74

Randomized-Approximate Brandes (RA-
Brandes) centrality algorithm, 98

rank sink, 102
Raphael, Bertram, 57
reach of a node, 81
Reif, Jennifer, 37
relationship type, 16
relationship-centric processing, 30
relationships (term), 1, 2

S
San Francisco International Airport (SFO), data

in fog-related delays from, 172-174
scale-free network, 18
scaling law (power law), 11
search engines, xiv

Index | 235

seed labels, 129
semi-supervised learning, 129
Seven Bridges of Königsberg problem, 2, 49
Shortest Path algorithm, 40, 49-60

A* algorithm, 56-58
when to use, 50
with Apache Spark (weighted), 54-56
with Neo4j (unweighted), 51-53
with Neo4j (weighted), 53
Yen's k-Shortest Paths variation, 58

simple graph, 16
Single Source Shortest Path (SSSP) algorithm,

40, 65-70
with Apache Spark, 67-69
with Neo4j, 69

small-world network, 18
social graph data

for Centrality algorithms, 79-81
importing into Apache Spark, 80
importing into Neo4j, 81

social network analysis, 116
software dependency graph data, 112-114

importing into Apache Spark, 114
importing into Neo4j, 114

spanning trees, 23
Spark Graph project, 33
sparse graphs, 18, 23
Stanford Network Analysis Project (SNAP), 228
strict graph, 16
Strogatz, Steven, 9
Strongly Connected Components (SCC) algo‐

rithm, 109, 119-124
when to use, 120
with airport data, 175-180
with Apache Spark, 120
with Neo4j, 122-124

structural hole, 119
subgraph, defined, 16

T
teleportation, 102
testing datasets, 194-199
training datasets, 194-199
training, online resources for, 229
transitive relationships, xiii
translytics, 7
transport datasets, 41-44

importing into Apache Spark, 43
importing into Neo4j, 44

Traveling Salesman Problem (TSP), 49
traversal-centric processing, 30
trees, 23
Trémaux, Charles Pierre, 48
Triangle Count and Clustering Coefficient algo‐

rithms, 109, 114-119
for link prediction (machine learning exam‐

ple), 214-218
global clustering coefficient, 116
local clustering coefficient, 115
local clustering coefficient with Neo4j, 118
Triangle Count with Apache Spark, 117
Triangles with Neo4j, 117
when to use, 116

trip planning app, 152-159
Twitter

Label Propagation, 129
Personalized PageRank, 103

U
undirected graphs, 18, 21
Union Find, 124
unweighted graphs, 18, 19
unweighted shortest paths, 51-53

V
vertices, 2

(see also nodes)

W
Wasserman Faust closeness algorithm, 89-91
Wasserman, Stanley, 89
Weakly Connected Components, 124
weight (term), 50
weighted graphs, 18, 19
Weighted Shortest Paths

with Apache Spark, 54-56
with Neo4j, 53

weightProperty, 107

Y
Yelp dataset

analyzing with Neo4j, 145-166
Bellagio cross-promotion, 159-162
finding influential hotel reviewers, 154-159
finding similar categories, 162-166
graph model, 147
importing into Neo4j, 147

236 | Index

Neo4j Import tool for, 225-227
overview, 148-151
social network, 146
travel business consulting, 157-159

trip planning app, 152-159
Yen's k-Shortest Paths algorithm, 58
Yen, Jin Y., 58

Index | 237

About the Authors
Mark Needham is a graph advocate and developer relations engineer at Neo4j. He
works to help users embrace graphs and Neo4j, building sophisticated solutions to
challenging data problems. Mark has deep expertise in graph data, having previously
helped to build Neo4j’s Causal Clustering system. He writes about his experiences of
being a graphista on his popular blog at https://markhneedham.com/blog/ and tweets
@markhneedham.

Amy E. Hodler is a network science devotee and AI and graph analytics program
manager at Neo4j. She promotes the use of graph analytics to reveal structures within
real-world networks and predict dynamic behavior. Amy helps teams apply novel
approaches to generate new opportunities at companies such as EDS, Microsoft,
Hewlett-Packard (HP), Hitachi IoT, and Cray Inc. Amy has a love for science and art
with a fascination for complexity studies and graph theory. She tweets @amyhodler.

Colophon
The animal on the cover of Graph Algorithms is the European garden spider (Araneus
diadematus), a common spider of Europe and also North America, where it was inad‐
vertently introduced by European settlers.

The European garden spider is less than an inch long, and mottled brown with pale
markings, a few of which on its back are arranged in such a way that they seem to
form a small cross, giving the spider its common name of “cross spider.” These spi‐
ders are common across their range and are most often noticed in late summer, as
they grow to their largest size and begin spinning their webs.

European garden spiders are orb weavers, meaning that they spin a circular web in
which they catch their small insect prey. The web is often consumed and respun at
night to ensure and maintain its effectiveness. While the spider remains out of sight,
one of its legs rests on a “signal line” connected to the web, movement on which alerts
the spider to the presence of struggling prey. The spider then quickly moves to bite its
prey to kill it and also inject it with special enzymes that enable consumption. When
their webs are disturbed by predators or inadvertent disturbance, European garden
spiders use their legs to shake their web, then drop to the ground on a thread of its
silk. When danger passes, the spider uses this thread to reascend to its web.

They live for one year: after hatching in spring, the spiders mature during the sum‐
mer and mate late in the year. Males approach females with caution, as females will
sometimes kill and consume the males. After mating, the female spider weaves a
dense silk cocoon for her eggs before dying in the fall.

Being quite common, and adapting well to human-disturbed habitats, these spiders
are well studied. In 1973, two female garden spiders, named Arabella and Anita, were
part of an experiment aboard NASA’s Skylab orbiter, to test the effect of zero gravity
on web construction. After an initial period of adapting to the weightless environ‐
ment, Arabella built a partial web and then a fully formed circular web.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover image is a color illustration by Karen Montgomery, based on a black-and-
white engraving from Meyers Kleines Lexicon. The cover fonts are Gilroy and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Neo4j
	Copyright
	Table of Contents
	Preface
	What’s in This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Foreword
	Chapter 1. Introduction
	What Are Graphs?
	What Are Graph Analytics and Algorithms?
	Graph Processing, Databases, Queries, and Algorithms
	OLTP and OLAP

	Why Should We Care About Graph Algorithms?
	Graph Analytics Use Cases
	Conclusion

	Chapter 2. Graph Theory and Concepts
	Terminology
	Graph Types and Structures
	Random, Small-World, Scale-Free Structures

	Flavors of Graphs
	Connected Versus Disconnected Graphs
	Unweighted Graphs Versus Weighted Graphs
	Undirected Graphs Versus Directed Graphs
	Acyclic Graphs Versus Cyclic Graphs
	Sparse Graphs Versus Dense Graphs
	Monopartite, Bipartite, and k-Partite Graphs

	Types of Graph Algorithms
	Pathfinding
	Centrality
	Community Detection

	Summary

	Chapter 3. Graph Platforms and Processing
	Graph Platform and Processing Considerations
	Platform Considerations
	Processing Considerations

	Representative Platforms
	Selecting Our Platform
	Apache Spark
	Neo4j Graph Platform

	Summary

	Chapter 4. Pathfinding and Graph Search Algorithms
	Example Data: The Transport Graph
	Importing the Data into Apache Spark
	Importing the Data into Neo4j

	Breadth First Search
	Breadth First Search with Apache Spark

	Depth First Search
	Shortest Path
	When Should I Use Shortest Path?
	Shortest Path with Neo4j
	Shortest Path (Weighted) with Neo4j
	Shortest Path (Weighted) with Apache Spark
	Shortest Path Variation: A*
	Shortest Path Variation: Yen’s k-Shortest Paths

	All Pairs Shortest Path
	A Closer Look at All Pairs Shortest Path
	When Should I Use All Pairs Shortest Path?
	All Pairs Shortest Path with Apache Spark
	All Pairs Shortest Path with Neo4j

	Single Source Shortest Path
	When Should I Use Single Source Shortest Path?
	Single Source Shortest Path with Apache Spark
	Single Source Shortest Path with Neo4j

	Minimum Spanning Tree
	When Should I Use Minimum Spanning Tree?
	Minimum Spanning Tree with Neo4j

	Random Walk
	When Should I Use Random Walk?
	Random Walk with Neo4j

	Summary

	Chapter 5. Centrality Algorithms
	Example Graph Data: The Social Graph
	Importing the Data into Apache Spark
	Importing the Data into Neo4j

	Degree Centrality
	Reach
	When Should I Use Degree Centrality?
	Degree Centrality with Apache Spark

	Closeness Centrality
	When Should I Use Closeness Centrality?
	Closeness Centrality with Apache Spark
	Closeness Centrality with Neo4j
	Closeness Centrality Variation: Wasserman and Faust
	Closeness Centrality Variation: Harmonic Centrality

	Betweenness Centrality
	When Should I Use Betweenness Centrality?
	Betweenness Centrality with Neo4j
	Betweenness Centrality Variation: Randomized-Approximate Brandes

	PageRank
	Influence
	The PageRank Formula
	Iteration, Random Surfers, and Rank Sinks
	When Should I Use PageRank?
	PageRank with Apache Spark
	PageRank with Neo4j
	PageRank Variation: Personalized PageRank

	Summary

	Chapter 6. Community Detection Algorithms
	Example Graph Data: The Software Dependency Graph
	Importing the Data into Apache Spark
	Importing the Data into Neo4j

	Triangle Count and Clustering Coefficient
	Local Clustering Coefficient
	Global Clustering Coefficient
	When Should I Use Triangle Count and Clustering Coefficient?
	Triangle Count with Apache Spark
	Triangles with Neo4j
	Local Clustering Coefficient with Neo4j

	Strongly Connected Components
	When Should I Use Strongly Connected Components?
	Strongly Connected Components with Apache Spark
	Strongly Connected Components with Neo4j

	Connected Components
	When Should I Use Connected Components?
	Connected Components with Apache Spark
	Connected Components with Neo4j

	Label Propagation
	Semi-Supervised Learning and Seed Labels
	When Should I Use Label Propagation?
	Label Propagation with Apache Spark
	Label Propagation with Neo4j

	Louvain Modularity
	When Should I Use Louvain?
	Louvain with Neo4j

	Validating Communities
	Summary

	Chapter 7. Graph Algorithms in Practice
	Analyzing Yelp Data with Neo4j
	Yelp Social Network
	Data Import
	Graph Model
	A Quick Overview of the Yelp Data
	Trip Planning App
	Travel Business Consulting
	Finding Similar Categories

	Analyzing Airline Flight Data with Apache Spark
	Exploratory Analysis
	Popular Airports
	Delays from ORD
	Bad Day at SFO
	Interconnected Airports by Airline
	Summary

	Chapter 8. Using Graph Algorithms to Enhance Machine Learning
	Machine Learning and the Importance of Context
	Graphs, Context, and Accuracy

	Connected Feature Extraction and Selection
	Graphy Features
	Graph Algorithm Features

	Graphs and Machine Learning in Practice: Link Prediction
	Tools and Data
	Importing the Data into Neo4j
	The Coauthorship Graph
	Creating Balanced Training and Testing Datasets
	How We Predict Missing Links
	Creating a Machine Learning Pipeline
	Predicting Links: Basic Graph Features
	Predicting Links: Triangles and the Clustering Coefficient
	Predicting Links: Community Detection

	Summary
	Wrapping Things Up

	Appendix A. Additional Information and Resources
	Other Algorithms
	Neo4j Bulk Data Import and Yelp
	APOC and Other Neo4j Tools
	Finding Datasets
	Assistance with the Apache Spark and Neo4j Platforms
	Training

	Index
	About the Authors
	Colophon

