COMPUTER SCIENCE TRIPOS Part IB - mock - Paper 6

4 Data Science (DJW)

I am playing a game of solitaire, which involves repeatedly tossing a fair coin. If I get three heads in a row I win, if I get two tails in a row I lose.
(a) Devise a Markov chain to represent the state of the game, and draw the state space. The state space diagram should have eight states, including

- a state \varnothing to represent "not yet tossed any coins",
- a state $T T$ to represent "lost", with a single outgoing transition back to state $T T$,
- a state $H H H$ to represent "won", with a single outgoing transition back to state $H H H$.
(b) I wish to compute the probability of winning. Let ρ_{x} be the probability that I will win, when starting from state x. Clearly $\rho_{T T}=0$ and $\rho_{H H H}=1$. Show that for any other state x

$$
\rho_{x}=\sum_{y} \mathbb{P}(\text { will win } \mid \text { start at } y) P_{x y}
$$

for a suitable matrix P, which you should define. Explain your reasoning carefully.
(c) Write out a set of equations that could be solved to find ρ_{\varnothing}. You do not need to solve them.
(d) Explain what is meant by stationary distribution.
(e) Let $\lambda \in[0,1]$, and define a distribution π by

$$
\pi_{x}=\lambda 1_{x=T T}+(1-\lambda) 1_{x=H H H} .
$$

Show that π is a stationary distribution for your Markov chain.
[6 marks]

