COMPUTER SCIENCE TRIPOS Part IB - mock - Paper 6

2 Data Science (DJW)

Let x_1, \ldots, x_n be observed values, which we believe are sampled independently from the distribution Uniform $[\mu - \theta, \mu + \theta]$, for some parameters $\mu \in \mathbb{R}$ and $\theta > 0$.

- (a) Suppose μ is known and θ is unknown. Use $\Theta \sim \text{Pareto}(b_0, \alpha_0)$ as the prior for θ , where b_0 and α_0 are constants. (The Pareto distribution is described below.)
 - (i) What is the prior density of Θ ? [1 mark]
 - (*ii*) Show that the posterior distribution of Θ is Pareto, and give its parameters. [5 marks]
 - (*iii*) Calculate a 95% posterior confidence interval for Θ . [4 marks]
- (b) Suppose μ and θ are both unknown. Use Normal (c_0, σ_0^2) as the prior for μ , and Pareto (b_0, α_0) as the prior for θ . Here c_0, σ_0, b_0 , and α_0 are all constants.
 - (*i*) Find the joint posterior density of the two parameters. [*Note:* Leave your answer as an unnormalized density function.] [3 marks]
 - (*ii*) Give pseudocode to generate a weighted sample from this density. Your code should produce a list of m sampled pairs $[(\mu_1, \theta_1), \ldots, (\mu_m, \theta_m)]$ together with weights $[w_1, \ldots, w_m]$. [3 marks]
 - (*iii*) Give pseudocode to find a 95% posterior confidence interval for Θ .

[4 marks]

Note: If $X \sim \text{Pareto}(b, \alpha)$ then it has cumulative distribution function

$$\mathbb{P}(X \le x) = \left[1 - \left(\frac{b}{x}\right)^{\alpha}\right] \mathbf{1}_{x \ge b}$$

and it may be sampled using

b * $(1 + numpy.random.pareto(a=\alpha))$