
COMPUTER SCIENCE TRIPOS Part IB – mock – Paper 6

1 Foundations of Data Science (DJW)

(a) A 0/1 signal is being transmitted. The transmitted signal at timeslot $i \in \{1, \ldots, n\}$ is $x_i \in \{0, 1\}$, and we have been told that this signal starts at 0 and then flips to 1, i.e. there is a parameter $\theta \in \{1, \ldots, n-1\}$ such that $x_i = 1_{i>\theta}$. The value of this parameter is unknown. The channel is noisy, and the received signal in timeslot i is

$$Y_i \sim x_i + \text{Normal}(0, \varepsilon^2)$$

where ε is known.

- (i) Given received signals (y_1, \ldots, y_n) , find an expression for the log likelihood, log $Pr(y_1, \ldots, y_n; \theta)$. Explain your working. [5 marks]
- (*ii*) Give pseudocode for finding the maximum likelihood estimator $\hat{\theta}$. [5 marks]
- (b) I have been monitoring average annual river levels for many years, and I have collected a dataset (z_0, \ldots, z_n) where z_i is the level in year *i* since I started monitoring. I believe that for the first few years the level each year was roughly what it was the previous year, plus or minus some random variation; but that some year a drought started, and since then the level has decreased on average each year. I would like to estimate when the drought started. I do not know the other parameters.

(i)	Propose a prob	ability model	l for my dataset.	5 mark	\mathbf{s}
(0)	I TOPOSC a PIOC	ability mouch	i ioi illy dataset.	10 mark	١

(*ii*) Explain how to fit your model. [5 marks]