
Example sheet 3
Frequentist inference

Data Science—DJW—2021/2022

For the questions that ask “find …’, you may give either a formula, or pseudocode. Or, if the
question gives you numerical data, you are encouraged to give actual code and a numerical answer.

Question 1. We are given a dataset x1, . . . , xn which we believe is drawn from Normal(µ, σ2)
where µ and σ are unknown.
(a) Find the maximum likelihood estimators µ̂ and σ̂.
(b) Find a 95% confidence interval for σ̂, using parametric resampling.
(c) Repeat, but using non-parametric resampling.

Question 2. The number of unsolved murders in Kembleford over three successive years was 3,
1, 5. The police chief was then replaced, and the numbers over the following two years were 2,
3. We know from general policing knowledge that the number of unsolved murders in a given
year follows the Poisson distribution. Model the numbers as Poisson(µ) under the old chief and
Poisson(ν) under the new chief.
(a) Report a 95% confidence interval for ν̂ − µ̂, using parametric sampling.
(b) Conduct a hypothesis test of the hypothesis µ = ν, using parametric sampling, and using

the test statistic ν̂ − µ̂. Explain your choice between a one-sided and a two-sided test.
(c) Explain carefully the difference in sampling methods between parts (a) and (b).
[Note. The Poisson(λ) distribution takes values in {0, 1, . . . } and has probability mass function
Pr(x) = λxe−λ/x!. Its cdf can be found using scipy.stats.poisson.cdf(x, mu=λ).]

Question 3. (a) In section 2.2 we considered a climate model in which temperatures increase
linearly. The probabilistic version of the model is

temp ∼ α+ β1 sin(2πt) + β2 cos(2πt) + γ(t− 2000) + Normal(0, σ2).

Find a 95% confidence interval for γ̂, the maximum likelihood estimator for the rate of
temperature increase.



(b) To allow for non-linear temperature increase, example sheet 1 suggested a model with a step
function,

temp ∼ β1 sin(2πt) + β2 cos(2πt) + γdecade + Normal(0, σ2).

Find a 95% confidence interval for γ̂2010s − γ̂1980s. Conduct a hypothesis test of whether
γ1980s = γ2010s.

[Note. You are encouraged to implement your solution. A code skeleton is provided at https:
//github.com/damonjw/datasci/blob/master/ex3.ipynb]

Question 4. I toss a coin n times and get the answers x1, . . . , xn. My model is that each toss is
Xi ∼ Bin(1, θ), and I wish to test the null hypothesis that θ ≥ 1/2.
(a) Find an expression for Pr(x1, . . . , xn ; θ). Give your expression as a function of y =

∑
i xi.

(b) Sketch log Pr(x1, . . . , xn ; θ) as a function of θ, for two cases: y < n/2, and y > n/2.
(c) Assuming H0 is true, what is the maximum likelihood estimator for θ?
(d) Let the test statistic be y. What is the distribution of this test statistic, when θ is equal to

your value from part (c)?
(e) Explain why a one-sided hypothesis test is appropriate. Give an expression for the p-value

of the test.

Question 5. Your attempts at a task succeed with probability θ, and fail with probability 1− θ.
How long an unbroken list of failures does it take, for you to reject “θ ≥ 1/2” at p-value 5%?

Question 6. A recent paper Historical language records reveal a surge of cognitive distortions in
recent decades by Bollen et al., https://www.pnas.org/content/118/30/e2102061118.full,
claims that depression-linked turns of phrase have become more prevalent in recent decades. This
paper reports both confidence intervals and null hypotheses. Explain how it is computes them, in
particular (1) the readout statistic, (2) the sampling method.
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Hints and comments
Question 1. For part (a) you should learn these formulae by heart, and be able to derive them
without thinking: µ̂ is the sample mean x̄, and σ̂ is

√
n−1

∑
i(xi − x̄)2. For part (b), use the

general method of example 8.1.1 from lecture notes, but remember this question is asking you for
a confidence interval for σ̂ not for µ̂. For part (c), see example 8.3.1.

Question 2. For part (a), follow example 8.1.3 from lecture notes. For the maximum likelihood
calculation, see your answers to example sheet 1. For part (b), follow example 8.2.1 (though, as
this question is asking you to use a different parameterization of the model, you need to think
about what test statistic to use; a sensible choice is ν̂ − µ̂).

In questions where you’re given a parametric model, and asked to test a hypothesis that restricts
the parameters, and it’s left to you to choose a test statistic, it’s a good strategy to (i) find
the maximum likelihood estimators under the general model, (ii) invent some plausible-looking
function based on those maximum likelihood estimators. Ask yourself how your statistic would
differ between the scenario where H0 is true, and the scenario where H0 isn’t true. This will tell
you what “more extreme” means, in the definition of p-value, and hence whether to use a one-sided
or two-sided test.

Question 3. Follow the general strategies from sections 8.1 and 8.2 of lecture notes. Note that
the model in part (b) doesn’t have an intercept term; an intercept term is redundant since the
one-hot encoded γdecade terms sum to 1.

In your answers for this question, it’s a good idea to use sklearn wherever reasonable. There’s
no point going through lots of algebra, when there are fast easy routines that you can use. Use
LinearRegression.predict, then look at exercise 8.1.4 lines 14–15.

For the hypothesis test, you’ll need to fit the model under the assumption that γ1980s = γ2010s.
This restricted model can be written as

temp ∼ β1 sin(2πt) + β2 cos(2πt)
+ γ1990s1decade=1990s + γ2000s1decade=2000s + γ2020s1decade=2020s + α1decade∈{1980s,2010s.

Question 4. Parts (a)–(c) are plain old maximum likelihood estimation. The only novelty here
is that we need to find the value of θ that maximizes the likelihood function, under the restriction
θ ≥ 1/2. You should get the answer

θ̂ = max
( y

n
,
1

2

)
.

In lecture notes we only went through numerical computation of p-values. In this question, the
distribution of y(X) is so simple that you can write out an explicit formula for the p-value.

Question 5. Use your expression for the p-value from question 4 part (e), with the observed data
y = 0. Let the value of this expression be ≤ 0.05 and solve for n.

Question 6. Skim-read the whole paper, and read the Materials and Methods section closely.
Note that the word ‘bootstrapping’ is another name for ‘non-parametric resampling’. You can find
a definition of z-score on Wikipedia, but it doesn’t add anything to the explanation given in the
paper.

In the notation used in this course, the dataset used in the paper is (x1, y1), . . . , (xk, yk) where
yk is a vector

yi =
[
yi,1855, . . . , yi,2020

]
giving the prevalence of n-gram i in each year, and xi ∈ {1, 2, 3, 4, 5} is the number of words in
that n-gram.

The readout statistic t(x1, . . . , xk) is well hidden, and you will have to dig through the whole
paper to find it.
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Supplementary questions
These questions are not intended for supervision (unless your supervisor directs you otherwise). Some
require careful maths, some are best answered with coding, some are philosophical.

Question 7. We are given a dataset x1, . . . , xn which we believe is drawn from Uniform[0, θ] where θ

is unknown. Recall from example sheet 1 that the maximum likelihood estimator is θ̂ = maxi xi. Find a
95% confidence interval for θ̂, both using parametric resampling and using non-parametric resampling.

Question 8. I implement the two resamplers from question 7. To test them, I generate 1000 values
from Uniform[0, θ] with θ = 2, and find a 95% confidence interval for θ̂. I repeat this 20 times. Not once
does my confidence interval include the true value, θ = 2, for either resampler. Explain.

Resampling is an heuristic, not a perfect procedure. It works well for ‘central’ statistics like averages or
sums. It doesn’t work well for certain types of extreme statistics (like the maximum of a dataset) nor for
certain types of distribution (like the uniform). Section 9 of the extended lecture notes, on overfitting, frames
the discussion; that section is not examinable material.

Question 9. In the setting of question 3, I have defined a function for computing the fitted temperature
at an arbitrary future timepoint,

def pred(t): return α̂ + β̂1 sin(2πt) + β̂2 cos(2πt) + γ̂(t−2000)

Modify the code to also return a 95% confidence interval.

Remember that the readout statistic must be a function of the dataset. In this case, think of the predictor
function as
def pred(x,tnew): return α̂(x) + β̂1(x) sin(2πtnew) + β̂2(x) cos(2πtnew) + γ̂(x)(tnew−2000)
where x is a vector of temperatures (either from the original dataset, or from the synthetic dataset), and tnew
is an arbitrary new timepoint, nothing to do with the t vector in the dataset. For the confidence interval at
tnew, you need to sample many values of X, and find the spread of pred(X,tnew).

You should organize your code so that it accepts a vector of tnew values, and it doesn’t resample for every
value in the tnew vector. That way, it’s easy to plot a ‘confidence ribbon’ which shows, for many values of
tnew, both the predicted value and the confidence range. (In this illustration, I have drawn the confidence
ribbon artificially wide. You should get a confidence interval that’s barely visible.)
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Question 10. We are given a dataset x1, . . . , xn. Our null hypothesis is that these values are drawn
from Normal(0, σ2), where σ is an unknown parameter. Let

F̂ (x) =
1

n

n∑
i=1

1[xi/σ̂ ≤ x]

where σ̂ =
√

n−1
∑

i x
2
i is the maximum likelihood estimator for σ. If the null hypothesis is true, we’d

expect F̂ (x) to be reasonably close to Φ(x), the cumulative distribution function for Normal(0, 1), for all
x. Suggest how to test the hypothesis that the dataset is indeed drawn from Normal(0, σ2), using a test
statistic based on F̂ and Φ.

This question is asing you to be creative in inventing a test statistic. If you don’t feel creative, look up the
Kolmogorov-Smirnov test.

When we fit a linear model, there’s an assumption that the residuals are normally distributed (as discussed
in sections 2.4 and 2.7). After fitting a linear model, it’s worth testing whether the residuals are indeed
normally distributed.



Question 11. While driving along the motorway, you pass as many cars as pass you. Does this mean
you are driving at the median speed?

There are many ways to answer this question. Here’s a plodding methodical method, based on the spirit of
empirical distributions.

First, imagine a reference line at one location along the motorway. Suppose that each vehicle’s speed is
one of a finite set of speeds v1, . . . , vn. Let t be the total number of vehicles per hour that cross the reference
line, and let pi be the fraction of them that have speed vi. From this, you can derive the distance xi between
cars in class i, assuming that cars in each class are evenly spaced. This is a roundabout way to get at what
we mean by ‘median over all vehicles’.

Now, suppose you’re driving at speed v0. Given all the vi and xi, find how many vehicles per hour pass
you, and how many are passed by you. Let these numbers be equal, and solve for v0.

This answer is based on the empirical distribution in that, rather than grappling with abstract distributions,
we have imagined a very concrete tangible dataset of vehicles, and we’ve reasoned about this dataset.
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