

1

## How do we identify beats?

Most are highlighted or accented

- Clear onsets
- Relatively loud
- Notes played are usually harmonically important
- Low down in the texture, the bass line is bringing them out
- Quick

3

## How did we know when to clap?

Tactus: A basic pulse

- Rate at which we spontaneously tap while listening to music
- Evenly or regularly spaced.
- Typically falls in the range between 0.6 and 0.75 seconds ( 80 to 100 events per minute).
- Commonly coincides with the beat rate but remains an undifferentiated pulse.

Beat:

- A recurring moment when tone onsets are more expected.
- Strong - weak differentiation.
- Occurs within a repeating pattern of beats - meter.

2


4

## How do we know it's the beginning of the bar?

- Repetition / Parallelism
- Loudest

- Longest
- Lowest

Strong beat early

- Strong base notes
- Cadences
- Suspension (on strong beat)
- Alternating strong / weak

Formalised in Lerdahl and Jackendoff

How do we recognise the metrical structure?

- Build on first beat identification
- Hierarchy of beat strength in the bar - e.g. binary vs. ternary
- Relationship between bars


6



9

## Some constraints on our experience of things (music) happening in time

- Temporal resolution
- Engagement
- Amount of processing
- Predictions
- Schemata
- Memory
- Complexity
- Similarity

11


10


12


13


15


14


16


17

## Four 'levels of analysis'

- Metrical and Grouping Rules
- Largely derived from musical surface
- More determined by the musical stimulus and general aspects of our perceptual systems than by any specifically (schematically learned) musical considerations,
- Though musical considerations can play a role (esp. in grouping)

19

## Four 'levels of analysis' Lerdahl and Jackendoff

- Metrical
- Based on principles of binary \& ternary hierarchy
- Strictly limited in terms of the levels to which the hierarchy might extend
- Grouping
- Structure largely predicated on events at the level of the musical surface
- Includes groups of many sizes, including the "phrase"
- Chunking

18


20



25


27


26


28


29

## Auditory scene analysis

- '. . is the process whereby all the auditory evidence that comes, over time, from a single environmental source is put together as a perceptual unit' (Bregman, 1993).


30

## Auditory scene analysis

- Acoustical
- Psychological
- Psychoacoustical: primarily concerned with the ways in which our auditory sensory apparatus (outer, middle and inner ear and associated neural structures) transforms acoustical information into the 'language of the brain', neural impulses.
- Cognitive: more concerned with the ways in which this neural information comes to have a functional significance for us.


33


35


34



37

## Cognitive approaches to pitch Intervallic rivalry theory

- Long term vs. short term memory
- Dynamic vs. static attributes of tonal structure

39


38

- Intervallic rivalry model
- Centres on processes of key discovery,
- Cognitive-structuralist account
- Centres on processes of reinforcement of tonal function.
- Both necessary for a listener to follow tonal music in real time.

40


41

## What would a theory of our perception of musical pieces take into account?

- Several theories have been proposed.
- Don't have a comprehensive theory that deals with all the different processes that seem to be going on when we experience a piece of music.


## Summary

- It's likely that all these processes -
- of auditory scene analysis, of the abstraction and schematicisation in long-term memory of regularities of musical pitch organisation, (as well as of the abstraction of the 'virtual roots' and relative stabilities of chords)
- play significant and determinant roles in our experience of pitch organization in music.

42

| Self report | - Pitch |  |
| :--- | :--- | :--- |
| Questionnaire | - Rhythm | Observation |
| Interview | - Time | Vhrasing |
| Focus group | - Movement | Audio |
| Experience Sampling | - Language |  |
|  | - Emotion | Task based |
|  | - Development |  |
|  | - Performance (improvisation) |  |
| Neuro | - Musicians' health | Comparison groups |
|  | - Brain |  |
|  | Physiological | - Body |
|  | - Healution |  |
| Music analysis | - Daily life |  |
|  |  |  |
|  |  |  |

44

|  |  |  |
| :---: | :--- | :--- |
| Perception | - Pitch | Solo |
|  | - Rhythm | Social |
| Production | - Time | Duo |
|  | - Phrasing | More |
|  | - Movement |  |
|  | - Language |  |
|  | - Emotion |  |
| Lab | - Development | - Entrainment |
|  | - Performance (improvisation) |  |
|  | - Musicians' health | - Two-person |
|  | - Brain | neuroscience |
|  | - Body |  |
|  | - Helution |  |
|  | - Daily life |  |
|  |  |  |

45

| Language and linguistics | - Pitch | Musicology |
| :--- | :--- | :--- |
|  | - Rhythm |  |
|  | - Time | Ethnomusicology |
| Computer Science \& Al | - Phrasing | Performance |
|  | - Movement | Dance / Dance |
| psychology |  |  |
| Anthropology | - Language |  |
|  | - Emotion |  |
| Neuroscience | - Development |  |
|  | Psychology | - Musicians' health |
| Child development | - Brain |  |
| Education | - Body |  |
| Medicine | - Evolution |  |
| Music Therapy | - Health \& wellbeing |  |
|  | Daily life |  |
|  |  |  |

46

## Some reading

Bregman, A. L. 1994 Auditory Scene Analysis. Ch 2 in McAdams, S. \& Bigand, E. (Eds), Thinking in sound. Oxford: OUP.
Clarke, E.
" "Rhythm and Timing in Music," in The Psychology of Music (2nd ed), ed. Deutsch, Academic press.
Cross, I. 1997 Pitch schemata. In Sloboda, J. \& Deliège, I. (Eds), Perception and cognition of music. Hove: The Psychology Press. see
Drake, C., \& Parncutt, R. 2001 "Perception and Cognition: Rhythm" in the revised New Grove Dictionary of Music, London, Macmillan
Jones, M.R.
KrumhansI, C. L.
London, J.
-ondon, J.
ondon, J. . . Wittmann
"Time in the Mind" in the MIT Encyclopedia of the Cognitive Sciences, MIT Press.

47

