
Software Architectures
for Coding Music
Alan Blackwell

Modular instrument architectures

1. Signal-based: waveforms,
filters, modulators, mixers

2. Event-based: MIDI “piano
roll” : pitch + velocity

Max Mathews
1926-2011

• Music pioneer with Joan Miller at Bell Labs
• 1961 “Daisy, Daisy” in 2001: A Space Odyssey

• Master of Ceremonies at the first NIME in 2001

• MUSIC I (1957) for IBM 704
• MUSIC II, III, IV, V … now called “MUSIC-N”

• Design principles still used in Csound, MPEG-4 etc

• Audio functions & samples are defined
as unit generators (now “UGens”)

• Output of any UGen can be input to others
for filtering, modulating, mixing etc

• Sound output results from the graph of UGens

Max Mathews: Wikimedia Commons CC BY-SA 2.0

Architectures follow interface standards

• MIDI – Musical Instrument Digital Interface (1983)
• Designed for point to point control, not networked
• Basic abstraction is note on/off events (live or sequenced)
• Instrument ID and some control signals

• OSC – Open Sound Control (2002)
• Network address space (UDP/IP)
• Time-tagged messages
• Supports both numeric and symbolic data

Max/MSP
(also Pure Data, Pd)

• Miller Puckette’s work at IRCAM (1985)

• Originally MIDI “patches” only

• Commercialised by Cycling ’74

• Open source version maintained as “Pd”

for Max
Mathews

Miller S.
Puckette

Functional Reactive Programming

• Defined by Paul Hudak (1952-2015)
• dataflow / event-based paradigm

• FARM series
• ACM SIGPLAN International Workshop on

Functional Art, Music, Modeling and Design

• Haskell School of Music
• Euterpea language dialect

• Textbook available online from CUP

James McCartney’s
SuperCollider (1996 -)

• UGen-based language presented at
ICMC in 1996

• Version 2 reimplemented as Smalltalk-
like object-oriented language

• UGens defined as objects

• Released as open source in 2002

• Version 3 decoupled the architecture …

SC architecture
• Network interface via OSC

• Client defines the synth graph

• scsynth UGens communicate (along graph
edges) via internal control & audio buses

e.g. Christophe Rhodes’ lecture:

Live Coding

• Dynamic sound modification: Ron Kuivila’s demonstration of
synthesis using FORTH at STEIM, Amsterdam 1985

• Code as performance art: SLUB (Alex McLean and Adrian
Ward) using PERL at Public Life, London 2000

• Julian Rohrhuber’s SuperCollider hot swap “trick” in 2003

• Liveness in modifying a process as it is executing
• So coding becomes gesture, interpretation, improvisation

The TOPLAP manifesto

• We demand: [note this is still a “draft” manifesto]

• Give us access to the performer's mind, to the whole human instrument.

• Obscurantism is dangerous. Show us your screens.
• Programs are instruments that can change themselves

• The program is to be transcended - Artificial language is the way.

• Code should be seen as well as heard, underlying algorithms viewed as
well as their visual outcome.

• Live coding is not about tools. Algorithms are thoughts. Chainsaws are
tools. That's why algorithms are sometimes harder to notice than chainsaws.

Temporary Organisation for
the Promotion

of Live Art Programming (2004)

(some) Live Coding languages

ChucK
from

Ge Wang

ixi lang
from Thor

Magnusson

Tidal Cycles
from Alex
McLean

Impromptu &
Extempore

from Andrew
Sorensen

Overtone
(+ EMACS Live)
from Sam Aaron

Sonic Pi
from

Sam Aaron

SuperCollider clients

Sam Aaron’s
Sonic Pi
• Developed in Cambridge Computer Lab,

sponsored by Raspberry Pi foundation

• Goal to provide creative experiences with
computing

• Focused on UK Computer Science
curriculum, used in schools from outset

• Change from Clojure-based Overtone to
Ruby DSP because JVM too slow on R-Pi

• Audio implementation as fixed scsynth graph
with controllable samples, synths & effects

Open-source product with over 3 million users

Used in schools, arts commissions, community programmes

IDE with built-in language reference, tutorials and examples

Used by Sam as a live performance language

(nearly) funded by performance fees and Patreon supporters

The problem of time

• Rohrhuber and McLean are intensely concerned with
execution time vs musical time vs creation time

• Sorensen’s temporal recursion in Extempore is an elegant
technical abstraction

• Standard musical questions push the bounds of “real-time”
• e.g. Sam’s redefinition of Ruby “sleep” to schedule future sc events

via OSC time, not simply pausing code execution

• Note that rhythm is driven by note onset, not (variable) note decay

The problem of richness

• Simple specifications are often boring to listen to
• 4/4 rhythms, major scales, the “Amen” break

• So many live coded performances include stochastic noise
generators, jitter in rhythm, random walks within a key …

• Random numbers offer stimulating creativity impetus …
• … but also frustrating when something great can’t be reproduced

• Sonic Pi hacks “random” to be a repeatable generative seed

Demo

