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1 INTRODUCTION

Curve25519 [3] is a very widely deployed elliptic curve: it is used for Diffie-Hellman key agreement in the X25519
standard [24], which is a mandatory algorithm in TLS 1.3 [29], securing a huge number of HTTPS connections in
web browsers worldwide. It is also used for encryption in WhatsApp [30], Signal [26], and many other systems and
protocols [21]. However, the standard textbooks on elliptic curve cryptography [11, 13, 20, 23] predate Curve25519,
and there are not many good resources that explain how practical implementations of this algorithm actually work.
Glancing at an implementation of X25519 (see, for example, Listing 5 on page 28, or Section 5 of the X25519 standard
document [24]) reveals mysterious sequences of arithmetic operations with few comments, explanation, or justification.

The goal of this tutorial is to provide an introduction to elliptic curve cryptography by means of carefully analysing
every line of code of one particular implementation of X25519. We show how the algorithm is derived from basic
principles, walking through the algebraic derivations step by step, and justifying their correctness. No advanced
mathematics background is required: all that is needed is some basic modular arithmetic, which should be covered in
most undergraduate computer science courses.

The implementation we analyse is based on TweetNaCl [9, 10], a small but practical cryptography library with
the same API as NaCl [7, 8]. The name derives from the fact that the implementation fits in 100 tweets of up to 140
characters each. TweetNaCl is originally written in C, but its simplicity has made it popular for porting to various
other languages, such as JavaScript [12]. Despite its simplicity, TweetNaCl has strong security properties that we
expect of fully-fledged cryptography libraries: in particular, it uses constant-time algorithms to prevent side-channel
attacks (that is, it performs no branches or array lookups based on secret values). Compared to the original TweetNaCl
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2 Martin Kleppmann

implementation [10], the code in this paper has been slightly reformatted and simplified to improve readability, while
leaving functionality, security, and performance unchanged (the changes are detailed in Appendix A).

TweetNaCl advertises itself as “auditable” [9] in the sense that its code is short and simple enough that its correctness
can be established through code review. However, to my knowledge, no detail of any such audit has been published.
The JavaScript port has indeed been professionally audited, but the report [15] does not go into any technical detail.
Previous analyses of NaCl/TweetNaCl [4, 22] give justification for some of the algorithms, but also leave many details
unexplained. This paper partially fills that gap: we discuss only X25519, but not the other algorithms that appear in
TweetNaCl, such as the Salsa20 stream cipher, the Poly1305 authenticator, or the Ed25519 signature scheme.

Unlike HACL* [1], which contains a formally verified implementation of X25519 [31], the goal of this paper is not so
much to verify that TweetNaCl is correct, but rather to teach how secure implementations of elliptic curve cryptography
work by carefully studying one particular algorithm and its implementation.

2 BACKGROUND

This section briefly introduces the mathematical tools and concepts that are needed for later sections.

2.1 Modular arithmetic

The set of integers modulo p is Zp = {0, 1, . . . ,p − 1} = [0, p − 1]. In cryptography, computations are often performed
modulo p. This means that if a calculation would return a result outside of the range of 0 to p − 1, we let it “wrap around”
by adding or subtracting p until we get a number between 0 and p − 1, inclusive.

For example, if we are working modulo 7, then 1 + 1 = 2, 2 + 1 = 3, . . . , 5 + 1 = 6, but 6 + 1 wraps around to 0. We
write this as 6 + 1 ≡ 0 (mod 7). This is similar to unsigned integer overflow in the C programming language, where e.g.
operations on unsigned 32-bit integers are performed modulo 232.

In general, we say that two integers a,b ∈ Z are congruent modulo p, written a ≡ b (mod p), if and only if there
exists k ∈ Z such that a − b = kp. That is, we can convert between a and b by adding or subtracting p repeatedly. When
we bring a number within the range of [0, p − 1] by adding or subtracting multiples of p, we call that process reduction
modulo p.

The ≡ operator for congruence modulo p behaves in many ways like an equals sign. For example, if a ≡ b (mod p),
then a + c ≡ b + c (mod p), and a · c ≡ b · c (mod p). That is, we can substitute one expression for another expression
if those expressions are congruent modulo p.

This means that when a calculation is performed modulo p, we can reduce modulo p after each step of the calculation.
For example, say we want to calculate 3 · (5 + 6) modulo 7. Then we can first calculate 5 + 6 and reduce it modulo
7, i.e. 5 + 6 = 11 ≡ 4 (mod 7), and then calculate 3 · 4 = 12 ≡ 5 (mod 7). The result is the same as if we calculated
3 · (5 + 6) = 3 · 11 = 33 = 4 · 7 + 5 ≡ 5 (mod 7).

Reduction modulo p is very useful when performing calculations on a computer, since it allows us to represent values
in a fixed number of bits. For example, if 0 < p ≤ 2n , any number in Zp fits in n bits.

In cryptography, p is often a large prime number. For example, Curve25519 uses arithmetic modulo the prime num-
ber p = 2255 − 19 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed in hexadecimal
(hence the name of the curve), so the numbers in the curve calculations fit in 255 bits (just under 32 bytes). We can use
open source mathematics software SageMath to check that p is indeed a prime:

(2^255 - 19).is_prime() # returns True
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2.2 Groups

An abelian group is a set E together with an operation •. The operation combines two elements of the set, denoted a • b
for a,b ∈ E. Moreover, the operation must satisfy the following requirements:

Closure: For all a,b ∈ E, the result of the operation a • b is also in E.
Commutativity: For all a,b ∈ E we have a • b = b • a.
Associativity: For all a,b, c ∈ E we have (a • b) • c = a • (b • c).
Identity element: There exists an element e ∈ E, called the identity element or neutral element, such that for all

a ∈ E we have e • a = a • e = a.
Inverse element: For every a ∈ E there exists an element b ∈ E such that a • b = b • a = e , where e is the identity

element. We then call b the inverse of a, written b = a−1, and vice versa (a = b−1).

A non-abelian group has all of the above properties apart from commutativity, but all the groups we deal with in this
paper are abelian. The number of elements in E is called the order of the group. A group is a very useful abstraction
since it has many nice mathematical properties, especially if the number of elements in E is a prime number (this is
called a prime order group).

There are many possible ways of constructing a group. For example, the set of (positive and negative) integers Z
together with the addition operator + forms a group with identity element 0, where the inverse of element a ∈ Z is −a.
This group is infinite, since there are an infinite number of integers Z.

To construct a finite group, we can use Zp , the set of integers modulo p, and the group operator is addition + followed
by reduction modulo p. This group has identity element 0, and the inverse of a ∈ Zp is p − a. This construction is called
the additive group of integers modulo p.

Another finite group construction uses as elements the set of integers Z∗p = {1, . . . ,p − 1} = Zp \ {0}, where p
is a prime number, and the group operator is multiplication · followed by reduction modulo p. This group is known
as the multiplicative group of integers modulo p, and it has identity element 1. It is not obvious that every element
a ∈ {1, . . . ,p − 1} has an inverse (also called multiplicative inverse), but this fact can be shown using Bézout’s identity
when p is prime, and it is covered in many textbooks on number theory. In Section 2.6 we will see an algorithm for
computing the multiplicative inverse.

Finally, in Section 4.2 we will use elliptic curves to construct another type of finite group. This group forms the
foundation of most algorithms in elliptic curve cryptography.

Many cryptographic algorithms and protocols use a group without specifying how that group should be implemented.
This works because any two groups with the same prime order are isomorphic to each other: that is, one group can be
transformed into the other by renaming elements. Thus, informally speaking, two groups with the same prime order
“behave the same”, regardless of how they are implemented (although their security properties may differ). This makes
the concept of a group one of the most common and useful abstractions in cryptography.

2.3 Diffie-Hellman key exchange

A common use of groups in cryptography is the Diffie-Hellman key exchange, which allows two parties (Alice and Bob)
to establish a shared secret by communicating over an insecure channel, under the assumption that the adversary can
only observe but not modify the communication. This shared secret can then be used as a key to encrypt messages
between the two parties. If the adversary may actively interfere with the communication, additional authentication is
required, which we do not discuss here.
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For a group element д and a non-negative integer k we define the repeated application of the group operator to д as
follows:

дk = д • д • · · · • д︸          ︷︷          ︸
k times

or, recursively: д0 = e (the identity element), and дk = д • дk−1 for k > 0. (1)

We show in Section 4.4 how to compute дk efficiently in the Curve25519 group, even for large k .
Let’s say that Bob wants anybody to be able to send him encrypted messages, which we can do using Diffie-Hellman.

Bob must first generate a keypair consisting of a private and public key, and make the public key available to anybody.
To generate his keypair, Bob chooses a random integer j as his private key, and computes дj for a well-known group
element д. This group element д is called the base point or generator, and we will see later how it is chosen. The group
element дj is Bob’s public key.

When Alice wants to send an encrypted message to Bob, she obtains Bob’s public key дj and chooses a random
integer k . She computes (дj )k and uses the result as a key for a symmetric cipher to encrypt her message to Bob. She
also computes дk and sends this group element to Bob along with her message, while k remains private. When Bob
receives дk from Alice, he uses his private key j to compute:

(дk )j = (д • · · · • д︸     ︷︷     ︸
k times

) • · · · • (д • · · · • д︸     ︷︷     ︸
k times

)

︸                                  ︷︷                                  ︸
j times

= д • · · · • д︸     ︷︷     ︸
j · k times

= (д • · · · • д︸     ︷︷     ︸
j times

) • · · · • (д • · · · • д︸     ︷︷     ︸
j times

)

︸                                  ︷︷                                  ︸
k times

= (дj )k

Due to the associativity of •, the group element (дk )j computed by Bob equals the value (дj )k that Alice used to
encrypt her message. Thus, Alice and Bob obtain the same shared secret, and Bob can decrypt Alice’s message. An
adversary knows д and дj (since they are public) and may learn дk by eavesdropping as it is sent over the network.
For the Diffie-Hellman key exchange to be secure, it must be computationally extremely difficult for the adversary to
compute дjk given д, дj , and дk .

2.4 Security properties of groups

The Diffie-Hellman protocol is secure if the following assumptions are true (where i , j and k are chosen uniformly at
random from Zp for sufficiently large p):

Hardness of discrete logarithms: Given д and дk , it is not feasible for the adversary to compute k .
Computational Diffie-Hellman (CDH) assumption: Given д, дj , and дk , it is not feasible for the adversary to

compute дjk .
Decisional Diffie-Hellman (DDH) assumption: The adversary is given one of two tuples, either (д,дj ,дk ,дjk )

or (д,дj ,дk ,дi ), chosen at random with equal probability. Then the adversary must choose whether it was given
the tuple containing дjk or the tuple containing the random group element дi . The DDH assumption then states
that it is not feasible for the adversary to choose the correct answer with probability significantly greater than 1

2
(a random guess).

If the adversary can compute discrete logarithms, they can compute j and/or k from дj and дk , and hence they can
compute дjk ; therefore, assuming CDH implies assuming that discrete logarithms are hard. Moreover, if the adversary
can compute дjk then they can tell the difference between дjk and дi , and therefore assuming DDH implies assuming
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CDH. However, the converse is not necessarily true: for example, it might be possible to compute дjk directly from дj

and дk , without first computing j or k , although no such algorithm is currently known.
How do the groups from Section 2.2 fare with respect to these security properties?

• In the additive group of integers modulo p, discrete logarithms are easy to compute, so this group is not secure.
Computing дk in this group means adding д to itself k times, which is the same as computing the product д · k .
We can compute the multiplicative inverse of д (Section 2.6) and then compute д−1 ·д ·k = k in order to efficiently
recover k .

• In Z∗p , the multiplicative group of integers modulo p, discrete logarithms are believed to be hard, but the DDH
assumption does not hold. A detailed explanation goes beyond the scope of this paper, but it can be stated briefly:
the adversary can use Euler’s criterion to determine whether дk is a quadratic residue modulo p, which leaks the
least significant bit of k (i.e. whether k is odd or even). Moreover, jk is even if and only if j and/or k is even. Thus,
if the adversary is given (д,дj ,дk ,дi ), and if i is odd while j or k is even (or if i is even while j and k are both
odd), then the adversary knows that the fourth element of the tuple must be a random group element, not дjk .
This gives the adversary a significant advantage over random guessing, so the DDH assumption does not hold.
It is possible to work around this problem by constructing a prime-order subgroup of Z∗p ; for example, the Digital
Signature Algorithm (DSA) does this. In this subgroup, the DDH assumption is believed to hold. However, a
problem that remains is that the numbers have to be quite large in order to be secure: if we want the difficulty of
computing the discrete logarithm to be similar to the difficulty of breaking a 128-bit symmetric cipher, then p
needs to be over 3,000 bits long.

• In the elliptic curve (EC) group that we construct in Section 4.2, the DDH assumption is believed to be true.
Moreover, computing discrete logarithms in EC groups is believed to be harder than in subgroups of Z∗p for
the same size of numbers, so EC groups can use 256-bit numbers to achieve the same 128-bit security level as
3,000-bit Z∗p groups. This means EC group elements take less space in the network packets, and EC algorithms
are faster for a given security level. This is the main benefit of using elliptic curves for cryptography instead of
RSA or Z∗p subgroups.

In all of these cases, it is a conjecture, not a proven fact, that the DDH assumption holds for a group. The fact that
we have not yet found an efficient attack against these cryptosystems does not guarantee that such an attack does not
exist. However, it’s the best we have for the time being.

2.5 Finite fields

Most of the computations behind elliptic curve cryptography take place in a finite field. Building upon the definition of
an abelian group in Section 2.2, a field is a set of elements F along with two operators (addition a +b and multiplication
a · b), with the following properties:

• The set F and the addition operator + form an abelian group with identity element 0. We denote the inverse of
a ∈ F in this group as −a. The subtraction operator a − b is then shorthand for a + (−b).

• The set F \ {0} and the multiplication operator · form an abelian group with identity element 1. (0 is excluded
because it has no multiplicative inverse, i.e. there is no a ∈ F such that 0 · a = 1.) We denote the inverse of a ∈ F

in this group as a−1. The division operator a
b is then shorthand for a · (b−1).

• The addition and multiplication operators satisfy the distributive law: a · (b + c) = (a · b) + (a · c).
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The real numbers R along with the usual addition and multiplication operators form a field with an infinite set of
elements, but we can also define a field where the set of elements F is finite. This is called a finite field (Galois field).

Curve25519 uses the finite field of integers modulo p = 2255 − 19. Like in Section 2.2, this field has the elements
Zp = {0, 1, . . . ,p − 1}, with the usual addition and multiplication operators on integers, followed by reduction modulo p.
The additive inverse of a modulo p is −a = p − a, which always exists. We discuss multiplicative inverses in Section 2.6.

In a field we can perform algebraic manipulation of expressions, such as solving equations, in much the same way
as when working with the real numbers R: addition, subtraction, multiplication and division all behave as expected.
Exponentiation is defined as repeated multiplication, like in (1). Note that in a finite field of integers, division modulo p
is shorthand for multiplying by the multiplicative inverse: ab = a · (b−1). Thus, the result of division is still an integer
modulo p (a field element), not a fraction.

2.6 Cyclic groups and multiplicative inverses

Let a ∈ E be an element of a finite group E with operator • and identity element e . Consider the set of powers of a, that
is, {a0,a1, . . . }, where a0 = e and ak = a • a • · · · • a means applying a to itself k times. By the closure property, the
result of • is always an element of the group, so the set of powers must be a subset of the group elements E. When the
group is finite, the set of powers must also be finite.

The set of powers of a ∈ E is called the subgroup of E that is generated by a. (A subgroup is a subset of group elements
such that the operator still satisfies the five group properties listed in Section 2.2.) The order of group element a is
defined to be the number of elements in the subgroup generated by a (similarly to the order of the group, which is the
number of elements in the group).

In particular, one possibility is that {a0,a1, . . . } = E: that is, a generates the whole group E, and so the order of a is
the same as the order of the group. If such a group element a exists, the group is called cyclic, and a is called a generator
of the group. It is called “cyclic” because if you examine the sequence of group elements a0, a1, a2, etc. then eventually
that sequence must repeat (since the group is finite); in a cyclic group, that repetition cycle contains all of the group
elements, so a0 = a |E | , a1 = a |E |+1, a2 = a |E |+2 and so on, where |E | is the number of elements in E.

It can be shown that if the order of a group |E | is a prime number, then that group is always cyclic. A nice property
of a cyclic group is that the generator gives us a one-to-one mapping between the integers modulo |E | and the group
elements E. Thus, if we choose an integer k ∈ [0, |E | − 1] uniformly at random and compute ak , the result is a group
element chosen uniformly at random – i.e. every group element is equally likely to be picked with probability 1

|E | . This
fact is used in various cryptographic protocols.

In a finite cyclic group with generator a and identity element e we have e = a0 = a |E | = a • a |E |−1, so therefore
a |E |−1 must be the inverse element of a. In general, for any group element a with order k we have ak = e .

A similar rule applies to Z∗p , the multiplicative group of integers modulo p. If p is a prime, this group has order p − 1
since 0 is not an element of the group. For any a ∈ {1, . . . ,p − 1}, the multiplicative inverse of a modulo p is a−1 = ap−2

(like before, the exponent is the group order minus 1). This follows from Fermat’s little theorem,1 which states that
ap−1 ≡ 1 (mod p) when p is prime and a . 0 (mod p). Since ap−1 = a · ap−2 we have that ap−2 is the multiplicative
inverse of a modulo p. We will use this fact in Section 3.3 to compute inverses.

It is also possible to compute multiplicative inverses using the extended Euclid’s algorithm. However, this approach
is generally not constant-time, whereas the approach using Fermat’s little theorem is easy to make constant-time.

1Not to be confused with Fermat’s last theorem – same Fermat, different theorem.
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2.7 The cofactor and small subgroups

In Section 4.2 we will define a group using the Curve25519 elliptic curve. This group has order hq, where h = 8 and
q = 2252+27742317777372353535851937790883648493 is a prime number. q is only slightly larger than 2252, as we can see
when written in hexadecimal: q = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed.
The parameters of Curve25519 are specifically chosen such that the order of the group is the product of a small integer
h (which is called the cofactor, in this case 8), and a prime q that is slightly greater than a large power of two [3].

Lagrange’s theorem states that if a group E has a subgroup E ′, then the order of E is divisible by the order of E ′.
Since the set of powers of a group element generates a subgroup, this means the order of any group element must be a
factor of the order of the group. Therefore, each Curve25519 group element must have order either 1, 2, 4, 8, q, 2q, 4q,
or 8q: those are all of the factors of 8q, and thus all of the possible orders of group elements.

The group would be simpler if it had a prime order (i.e. if the cofactor was h = 1), since then all group elements would
have order either 1 or q. However, elliptic curve groups using Montgomery curves such as Curve25519 (see Section 4)
always have a cofactor that is a multiple of 4. Since Montgomery curves have other advantages, a design decision of
Curve25519 was to accept the cofactor of 8, even though it makes the group more complicated to use safely [19].

For purposes of Diffie-Hellman (Section 2.3), Curve25519 uses a group element with order q as generator д (base
point); since the subgroup generated by this element has prime order, it is cyclic. However, if Alice is malicious, instead
of sending group element дk to Bob, she could send a group element s with small order, say order 8. When Bob then
computes s j , where j is Bob’s private key, the result is one of only 8 possible group elements, since s generates a
subgroup of order 8, and so sa = sa+8 = sa+16 = . . . . Based on how Bob decrypts the message, Alice can use brute force
to detect which of these 8 possible group elements Bob obtained, and thus Alice can determine the three least-significant
bits of Bob’s private key. This is known as a small subgroup confinement attack.

One way of preventing this attack is to validate public keys [2]: on receiving a public key s , the recipient first checks
that s is indeed an element of the group, and is not the identity element. Moreover, to verify that s has order q, the
recipient checks whether sq = e where e is the identity element of the group. Alternatively, the recipient could check
that sh , e where h is the cofactor, which works because sh = e whenever the order of s is less than q.

X25519 does not perform public key validation, and uses a different approach to prevent small subgroup confinement
attacks: it ensures that the exponent is always a multiple of the cofactor h = 8. Thus, if an attacker sends a group
element s with order less than q, the result of shj will always be the identity element, regardless of the private key j,
and so the adversary learns nothing about the private key. When the correct generator д with order q is used, and
j ∈ [0, q − 1] is uniformly distributed, the distribution of дhj is the same as the uniform distribution of дj , so the extra
factor of h in the exponent is harmless.

Here is a proof sketch to show that the factor of h does not change the distribution. Let д be a generator of a subgroup
of prime order q, and let дa be any element of that subgroup, where a ∈ [0, q − 1] is uniformly distributed. Assume
h is not a multiple of q, so gcd(h,q) = 1. Then the congruence equation iq ≡ −a (mod h) has exactly one solution
i ∈ [0, h − 1]. Let i be that solution, so iq + a ≡ 0 (mod h), so iq + a is a multiple of h. Moreover, since 0 ≤ i ≤ h − 1
and 0 ≤ a ≤ q − 1 we have 0 ≤ iq + a ≤ hq − 1, so there exists exactly one j ∈ [0, q − 1] such that hj = iq + a. Since the
subgroup generated by д is cyclic, we have дq = д0, and thus дiq+a = дa . Therefore, for every a ∈ [0, q − 1] there exists
a unique j ∈ [0, q − 1] such that дa = дhj , and vice versa. Hence, the probability of generating дhj is the same as the
probability of generating дa ; since the probability distribution is uniform, that probability is 1

q .
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3 FINITE FIELD ARITHMETIC

Before we can implement elliptic curve operations, we first have to implement arithmetic operators (addition, subtraction,
multiplication, and division) for the underlying finite field. In the case of Curve25519 this is the field of integers modulo
the prime p = 2255 − 19, as defined in Section 2.5.

Most programming languages do not have built-in support for such large numbers; moreover, a general-purpose
implementation of big numbers might not be suitable for cryptographic purposes, because the running time and memory
access patterns of an operation may depend on the values of its inputs. Such variations in timing and memory access
can be exploited by side-channel attacks to potentially leak secrets to an adversary.

The implementation analysed in this paper includes its own implementation of field arithmetic, which takes care to
use constant-time algorithms whose running time and memory access patterns do not depend on the input values. The
algorithms only rely on standard arithmetic and bit operators in C, which always take the same time to execute.

3.1 Addition and subtraction

We use two representations for integers modulop = 2255−19: a 32-element array of 8-bit values (bytes), and a 16-element
array of 16-bit values. The 32-byte representation is used for input and output, while the 16-element representation is
used internally by the arithmetic operators. In both cases, a little-endian order is used, i.e. the first element of an array
contains the least significant bits, and the last element contains the most significant bits.

Listing 1 shows the implementation of addition, subtraction, and multiplication modulo p. The field_elem datatype,
defined on line 3, is used for the 16-element number representation. Even though each element initially holds just 16
bits, it is declared as a 16-element array of 64-bit signed integers in order to simplify the following computations.

We can think of a 16-element array (a0,a1, . . . ,a15) as representing a number a by multiplying each element with
the appropriate power of 2:

a = a020 + a1216 + a2232 + · · · + a152240

This expression is still well-defined even if individual elements ai lie outside of the range [0, 216 − 1].
We start with the unpack25519 function on lines 5–10 of Listing 1, which converts a number (a Zp field element)

from the byte array representation to the field_elem representation. The loop takes two adjacent bytes, in[2*i] and
in[2*i + 1], and combines them into a 16-bit value by shifting the second byte left by 8 bits and then adding them. On
line 9, it forces the most significant bit (the 255th bit) to be zero, since our numbers are always less than 2255. Strictly
speaking, this function allows the value to be within the range [0, 2255−1], including the values {2255−19, . . . , 2255−1}
that are not reduced modulo p, but this does not do any harm, since the functions that take the field_elem type as
input handle these numbers correctly.

The fadd function on lines 23–27 of Listing 1 adds two field elements in field_elem form, and similarly the fsub
function on lines 29–33 subtracts two field elements. These functions are straightforward: they just add or subtract
each of the 16 elements separately.

a + b = (a020 + a1216 + a2232 + · · · + a152240) + (b020 + b1216 + b2232 + · · · + b152240)

= (a0 + b0) 20 + (a1 + b1) 216 + (a2 + b2) 232 + · · · + (a15 + b15) 2240 (2)

a − b = (a020 + a1216 + a2232 + · · · + a152240) − (b020 + b1216 + b2232 + · · · + b152240)

= (a0 − b0) 20 + (a1 − b1) 216 + (a2 − b2) 232 + · · · + (a15 − b15) 2240 (3)
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1 typedef unsigned char u8;
2 typedef long long i64;
3 typedef i64 field_elem[16];
4

5 static void unpack25519(field_elem out, const u8 *in)
6 {
7 int i;
8 for (i = 0; i < 16; ++i) out[i] = in[2*i] + ((i64) in[2*i + 1] << 8);
9 out[15] &= 0x7fff;
10 }
11

12 static void carry25519(field_elem elem)
13 {
14 int i;
15 i64 carry;
16 for (i = 0; i < 16; ++i) {
17 carry = elem[i] >> 16;
18 elem[i] -= carry << 16;
19 if (i < 15) elem[i + 1] += carry; else elem[0] += 38 * carry;
20 }
21 }
22

23 static void fadd(field_elem out, const field_elem a, const field_elem b) /* out = a + b */
24 {
25 int i;
26 for (i = 0; i < 16; ++i) out[i] = a[i] + b[i];
27 }
28

29 static void fsub(field_elem out, const field_elem a, const field_elem b) /* out = a - b */
30 {
31 int i;
32 for (i = 0; i < 16; ++i) out[i] = a[i] - b[i];
33 }
34

35 static void fmul(field_elem out, const field_elem a, const field_elem b) /* out = a * b */
36 {
37 i64 i, j, product[31];
38 for (i = 0; i < 31; ++i) product[i] = 0;
39 for (i = 0; i < 16; ++i) {
40 for (j = 0; j < 16; ++j) product[i+j] += a[i] * b[j];
41 }
42 for (i = 0; i < 15; ++i) product[i] += 38 * product[i + 16];
43 for (i = 0; i < 16; ++i) out[i] = product[i];
44 carry25519(out);
45 carry25519(out);
46 }

Listing 1. Field arithmetic modulo p = 2255 − 19: addition, subtraction, and multiplication.
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Since the field_elem type uses 64-bit signed integers for each of the 16 elements, these addition or subtraction
operations don’t overflow or underflow, and we don’t have to worry about propagating carry bits. However, we have to
keep in mind that each of the elements may now be greater than 216, or negative.

3.2 Multiplication modulo p

The fmul function on lines 35–46 multiplies two numbers in field_elem form. product is a 31-element array of
64-bit integers, initialised to zero. On lines 39–41 we iterate in a nested loop over each of the elements of the input
numbers a and b, and adding their product to the appropriate elements of product. This is equivalent to how we do
long multiplication with pen and paper:

product = a · b = (a020 + a1216 + a2232 + · · · + a152240) · (b020 + b1216 + b2232 + · · · + b152240)

= a0b020+0 + a1b0216+0 + · · · + a15b02240+0 + a0b120+16 + a1b1216+16 + · · · + a15b152240+240

= a0b020 + (a1b0 + a0b1) 216 + (a2b0 + a1b1 + a0b2) 232 + · · · + a15b152480 (4)

product now contains the product of a and b (the product of two 255-bit numbers is a 510-bit number).
In order to bring the 31-element array product into a 16-element field_elem form, we can reduce modulo p, as

explained in Section 2.1. However, for performance reasons, we do not fully reduce modulo p in the multiplication
function fmul. Instead, we reduce modulo 2p = 2 (2255 − 19) = 2256 − 38 on line 42 of Listing 1. This is valid because
reducing modulo a multiple of p preserves all of the necessary information; we can later reduce modulo p and the end
result will be the same as if we had not performed the intermediate reduction modulo 2p.

for (i = 0; i < 15; ++i) product[i] += 38 * product[i+16] almost reduces product modulo 2p because
2256 = 2p + 38:

product = t020 + t1216 + t2232 + · · · + t152240 + t162256 + t172272 · · · + t302480

= t020 + t1216 + t2232 + · · · + t152240 + t1620 (2p + 38) + t17216 (2p + 38) + · · · + t302224 (2p + 38)

≡ t020 + t1216 + t2232 + · · · + t152240 + 38 t1620 + 38 t17216 · · · + 38 t302224 (mod 2p)

= (t0 + 38 t16) 20 + (t1 + 38 t17) 216 + · · · + (t14 + 38 t30) 2224 + t152240 (5)

After this step the result is in elements product[0] to product[15], and we ignore product[16] to product[30].
This computation is “almost” a reduction modulo 2p because, although the number now fits in the field_elem type
with 16 elements, we have not yet done anything to bring each element within the [0, 216 − 1] range, so the number as
a whole is not fully reduced modulo 2p.

Before we continue, we should check that the calculation so far does not overflow the 64-bit variables we are using
(signed integer overflow is undefined behaviour in C, so it is important to be sure that it cannot happen). When we
come to use the addition, subtraction, and multiplication functions in Section 4.6, it will turn out that the result of
a multiplication undergoes at most one addition or subtraction before becoming the input to another multiplication.
Thus, if we assume that a multiplication returns a field_elem number in which each element is in the range [0, 216],
then after one addition or subtraction, we can assume that each of the elements ai , bi of the inputs to a multiplication
is in the range [−216, 217]. The greatest number of terms being added to one element in equation (4) is for t15:

t15 = a15b0 + a14b1 + a13b2 + · · · + a1b14 + a0b15
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Each of the products aibj is in the range [−233, 234], so therefore the sum of 16 of these terms must be in the range
[−237, 238]. Reduction modulo 2p in equation (5) may further multiply an element by a factor of 38; over-approximating
38 as 26 gives us a final range of [−243, 244]. Thus, we can conclude that 64-bit arithmetic gives us plenty of headroom
to complete the calculation without overflowing.2

Finally, in order to bring the elements back into the range [0, 216 − 1], the fmul function first copies product[0] to
product[15] into the output variable out, and then calls the carry25519 function twice (lines 43–45).

The carry25519 function (lines 12–21 of Listing 1) cleans up a value of type field_elem by almost bringing all of
the elements within the [0, 216 − 1] range. I say “almost” because there are edge cases in which some elements exceed
that range after one or two calls to carry25519. In order to be certain that all of the elements are within [0, 216 − 1],
the function needs to be called three times. However, after two calls to carry25519, that range can only be exceeded by
a small amount; for the purposes of the multiplication function, two calls are sufficient, since we just need to ensure
the element values are small enough that they do not cause overflow when they become the input to subsequent
multiplications.

carry25519 iterates over the 16 elements of the field_elem number elem, performing the following for each:

(1) Line 17 computes carry = elem[i] >> 16; selecting all bits that are greater than the low-order 16 bits.
(2) Line 18 updates elem[i] -= carry << 16; which subtracts the carry bits from elem[i], leaving its value

within the range [0, 216 − 1] (even if the case where elem[i] was previously negative).
(3) On line 19, the carry bits are added to the next element, except when elem[i] is already the last element. If

we are at the last element (i == 15), the carry is multiplied by 38 and added to the first element, performing
reduction modulo 2p as previously in equation (5). This operation is constant-time despite the presence of an if

statement, since it only depends on the variable i, which is not secret.

If it was not for the last element’s carry wrapping around to elem[0], the carry25519 function would leave all
elements within [0, 216 − 1]. However, this carry can cause elem[0] to be greater than 216, or even negative. A second
call to carry25519 can fix this; however, if elements elem[1] to elem[15] are close to 0xffff, the carry bits from
elem[0] can cause a cascade of carries on the second call, resulting in a further carry from elem[15] to elem[0],
causing elem[0] to exceed 0xffff again. On a third call to carry25519, such a carry cascade is no longer possible,
since the values of the middle elements are now zero, and so the third call finally brings all elements within the range
[0, 216 − 1].

In any case, the number of times carry25519 is called must be constant (not dependent on whether or not there is a
carry), since otherwise the function would no longer be constant-time.

3.3 Computing the multiplicative inverse

Now that we have defined addition, subtraction, and multiplication, the missing arithmetic operation on field elements
is division modulo p = 2255 − 19. As explained in Section 2.6, we perform division b

a by computing the multiplicative
inverse of the denominator, a−1, and then multiplying that inverse with the numerator b.

The finverse function on lines 5–15 of Listing 2 computes the multiplicative inverse of its input in, writing the
result to the output variable out. Both input and output are in field_elem form. The computation of the inverse uses
Fermat’s little theorem as per Section 2.6, by computing a−1 ≡ ap−2 (mod p). The exponential ap−2 can be computed

2Incidentally, the JavaScript port of TweetNaCl uses double-precision floating-point arithmetic, since JavaScript does not support 64-bit integer arithmetic.
IEEE 754 double-precision floating point numbers use an exact representation for integers in the range [−253 + 1, 253 − 1]; as we can see from this
analysis, that precision is also sufficient to perform this multiplication algorithm correctly.
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1 typedef unsigned char u8;
2 typedef long long i64;
3 typedef i64 field_elem[16];
4

5 static void finverse(field_elem out, const field_elem in)
6 {
7 field_elem c;
8 int i;
9 for (i = 0; i < 16; ++i) c[i] = in[i];
10 for (i = 253; i >= 0; i--) {
11 fmul(c, c, c);
12 if (i != 2 && i != 4) fmul(c, c, in);
13 }
14 for (i = 0; i < 16; ++i) out[i] = c[i];
15 }
16

17 static void swap25519(field_elem p, field_elem q, int bit)
18 {
19 i64 t, i, c = ~(bit - 1);
20 for (i = 0; i < 16; ++i) {
21 t = c & (p[i] ^ q[i]);
22 p[i] ^= t;
23 q[i] ^= t;
24 }
25 }
26

27 static void pack25519(u8 *out, const field_elem in)
28 {
29 int i, j, carry;
30 field_elem m, t;
31 for (i = 0; i < 16; ++i) t[i] = in[i];
32 carry25519(t); carry25519(t); carry25519(t);
33 for (j = 0; j < 2; ++j) {
34 m[0] = t[0] - 0xffed;
35 for(i = 1; i < 15; i++) {
36 m[i] = t[i] - 0xffff - ((m[i - 1] >> 16) & 1);
37 m[i - 1] &= 0xffff;
38 }
39 m[15] = t[15] - 0x7fff - ((m[14] >> 16) & 1);
40 carry = (m[15] >> 16) & 1;
41 m[14] &= 0xffff;
42 swap25519(t, m, 1 - carry);
43 }
44 for (i = 0; i < 16; ++i) {
45 out[2*i] = t[i] & 0xff;
46 out[2*i + 1] = t[i] >> 8;
47 }
48 }

Listing 2. Multiplicative inverse, and converting numbers from internal representation to byte arrays.
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using the square-and-multiply method, which is based on the following recursive relations:

a2i = ai · ai and a2i+1 = a · ai · ai .

That is, we first compute ai recursively, and then square ai to obtain a2i . If the exponent is odd, we additionally multiply
the result with another copy of a to obtain a2i+1.

p − 2 = 2255 − 21 = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeb is a constant,
so finverse hard-codes the pattern of squarings and multiplications. All of the bits of p − 2 are 1, except for bits 2
and 4, which are 0 (where bit 0 is the least-significant bit). The loop in the finverse function counts down from the
most-significant to the least-significant bit, squaring the current value c using the fmul function for each bit, and also
multiplying c with the input value in for each bit that is 1. Even though p − 2 consists of 255 bits, the loop is able to start
at bit 253 and save one iteration by initialising c to in instead of 1. At the end, c is copied to the output variable out.

3.4 Converting back to a byte array

The final aspect of finite field arithmetic that we need to complete is to convert from the field_elem representation of
a number back to the byte array representation, which is done by the pack25519 function on lines 27–48 of Listing 2.
This function performs the inverse of the unpack25519 function discussed in Section 3.1. In the process, we will also
reduce the number modulo p, which ensures that every distinct element in the field of integers modulo p is represented
by a unique byte string. This will be essential when we later want to use such a field element to derive an encryption
key.

First, we explain the helper function swap25519(p, q, bit) on lines 17–25 of Listing 2. If bit is 1, this function
swaps the content of parameters p and q (both in field_elem representation), and it does nothing if bit is 0. Since bit
may be part of a secret value, this function cannot use a simple if statement, since that would not be constant-time.
Instead, it must ensure that it always performs exactly the same operations, regardless of the value of bit.

swap25519 first sets c = ~(bit - 1), which equals 0 if bit == 0, and 0xffff... if bit == 1. Next it iterates
over each of the 16 elements of the number, and computes t = c & (p[i] ^ q[i]) for index i, which equals 0
if bit == 0, and p[i] ^ q[i] if bit == 1. The operation p[i] ^= t thus has no effect if bit == 0, and it sets
p[i] = p[i] ^ (p[i] ^ q[i]) = q[i] if bit == 1. Likewise, q[i] is set to p[i] if bit == 1.

Next, we turn to pack25519. This function first copies the input value in to t, and then calls carry25519 on it three
times. As discussed in Section 3.2, this ensures that all of the 16 elements of t fall within the range [0, 216 − 1]. Thus,
we have a 256-bit number that is not quite reduced modulo 2p, since it may fall within the entire range [0, 2256 − 1] (i.e.
it may be slightly greater than 2p).

To reduce that number t modulo p, notice that there are three possibilities: either 0 ≤ t < p (i.e. t is already reduced
modulo p), or p ≤ t < 2p (i.e. we need to subtract p from t to reduce it modulo p), or 2p ≤ t < 2256 (i.e. we need to
subtract 2p from t ). However, for the function to be constant-time, we cannot simply detect which of these three is
the case, and subtract the appropriate multiple of p. Instead, we have to calculate both t − p and t − 2p, and then use
a constant-time algorithm to choose which of the three values {t , t − p, t − 2p} to return. This is done by the loop
for (j = 0; j < 2; ++j) on lines 33–43.

Most of the loop body is taken up by the logic to subtract p from t, and write the result to m. Rather than reusing the
earlier fsub function to subtract, followed by repeated carry25519 calls to handle the carry, this function implements
its own carry handling.
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On line 34, m[0] = t[0] - 0xffed; subtracts from t[0] the least-significant 16 bits of p, which are 0xffed. This
may result in a negative number, but the subsequent m[0] &= 0xffff; on line 37 puts it back in the range [0, 216 − 1],
after first taking the carry bit (m[0] >> 16) & 1 and subtracting it from m[1] (line 36). We then repeat this for the
next 14 elements of t, except that we subtract 0xffff (the middle bits of p) instead of 0xffed. For t[15] we subtract
0x7fff (the most-significant 16 bits of p), place the carry bit in variable carry, and otherwise perform the same steps.

The carry bit of the result of subtracting t − p is 1 if the result is negative, and 0 if it is zero or positive. If this bit is 1,
1 - carry on line 42 equals 0, so swap25519 does nothing, so the variable t is left unchanged and the negative result
is discarded. If this bit is 0, 1 - carry equals 1, so swap25519 swaps the values of t and m, i.e. it updates t to be the
non-negative value t − p. Thus, the subtraction of p takes effect only if the result is non-negative. After two iterations
of this loop, t is guaranteed to be in the range [0, p − 1].

Finally, on lines 44–47 the value of t is copied to the output byte array out. Each of the 16-bit elements is split into
two bytes and assigned to two adjacent elements of the byte array. This completes the cycle, starting with input values
that arrive as byte arrays, which may be manipulated in field_elem form through field arithmetic operations, with the
result eventually converted back to a byte array.

4 ELLIPTIC CURVE ARITHMETIC

Curve25519 uses the curve
y2 = x3 +Ax2 + x (6)

which is known as a Montgomery curve, with parameter A = 486662. We will use equation (6) as our starting point; a
justification for the use of this equation and the choice of A appear in the Curve25519 paper [3]. Our derivations work
for any A2 , 4; this restriction ensures the curve has the required shape. Some other curve equations are also used for
elliptic curve cryptography, such as the short Weierstrass equation

y2 = x3 +Ax + B (7)

but in this paper we focus on Montgomery curves.

4.1 Straight line intersecting the elliptic curve

We say that a point P = (x ,y) lies on the curve if (x ,y) is a solution of equation (6). Figure 1 shows an example of such
a curve. Notice that the curve has reflection symmetry around the x axis; more formally, if (x ,y) is on the curve then
(x ,−y) is also on the curve. This is the case because the variable y appears only in the y2 term in (6).

For now we will treat the coordinates x and y as real numbers. In Curve25519 they are actually integers modulo
2255 − 19, but we will do the following derivation using real numbers as it is easier to visualise, and allows us to use
some calculus. It turns out that the end result works with any field.

If we have two points P = (xP ,yP ) and Q = (xQ ,yQ ) that both lie on the curve, we can draw a straight line through
those points. If we assume that xP , xQ , then that straight line intersects the curve at some third point R, as shown in
Figure 1(a). We will show shortly that this third point R always exists. This straight line is defined by the equation

y = λx + c where the slope is λ =
yQ − yP

xQ − xP
and the y-intercept is c = yP − λ xP . (8)
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(a)
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Fig. 1. (a) If we draw a line through two points P = (xP , yP ) and Q = (xQ , yQ ) on an elliptic curve, where xP , xQ , then that line
intersects the curve again in a third point R . (b) Generalising to P = Q , we draw a tangent to the curve at P , which intersects the
curve at R .

If xP = xQ we distinguish three possibilities: either yP = yQ = 0, or yP = yQ , 0, or yP = −yQ , 0. Consider first
the case where yP = −yQ , 0, shown in Figure 2: if we draw a straight line through the two points, that line is vertical,
and there is no third intersection point. We will return to this case, and the yP = yQ = 0 case, in Section 4.2.

Next, consider the case where yP = yQ , 0, i.e. P = Q and the points are not on the x axis. In this case we can still
define a straight line through P and Q , and we choose the slope of the line such that it is a tangent to the curve (i.e. it
touches the curve at P without crossing it). This is the natural generalisation of the slope λ = (yQ − yP )/(xQ − xP ) in
the limit as the distance between P and Q tends to zero.

To compute the slope λ of this tangent, we can calculate the derivative of the curve equation (6) using the chain rule:

y2 = x3 +Ax2 + x ⇐⇒ y = ±
√
x3 +Ax2 + x (9)

λ =
dy
dx
= ±

3x2 + 2Ax + 1
2
√
x3 +Ax2 + x

= ±
3x2 + 2Ax + 1

2|y |
=

3x2 + 2Ax + 1
2y

(10)

The sign of λ in equation (10) works out correctly for both positive and negative y. The tangent is then defined by
y = λx + c as before, and it exists whenever y , 0. If y = 0, the tangent is vertical, and we handle this as part of the case
yP = −yQ in Section 4.2.
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x

y

P

Q

Fig. 2. If xP = xQ and yP = −yQ , the line going through the two points is vertical.

In the cases where the straight line is not vertical, we work out the third point R at which the line intersects the
elliptic curve. We do this by substituting the line equation (8) into the curve equation (6):

(λx + c)2 = x3 +Ax2 + x ⇐⇒ x3 + (A − λ2)x2 + (1 − 2λc)x − c2 = 0 (11)

The roots of the polynomial (11) are the x coordinates of the points at which the line intersects the curve. Since we
know that P and Q lie on both the line and the curve, xP and xQ must be roots of (11), and so we can divide (11) by the
polynomial (x − xP )(x − xQ ) = x2 − (xP + xQ )x + xPxQ . This works even if xP = xQ , for the following reason: in the
case of P = Q we chose the line to be a tangent to the curve; therefore, the derivative of (11) is zero at xP ; therefore, xP
is a double root of (11) and we can divide it by x − xP twice. Performing the polynomial division:

x +A − λ2 + xP + xQ

x2 − (xP + xQ )x + xPxQ

)
x3 + (A − λ2)x2 + (1 − 2λc)x − c2

x3 − (xP + xQ )x
2 + xPxQx

(A − λ2 + xP + xQ )x
2 + (1 − 2λc − xPxQ )x − c2

(A − λ2 + xP + xQ )x
2 − (A − λ2 + xP + xQ ) (xP + xQ )x

+ (A − λ2 + xP + xQ )xPxQ

. . .

The polynomial division produces an extremely ugly expression as remainder, but fortunately we do not need to
compute it, since we know that it must be zero. From the quotient x +A − λ2 + xP + xQ we obtain the x coordinate of
the third intersection point R:

xR = λ2 −A − xP − xQ (12)
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# The finite field of integers modulo p (GF is short for Galois Field)
field = GF(2^255 - 19)

# EllipticCurve(field, [a1, a2, a3, a4, a5]) constructs an elliptic curve over the
# given field, with curve equation y^2 + a1*x*y + a3*y = x^3 + a2*x^2 + a4*x + a5.
# We choose a1 = 0, a2 = 486662, a3 = 0, a4 = 1, a5 = 0 to give us the Montgomery
# curve equation y^2 = x^3 + 486662 * x^2 + x.
E = EllipticCurve(field, [0, 486662, 0, 1, 0])

# Check the order (cardinality) of the group defined by that curve
q = 2^252 + 27742317777372353535851937790883648493
q.is_prime() # returns True
E.cardinality() == 8 * q # returns True

# Define the base point (generator) g to be the point with x coordinate = 9,
# and check the order of that point
base = 9
g = [field(base), sqrt(field(base^3 + 486662 * base^2 + base))] # [x, y] coordinates
q * E(g) # returns (0 : 1 : 0), which is the point at infinity
# This indicates that point g has order q in the elliptic curve group E.

Listing 3. SageMath code to compute the order of the Curve25519 group and the base point.

and we obtain the y coordinate by substituting xR into the line equation (8):

yR = λ xR + c = λ xR + yP − λ xP = yP + λ (xR − xP ) (13)

Since (xR ,yR ) is defined whenever λ exists, we know that the third intersection point R exists whenever the straight
line is not vertical.

4.2 Constructing a group

We will now use the results from the last section to construct a group. The set of group elements is the set of points on
the elliptic curve (6), plus one special element∞ that we call the point at infinity:

E = {(x ,y) | y2 = x3 +Ax2 + x} ∪ {∞} (14)

The group has an infinite number of elements when the x andy coordinates are real numbers, but when they are integers
modulo p, the group order is finite. For x ,y ∈ Zp there are p2 possible (x ,y) pairs, and only some of them are solutions
of the curve equation. The exact number of solutions depends on the curve equation, the parameter A, and the size of
the underlying field. Algorithms for counting the number of curve points are presented in textbooks [11, 13]. In the case
of Curve25519 with p = 2255 − 19 and A = 486662 we have |E | = 8 · (2252 + 27742317777372353535851937790883648493)
as discussed in Section 2.7. We can use SageMath to check this is correct, as shown in Listing 3.

The point at infinity has no coordinates, and its purpose is to deal with vertical lines. When two different points
have the same x coordinate and we draw a vertical line through them, like in Figure 2, we define the point at infinity to
be the third point at which the line “intersects the curve”. We can imagine this point as lying infinitely far up the y axis,
and all vertical lines intersect that point.
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The point at infinity will also serve as the identity element of our group. That is, we define the following to be true:

P • ∞ = ∞ • P = P for all P ∈ E. (15)

In particular,∞•∞ = ∞. Moreover, for any point P = (xP ,yP ) on the curve, we define the inverse to be P−1 = (xP ,−yP ),
i.e. the point obtained by mirroring P with respect to the x axis. By definition, the inverse satisfies the following
property:

P • P−1 = P−1 • P = ∞ for all P ∈ E. (16)

We also define that∞−1 = ∞.
Intuitively, we can think of the operator P •Q as combining two points P and Q by drawing a straight line through

them and finding a third point on the curve. To fully define the operator •, we start with the following idea: for any
three points P ,Q,R ∈ E, if those points lie on the same line, then we have

P •Q • R = ∞. (17)

We can achieve this by defining P •Q = R−1, and then (P •Q) • R = R−1 • R = ∞. That is, given two curve points P and
Q , we can draw a straight line through those points, find the third point at which that line intersects the curve, and
then invert that point by negating its y coordinate. The point obtained in this way is P •Q .

Using our results (12) and (13) for the coordinates of the third intersection point, along with equations (8) and (10)
for the slope λ, we can now define P1 • P2 for any two points P1 and P2 on the curve with P1 , P−12 :

P1 • P2 = (x1,y1) • (x2,y2) = (x3,y3) where

x3 = λ2 −A − x1 − x2 =



(
y2 − y1
x2 − x1

)2
−A − x1 − x2 if x1 , x2(

3x21 + 2Ax1 + 1
2y1

)2
−A − 2x1 if x1 = x2

(18)

y3 = −(y1 + λ (x3 − x1)) = λ (x1 − λ2 +A + x1 + x2) − y1 = λ (2x1 + x2 +A) − λ3 − y1 = (19)

=


(2x1 + x2 +A)(y2 − y1)

x2 − x1
−

(
y2 − y1
x2 − x1

)3
− y1 if x1 , x2

(2x1 + x2 +A)(3x21 + 2Ax1 + 1)
2y1

−

(
3x21 + 2Ax1 + 1

2y1

)3
− y1 if x1 = x2

The formulas (18) and (19), along with definitions (15) and (16), form the group law for Montgomery curves. These
definitions may seem somewhat arbitrary, but • has to be defined this way in order to obtain a group. For example, if
we did not invert the third intersection point of the line, the resulting operation would not form a group.

To prove that our definitions form an abelian group, we need to show that the five properties of Section 2.2 hold:

• The closure property holds by definition, since the point (x3,y3) defined by (18) and (19) lies on the curve, and
the result of the group operation in (15) and (16) is also an element of E.

• The identity element∞ exists and has the required behaviour according to definition (15).
• The inverse element P−1 exists for every P ∈ E and has the required behaviour according to definition (16).
• To show that the commutativity property holds, consider several cases. If P = ∞ and/or Q = ∞, we have
P •Q = Q • P due to (15). If P = Q−1, we have P •Q = Q • P due to (16). Finally, if P , ∞, Q , ∞ and P , Q−1,
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consider the straight line through curve points P and Q . We show that the line through P and Q is the same as
the line through Q and P , and thus the third intersection point of this line with the curve must be the same. If
P = Q , the two lines are trivially the same according to (10). If P , Q , we examine the line equation (8):

y = λx + c = λ (x − xP ) + yP =
yQ − yP

xQ − xP
(x − xP ) + yP (20)

=
−(yP − yQ )

−(xP − xQ )
(x − xP ) +

yP (xP − xQ )

xP − xQ

=
(yP − yQ )x − xPyP + xPyQ + xPyP − xQyP

xP − xQ

=
(yP − yQ )x + xPyQ − xQyP + (xQyQ − xQyQ )

xP − xQ

=
(yP − yQ )x − (yP − yQ )xQ + (xP − xQ )yQ

xP − xQ

=
yP − yQ

xP − xQ
(x − xQ ) + yQ (21)

The expressions (20) and (21) are equal except for swapping P andQ . Thus, we have P •Q = Q •P for all P ,Q ∈ E.

The final step is to show that • is associative: (a • b) • c = a • (b • c). Unfortunately, proving associativity is rather
more complex than the other properties: proofs of this property involve either some advanced mathematics, or the use
of a computer algebra software package [17, 18]. We will therefore skip the proof of this property.

Instead, to check our result, we can look up Montgomery curves in the Explicit Formulas Database (EFD) [5], which
lists the group law as follows:

name Montgomery curves

parameter a

parameter b

coordinate x

coordinate y

satisfying b y^2 = x^3 + a x^2 + x

addition x = b (y2-y1)^2/(x2-x1)^2-a-x1-x2

addition y = (2 x1+x2+a) (y2-y1)/(x2-x1)-b (y2-y1)^3/(x2-x1)^3-y1

doubling x = b (3 x1^2+2 a x1+1)^2/(2 b y1)^2-a-x1-x1

doubling y = (2 x1+x1+a) (3 x1^2+2 a x1+1)/(2 b y1)-b (3 x1^2+2 a x1+1)^3/(2 b y1)^3-y1

This database uses a slightly more general form By2 = x3 +Ax2 + x with an additional parameter B. We can see that
with B = 1, the formulas in the database equal our formulas (18) and (19). The formulas in the EFD are checked using
SageMath; we will not repeat those checks here.

A note on notation. In the literature on elliptic curves, the group operation • is traditionally written as +, the inverse
of P is written as −P , combining two different points P and Q using the group operation P +Q is called point addition,
and combining a point P with itself P + P = 2P is known as point doubling. On the other hand, in the literature on
cryptographic protocols, the group operation is traditionally written as multiplication ·, the inverse of P is written as
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P−1, and combining a group element with itself is written as P · P = P2. In this paper we use • as the group operation
on elliptic curve group elements E, in order to avoid confusion with the addition and multiplication of individual field
elements (i.e. integers modulo p), which is used in the formulas above.

4.3 Elliptic-curve Diffie-Hellman

Now that we have constructed a group, we can use this group for cryptographic protocols. In particular, we can use the
Curve25519 group to implement the X25519 Diffie-Hellman key exchange function.

For a group element P ∈ E and a non-negative integer k we define the repeated application of the group operator to
P as before:

Pk = P • P • · · · • P︸           ︷︷           ︸
k times

(22)

We show in Section 4.4 how to compute Pk efficiently, even for large k . This operation is known as scalar multiplication

(where scalar refers to the fact that k is an integer, not a group element).
We can visualise the sequence P , P2, P3, . . . as repeatedly drawing a line through points P and P i , as shown in

Figure 1, finding a third intersection point of this line, and mirroring it with respect to the x axis to obtain point P i+1.
The effect, intuitively speaking, is a sequence of points that “jump around” the curve in a complicated pattern that is
difficult to predict, as illustrated in Figure 3. This complicated pattern is what makes the group suitable for cryptography.
In particular, it is believed that the Decisional Diffie-Hellman assumption (see Section 2.4) is true in this group.

The best known algorithms for discrete logarithms in this group, such as Pollard’s rho algorithm [28], boil down to
essentially trying lots of values of k until we find a result that matches the input Pk . This algorithm takes approximately
O(

√
k) time to find k . Thus, if we choose k to be n bits long, the time taken is O(2n/2). X25519 chooses n = 251 (less

than 255 because four bits are set to constant values), making the difficulty of computing the discrete logarithm similar
to the difficulty of breaking a 128-bit symmetric cipher.

Listing 4 shows how to implement Diffie-Hellman. The scalarmult(out, scalar, point) function takes three
arguments: point is the input group element P , scalar is the scalar exponent, and out is a pointer to memory where
the output P scalar will be written. point, scalar and out are all 255-bit numbers, encoded as arrays of 32 bytes. In fact,
point and out are not full group elements, but only the x coordinate of points on the curve; we will see in Section 4.4
why we can leave out the y coordinate. We will see the implementation of scalarmult in Listing 5.

scalarmult_base(out, scalar) performs scalar multiplication using a fixed group element _9, which is a curve
point whose x coordinate equals 9. This point is chosen because its order is a large prime, as explained in Section 2.7.
Listing 3 shows how we can check the order of this point using SageMath. The result is again returned in out.

generate_keypair(pk, sk) generates a new keypair, where the private key is written to sk and the public key is
written to pk. The private key consists of 32 bytes (256 bits) drawn from a secure source of uniform random numbers.
The public key is obtained from scalar multiplication of sk with the fixed base point in scalarmult_base.

x25519(out, pk, sk) is called by both the sender and the recipient of a message. If called by the sender, pk is the
recipient’s public key and sk is the random integer generated by the sender (Alice’s k in the example in Section 2.3). If
called by the recipient, pk is the group element sent along with the message (дk in the example of Section 2.3) and sk is
the recipient’s private key. In either case, computing the scalar product of the group element and the secret integer
produces the shared secret, which is written to out. The shared secret can then be used to initialise a symmetric cipher
to encrypt the actual message, but this is beyond the scope of X25519, so we do not discuss it further in this paper.
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P

P • P

P

P2

P3

P

P3

P4

P
P4

P5

P

P5

P6 P P6

P7

Fig. 3. Using the group operator to repeatedly combine a curve point P with itself. Each application of the operator can be visualised
as drawing a straight line through P and P i , finding the third point where this line intersects the curve, and mirroring that point
with respect to the x axis to obtain P i+1. The result is a sequence of points that “jump around” in a pseudorandom manner.
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1 typedef unsigned char u8;
2 typedef unsigned long long u64;
3 extern void randombytes(u8 *, u64);
4 static const u8 _9[32] = {9};
5

6 void scalarmult_base(u8 *out, const u8 *scalar)
7 {
8 scalarmult(out, scalar, _9);
9 }
10

11 void generate_keypair(u8 *pk, u8 *sk)
12 {
13 randombytes(sk, 32);
14 scalarmult_base(pk, sk);
15 }
16

17 void x25519(u8 *out, const u8 *pk, const u8 *sk)
18 {
19 scalarmult(out, sk, pk);
20 }

Listing 4. Using the scalarmult function to implement Diffie-Hellman.

4.4 The Montgomery ladder

The Montgomery ladder [6, 14, 27] is the algorithm used by X25519 to efficiently perform scalar multiplication. The
function L(P , i) takes a group element P , ∞ and a non-negative integer i , and it returns a pair of group elements
(P i , P i+1) computed using the group operator •:

L(P , 0) = (∞, P) (23)

L(P , 2i) = (Pi • Pi , Pi • Pi+1) where L(P , i) = (Pi , Pi+1) and i > 0

L(P , 2i + 1) = (Pi • Pi+1, Pi+1 • Pi+1) where L(P , i) = (Pi , Pi+1) and i ≥ 0

Here P0 = ∞ because ∞ is the identity element of the group. The second argument is halved (rounding down, i.e.
shifting right by one bit) on each recursive call, resulting in ⌊log2 i⌋ + 1 recursive calls to compute L(P , i) (i.e. one call
per bit of i). In practice, we can use a loop instead of recursion, and in each iteration of the loop we examine one bit of
i , starting with the most significant bit. (Listing 5 on page 28 shows our implementation of the Montgomery ladder;
lines 19 to 43 contain the main loop that iterates over the bits of the integer.) At each loop iteration we perform two
group operations:

• If the bit is zero (i.e. the 2i case), we combine Pi with itself to produce P i • P i = P2i , and we combine Pi with
Pi+1 to produce P i • P i+1 = P2i+1.

• If the bit is one (i.e. the 2i + 1 case), we combine Pi with Pi+1 to produce P i • P i+1 = P2i+1, and we combine Pi+1
with itself to produce P i+1 • P i+1 = P2i+2.

The reason we return two group elements rather than just one is that, as we shall see shortly, there is a particularly
efficient formula for computing P i • P i+1 = P2i+1 given P , P i and P i+1, which is faster than directly using the group
law in (18), (19).
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In X25519 we need to execute this loop 255 times (the integer in the scalar multiplication function is 256 bits, but we
set the topmost bit to always be zero, hence only 255 iterations are needed). As this is the most time-consuming part of
the algorithm, we now examine how to perform these group operations as fast as possible.

Using projective coordinates. First of all, notice that equations (18) and (19) contain fractions. If we have to perform
division on each iteration of the loop, the multiplicative inverse operation would become the slowest part of the
algorithm. To save time, we can represent coordinates as fractions: x = X/Z and y = Y/Z , where X , Y and Z are
integers. (These are known as projective coordinates, whereas the (x ,y) coordinates we have been using so far are called
affine coordinates.) At each loop iteration we calculate the numerator and denominator for the coordinates separately,
without dividing, and we perform the actual division only once, at the end after we have finished the loop.

Projective formulas for point doubling. Let’s first derive optimised formulas for combining a group element with itself:
P2i = (x2i ,y2i ) = Pi • Pi = (x ,y) • (x ,y). Using the expression in (18):

x2i =
(3x2 + 2Ax + 1)2

4y2
−A − 2x

=
(3x2 + 2Ax + 1)2

4 (x3 +Ax2 + x)
−A − 2x since (x ,y) is on the curve y2 = x3 +Ax2 + x

=
(3x2 + 2Ax + 1)2 − 4 (x3 +Ax2 + x)(2x +A)

4 (x3 +Ax2 + x)

=
9x4 + 12Ax3 + (4A2 + 6)x2 + 4Ax + 1 − 4 (2x4 + 3Ax3 + (A2 + 2)x2 +Ax)

4 (x3 +Ax2 + x)

=
x4 − 2x2 + 1

4 (x3 +Ax2 + x)
=

X 4

Z 4 − 2X 2

Z 2 + 1

4
(
X 3

Z 3 +
AX 2

Z 2 +
X
Z

) using projective coordinates x =
X

Z
(24)

=

1
Z 4 (X

4 − 2X 2Z 2 + Z 4)

4
Z 3 (X 3 +AX 2Z + XZ 2)

=
X 4 − 2X 2Z 2 + Z 4

4XZ (X 2 +AXZ + Z 2)
=

(X 2 − Z 2)2

4XZ (X 2 +AXZ + Z 2)

Thus, we obtain the following projective formulas for point doubling:(
Xi
Zi
,
Yi
Zi

)
•

(
Xi
Zi
,
Yi
Zi

)
=

(
X2i
Z2i
,
Y2i
Z2i

)
where

X2i = (X 2
i − Z 2

i )
2

Z2i = 4XiZi (X 2
i +AXiZi + Z

2
i )

(25)

Note that that the formulas for X2i and Z2i do not use the Y coordinate anywhere. This means that we can avoid
computing any Y coordinates in the first place, and we don’t even need to derive an expression for Y2i . Next, we will
derive formulas for point addition that also avoid using any Y coordinates.

Projective formulas for point addition. We now derive formulas for the group operation P2i+1 = (x2i+1,y2i+1) =

Pi • Pi+1 = (x1,y1) • (x2,y2). We assume that Pi , Pi+1 (because we know that Pi+1 = P i+1 = P i • P = Pi • P and we
are assuming that P , ∞), and we also assume that P−1i , Pi+1 (in this case, P2i+1 = ∞). Therefore we can assume
x1 , x2. Taking equation (18) as our starting point:
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x2i+1 =

(
y2 − y1
x2 − x1

)2
−A − x1 − x2

=
y22 − 2y1y2 + y21 − (A + x1 + x2) (x2 − x1)2

(x2 − x1)2

=
x32 +Ax

2
2 + x2 + x

3
1 +Ax

2
1 + x1 − 2y1y2

(x2 − x1)2

−
Ax22 − 2Ax1x2 +Ax21 + x1x

2
2 − 2x21x2 + x

3
1 + x

3
2 − 2x1x22 + x

2
1x2

(x2 − x1)2

=
x1 + x2 + x21x2 + x1x

2
2 + 2Ax1x2 − 2y1y2

(x2 − x1)2

=
(x1 + x2) (1 + x1x2) + 2Ax1x2 − 2y1y2

(x2 − x1)2
(26)

Next, we use the fact that Pi+1 = Pi • P . Because every element of the group has an inverse, we have P−1i • Pi+1 =

P−1i • Pi • P = P . Let P = (xP ,yP ), Pi = (x1,y1), and Pi+1 = (x2,y2). Because P−1i = (x1,−y1) we have

P = (xP ,yP ) = P−1i • Pi+1 = (x1,−y1) • (x2,y2) =⇒ xP =
(x1 + x2) (1 + x1x2) + 2Ax1x2 + 2y1y2

(x2 − x1)2

That is, xP equals the expression (26) with y1 inverted. To clear the remaining occurrences of y1 and y2 from (26),
without introducing square roots, we multiply x2i+1 and xP (derivation from [6]):

xPx2i+1 (x2 − x1)
4 = ((x1 + x2) (1 + x1x2) + 2Ax1x2 + 2y1y2) ((x1 + x2) (1 + x1x2) + 2Ax1x2 − 2y1y2)

= ((x1 + x2) (1 + x1x2) + 2Ax1x2)2 − (2y1y2)2

= ((x1 + x2) (1 + x1x2) + 2Ax1x2)2 − 4 (x31 +Ax
2
1 + x1) (x

3
2 +Ax

2
2 + x2)

= (x1 + x2)
2 (1 + x1x2)2 + 4Ax1x2 (x1 + x2) (1 + x1x2) + 4A2x21x

2
2

− 4 (x31 + x1) (x
3
2 + x2) − 4Ax21 (x

3
2 + x2) − 4Ax22 (x

3
1 + x1) − 4A2x21x

2
2

= (x1 + x2)
2 (1 + x1x2)2 + 4Ax1x2 (x1 + x2 + x21x2 + x1x

2
2 )

− 4 (x31 + x1) (x
3
2 + x2) − 4Ax1x2 (x1x22 + x1 + x

2
1x2 + x2)

= (x1 + x2)
2 (1 + x1x2)2 − 4 (x31 + x1) (x

3
2 + x2)

= (x21 + 2x1x2 + x
2
2 ) (1 + 2x1x2 + x

2
1x

2
2 ) − 4 (x31x

3
2 + x1x

3
2 + x

3
1x2 + x1x2)

= x21 + 2x1x2 + x
2
2 + 2x

3
1x2 + 4x

2
1x

2
2 + 2x1x

3
2 + x

4
1x

2
2 + 2x

3
1x

3
2 + x

2
1x

4
2

− 4x31x
3
2 − 4x1x32 − 4x31x2 − 4x1x2

= x21 − 2x1x2 + x22 − 2x31x2 + 4x
2
1x

2
2 − 2x1x32 + x

4
1x

2
2 − 2x31x

3
2 + x

2
1x

4
2

= (x2 − x1)
2 − 2x1x2 (x2 − x1)

2 + x21x
2
2 (x2 − x1)

2

= (x2 − x1)
2 (x1x2 − 1)2
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Hence, under the assumption that xP , 0, we obtain

x2i+1 =
(x1x2 − 1)2

xP (x2 − x1)2
=

(
X1X2
Z1Z2

− 1
)2

XP
ZP

(
X2
Z2

−
X1
Z1

)2 where xP =
XP
ZP
, x1 =

X1
Z1
, x2 =

X2
Z2

=

ZP

(
X 2
1X

2
2

Z 2
1Z

2
2
−

2X1X2
Z1Z2

+ 1
)

XP

(
X 2
2

Z 2
2
−

2X1X2
Z1Z2

+
X 2
1

Z 2
1

) = ZP
Z 2
1Z

2
2

(
X 2
1X

2
2 − 2X1X2Z1Z2 + Z 2

1Z
2
2
)

XP
Z 2
1Z

2
2

(
X 2
2Z

2
1 − 2X1X2Z1Z2 + X 2

1Z
2
2

)
=

ZP (X1X2 − Z1Z2)2

XP (X1Z2 − X2Z1)2
(27)

In X25519, the base point P of the scalar multiplication xP = XP /ZP is given as an affine coordinate (i.e. not as a
fraction), and P , ∞ so we can assume ZP = 1 and XP = xP .

Thus, we can compute one step of the Montgomery ladder using the formulas from (25) and (27):

X2i = (X 2
i − Z 2

i )
2 X2i+1 = (XiXi+1 − ZiZi+1)

2 (28)

Z2i = 4XiZi (X 2
i +AXiZi + Z

2
i ) Z2i+1 = xP (XiZi+1 − Xi+1Zi )

2

These formulas never use the y coordinate, allowing us to operate on the x coordinate alone. They take as input one
bit of the scalar, the output from the previous step (Xi ,Zi ,Xi+1,Zi+1), as well as the base point x coordinate xP . If
the current bit is zero, they produce (X2i ,Z2i ,X2i+1,Z2i+1) as output, as shown in (23). If the current bit is one, they
produce (X2i+1,Z2i+1,X2i+2,Z2i+2) as output, where X2i+2 and Z2i+2 are computed by applying the doubling formulas
to (Xi+1,Zi+1) instead of (Xi ,Zi ).

One desirable property of these formulas is that each step of the ladder performs exactly the same arithmetic
operations, regardless of the input coordinates and the bits of the scalar, making the algorithm constant-time.

4.5 Handling the point at infinity

In the derivation of the above formulas we have so far considered only points that are solutions to the curve equation,
and ignored the point at infinity∞. It is time that we now address this issue.

The point at infinity cannot be represented in affine coordinates (x ,y) for any finite x , y. However, a convenient
feature of using projective coordinates is that we can represent the point at infinity as a fraction with a denominator of
zero: we define the x coordinate of∞ to be X

0 , i.e. Z = 0. We do not allow X and Z to both be zero. We can ignore the y
coordinate since our formulas do not use it.

Fortunately, our formulas (28) already handle the point at infinity correctly. We demonstrate this by showing that
they produce the required result if any of their inputs are ∞. Moreover, we show that provided each input is valid,
(X ,Z ) , (0, 0), then the outputs will also be different from (0, 0). The following assumes that xP , 0.

• Let Zi = 0 and Xi , 0, so Pi = ∞. Then Z2i = 0 and X2i = X 4
i , 0, so P2i = Pi • Pi = ∞ • ∞ = ∞ as required

by (15).
• Let Zi , 0. We consider two cases depending on the value of X 3

i +AX
2
i Zi + XiZ

2
i :

(1) Assume that X 3
i + AX

2
i Zi + XiZ

2
i = 0; hence Z2i = 0. To prove that X2i , 0, suppose to the contrary that

X2i = 0; then X 2
i = Z 2

i so Zi = ±Xi . Substituting into X 3
i +AX

2
i Zi + XiZ

2
i = 0 yields X 3

i ±AX 3
i + X

3
i = 0, so
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AX 3
i = ±2X 3

i . Since Zi , 0 we have Xi , 0, and hence A = ±2. However, this contradicts the assumption that
A2 , 4, stated at the beginning of Section 4. Therefore we have (X2i ,Z2i ) , (0, 0) as required.

(2) Assume that X 3
i + AX 2

i Zi + XiZ
2
i , 0, which implies Xi , 0. Since Zi , 0 we have Z2i , 0, so we have

(X2i ,Z2i ) , (0, 0) as required.
• Let Zi , 0, Zi+1 , 0, and Pi has the same x coordinate as Pi+1, i.e. Xi/Zi = Xi+1/Zi+1. This implies one of two
situations: either Pi = Pi+1 or P−1i = Pi+1. The former is ruled out by our assumption that P , ∞, so we have
P−1i = Pi+1 and require that Pi • Pi+1 = ∞ as per (16). Xi/Zi = Xi+1/Zi+1 implies that XiZi+1 = Xi+1Zi , so
Z2i+1 = 0 as required.
Next, we need to show thatX2i+1 , 0. Suppose to the contrary thatX2i+1 = 0, implying thatXiXi+1−ZiZi+1 = 0.
Taken together with the fact XiZi+1 = Xi+1Zi that we showed earlier, we have XiXi+1 − ZiZi+1 − XiZi+1 +

Xi+1Zi = (Xi + Zi ) (Xi+1 − Zi+1) = 0. We now have two cases:
(1) If Xi + Zi = 0 then Xi = −Zi so Xi/Zi = −1. Using assumption Xi/Zi = Xi+1/Zi+1 we have Xi+1/Zi+1 =

xi+1 = −1, so the affine x coordinate of Pi+1 equals −1.
(2) If Xi + Zi , 0 then Xi+1 = Zi+1 so Xi+1/Zi+1 = xi+1 = 1, so the affine x coordinate of Pi+1 equals 1.
In both cases, we use the point doubling expression (24) to calculate the x coordinate of Pi+1 • Pi+1, which is
(x4i+1−2x

2
i+1+1)/(4x

3
i+1+4Ax

2
i+1+4xi+1) = 0 for xi+1 = ±1. Note that Pi+1 = Pi •P , so P = P−1i •Pi+1 = Pi+1•Pi+1

due to our earlier observation that P−1i = Pi+1. Hence, the x coordinate of P equals zero, which contradicts our
earlier assumption that xP , 0. Thus we have X2i+1 , 0 as required.

• LetZi , 0,Zi+1 , 0, and Pi has a different x coordinate from Pi+1, i.e.Xi/Zi , Xi+1/Zi+1. ThenXiZi+1 , Xi+1Zi

so Z2i+1 , 0, so P2i+1 , ∞ as required.
• Let Zi = 0 and Xi , 0, so Pi = ∞. Since Pi+1 = Pi • P = ∞ • P = P and P , ∞ we have Zi+1 , 0 and
Xi+1/Zi+1 = xP , soXi+1 = xPZi+1. Hence,X2i+1 = (XiXi+1)2 = x2PX

2
i Z

2
i+1 and Z2i+1 = xP (XiZi+1)2 , 0. Thus,

X2i+1/Z2i+1 = x2PX
2
i Z

2
i+1/xPX

2
i Z

2
i+1 = xP so P2i+1 = Pi • Pi+1 = ∞ • P = P as required by (15).

• Let Zi+1 = 0 and Xi+1 , 0, so Pi+1 = ∞. Since Pi+1 = Pi • P and P , ∞ we have Pi = P−1 and Zi , 0. The
x coordinate of P−1 is the same as the x coordinate of P , namely xP , so Xi/Zi = xP , so Xi = xPZi . Hence,
similarly to the last case, we have X2i+1 = (XiXi+1)2 = x2PX

2
i+1Z

2
i and Z2i+1 = xP (−Xi+1Zi )2 , 0. Thus,

X2i+1/Z2i+1 = x2PX
2
i+1Z

2
i /xPX

2
i+1Z

2
i = xP , which is consistent with P2i+1 = Pi • Pi+1 = P−1 • ∞ = P−1 as

required by (15).

These bullet points cover all possible cases, demonstrating that the formulas (28) correctly handle all group elements,
including the point at infinity, without need for any special handling of edge cases. That is good news because the lack
of edge cases simplifies the implementation of the Montgomery ladder. Moreover, it is easier to make the algorithm
constant-time if every step of the ladder performs exactly the same arithmetic operations, independently of the values
of its inputs.

4.6 Optimising the Montgomery ladder step

The formulas (28) are nice and simple, but if we compare them to the implementation of the Montgomery ladder in
Listing 5, the two look quite different. The reason is that the code is based on formulas that have been further optimised.

We have already avoided using division in the Montgomery ladder step by moving to projective coordinates. To
further improve the performance, we will aim to reduce the number of finite field multiplications as far as possible,
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since they are generally the most expensive operations after division. We ignore additions and subtractions since they
are cheap by comparison.

If we break down the formulas (28) into one multiplication per equation, reusing common sub-expressions where
possible, we see that each step of the ladder requires 14 multiplications:

v1 = X 2
i v5 = Av3 v6 = XiXi+1 v10 = (v8 −v9)

2

v2 = Z 2
i X2i = (v1 −v2)

2 v7 = ZiZi+1 X2i+1 = (v6 −v7)
2

v3 = XiZi Z2i = v4 (v1 +v5 +v2) v8 = XiZi+1 Z2i+1 = xPv10

v4 = 4v3 v9 = Xi+1Zi

Some authors count multiplication by a constant (4 or A, in the case of v4 and v5) and squaring separately from
multiplication. However, our implementation uses the same multiplication function in all cases, so for simplicity we
count all types of multiplication equally.

In contrast to the above 14 multiplications, the implementation in Listing 5 uses only 10 multiplications per step. In
this section we focus on how to derive this algorithm from the formulas (28). The main ladder loop in lines 19 to 43 of
Listing 5 performs the following operations:

• bit = (clamped[i >> 3] >> (i & 7)) & 1 sets bit to be the ith bit from the little-endian byte array clamped
(which was previously set to be a copy of the parameter scalar, with a few tweaks explained later).

• swap25519(a, b, bit) examines bit, which is either 0 or 1. If bit == 0, the function does nothing. If bit == 1,
the function swaps the values in the two variables a and b. It does this in constant time, so the “do nothing” case
takes the same execution time as the swapping case.

• fadd, fsub, and fmul perform field element addition, subtraction, and multiplication, as defined in Section 3.

Each iteration of the loop takes as input the values in variables a, b, c, d, x, and clamped, as well as the constant
_121665 = {0xDB41,1}, which contains the number 0x1DB41 = 121665 (split into 16-bit chunks using the field_elem
representation). As output it writes new values to the variables a, b, c, and d. Moreover, it uses e and f as temporary
variables. In the code of Listing 5, variables are reused. For better readability, we give a new name to each variable
assignment in the following breakdown of the operations. The 18 arithmetic operations in the Montgomery ladder loop
(10 multiplications/squarings and 8 additions/subtractions) compute the following expressions:

fadd(e, a, c); v1 = a + c

fsub(a, a, c); v2 = a − c

fadd(c, b, d); v3 = b + d

fsub(b, b, d); v4 = b − d

fmul(d, e, e); v5 = v
2
1 = (a + c)2

fmul(f, a, a); v6 = v
2
2 = (a − c)2

fmul(a, c, a); v7 = v3 · v2 = (b + d) (a − c) = ab − bc + ad − cd

fmul(c, b, e); v8 = v4 · v1 = (b − d) (a + c) = ab + bc − ad − cd

fadd(e, a, c); v9 = v7 +v8 = 2 (ab − cd)

fsub(a, a, c); v10 = v7 −v8 = 2 (ad − bc)
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1 typedef long long i64;
2 typedef i64 field_elem[16];
3 static const field_elem _121665 = {0xDB41, 1};
4

5 void scalarmult(u8 *out, const u8 *scalar, const u8 *point)
6 {
7 u8 clamped[32];
8 i64 bit, i;
9 field_elem a, b, c, d, e, f, x;
10 for (i = 0; i < 32; ++i) clamped[i] = scalar[i];
11 clamped[0] &= 0xf8;
12 clamped[31] = (clamped[31] & 0x7f) | 0x40;
13 unpack25519(x, point);
14 for (i = 0; i < 16; ++i) {
15 b[i] = x[i];
16 d[i] = a[i] = c[i] = 0;
17 }
18 a[0] = d[0] = 1;
19 for (i = 254; i >= 0; --i) {
20 bit = (clamped[i >> 3] >> (i & 7)) & 1;
21 swap25519(a, b, bit);
22 swap25519(c, d, bit);
23 fadd(e, a, c);
24 fsub(a, a, c);
25 fadd(c, b, d);
26 fsub(b, b, d);
27 fmul(d, e, e);
28 fmul(f, a, a);
29 fmul(a, c, a);
30 fmul(c, b, e);
31 fadd(e, a, c);
32 fsub(a, a, c);
33 fmul(b, a, a);
34 fsub(c, d, f);
35 fmul(a, c, _121665);
36 fadd(a, a, d);
37 fmul(c, c, a);
38 fmul(a, d, f);
39 fmul(d, b, x);
40 fmul(b, e, e);
41 swap25519(a, b, bit);
42 swap25519(c, d, bit);
43 }
44 finverse(c, c);
45 fmul(a, a, c);
46 pack25519(out, a);
47 }

Listing 5. The Montgomery ladder for scalar multiplication.
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fmul(b, a, a); v11 = v
2
10 = 4 (ad − bc)2

fsub(c, d, f); v12 = v5 −v6 = (a + c)2 − (a − c)2 = a2 + 2ac + c2 − a2 + 2ac − c2 = 4ac

fmul(a, c, _121665); v13 = 121665 · v12 = 486660ac = (A − 2)ac

fadd(a, a, d); v14 = v13 +v5 = (A − 2)ac + a2 + 2ac + c2 = a2 +Aac + c2

fmul(c, c, a); v15 = v12 · v14 = 4ac (a2 +Aac + c2)

fmul(a, d, f); v16 = v5 · v6 = (a + c)2 (a − c)2 = (a2 + 2ac + c2) (a2 − 2ac + c2)

= a4 + 2a3c + a2c2 − 2a3c − 4a2c2 − 2ac3 + a2c2 + 2ac3 + c4

= a4 − 2a2c2 + c4 = (a2 − c2)2

fmul(d, b, x); v17 = v11 · x = 4x (ad − bc)2

fmul(b, e, e); v18 = v
2
9 = 4 (ab − cd)2

Let a = Xi , b = Xi+1, c = Zi , d = Zi+1, and x = xP at the start of a loop iteration. Further let bit be 0, so
the swap25519 operations have no effect. Then the expressions above match the equations (28) with A = 486662,
v16 = X2i , v18 = 4X2i+1, v15 = Z2i , and v17 = 4Z2i+1. The values (v16,v18,v15,v17) are written to variables a, b, c, and
d respectively, forming the input to the next iteration.

If bit is 1, the values in a and b are swapped before and after the computation of these expressions, and likewise the
values in c and d are swapped. Thus, the inputs to the computation are a = Xi+1, b = Xi , c = Zi+1, and d = Zi , and the
outputs are v16 = X2i+2, v18 = 4X2i+1, v15 = Z2i+2, and v17 = 4Z2i+1. After the final swaps, the variables a, b, c, and d
contain the values (v18,v16,v17,v15).

Thus, each loop iteration maps the input tuple (Xi ,Zi ,Xi+1,Zi+1) to either the output tuple (X2i ,Z2i , 4X2i+1, 4Z2i+1)
or the output tuple (4X2i+1, 4Z2i+1,X2i+2,Z2i+2) depending on the value of bit. This exactly matches the Montgomery
ladder step (23), except for the additional factor of 4 in X2i+1 and Z2i+1. However, since these two variables are just an
expanded representation of the fraction x2i+1 = X2i+1/Z2i+1, these two factors of 4 cancel out and have no effect on
the final result.

4.7 Clamping

We now turn to the first few lines of the scalarmult function.
The scalar parameter scalar is assumed to be a uniformly distributed random array of 32 bytes. First, scalar

is copied to clamped, and then five bits of clamped are set to constant values. clamped[0] &= 0xf8 sets the three
least significant bits to 0. clamped[31] = (clamped[31] & 0x7f) | 0x40 sets the most significant bit to 0, and the
second-most-significant bit to 1. This process is known as clamping [25].

Setting the three least significant bits to 0 ensures that clamped is a multiple of 8. By also setting the most sig-
nificant bit to 0, clamped becomes a number of the form hk , where h = 8 and k is a uniformly distributed ran-
dom number from the range [0, 2252 − 1]. As explained in Section 2.7, making clamped a multiple of the cofac-
tor h = 8 prevents small subgroup confinement attacks. The upper end of the range, 2252 − 1, is slightly below
q = 2252 + 27742317777372353535851937790883648493, the order of the base point/generator. Choosing k from the
range [0, 2252 − 1] is, in practice, equivalent to using the range [0, q − 1]: when using the latter range, the probability of
picking a value in the range [2252,q − 1] is approximately 10−38.
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The reason for setting the second-most-significant bit to 1 is unrelated to the cofactor: it is instead a precaution
to help ensure constant-time implementations. If this bit was zero, then an implementation of scalar multiplication
could save the first iteration of the Montgomery ladder without affecting the result; an adversary could then use
this timing variation to leak the most significant bit of the private key (and perhaps more). Setting this bit to one
forces the Montgomery ladder to always use the full 255 iterations. Our implementation would be constant-time even
without setting this bit to 1, but X25519 is defined to always have this bit set as a precaution to protect less careful
implementations.

After clamping, clamped is a number of the form 8k , where k ∈ [2251, 2252 − 1]. Thus, the distribution of group
elements produced by X25519 is non-uniform: only about half of the group elements in the subgroup of order q will
be generated. However, this non-uniformity does not significantly weaken the security of X25519 for Diffie-Hellman
purposes (apart from the loss of 1 bit of entropy).

A final reason for clamping: if k = 0 or k is a multiple of q, then we would expect Pk = ∞ for a base point P of
order q. Although the Montgomery ladder correctly handles the point at infinity as an intermediate value, as shown
in Section 4.5, scalarmult does not have the ability to return the point at infinity, since the function only returns an
x coordinate of a curve point. If there was no clamping and a scalar argument of 0 or q were passed in, scalarmult
would return zero, which the caller cannot distinguish from the curve point whose x coordinate is zero. Returning an
error in this case would make the function non-constant-time, if not done carefully.

By forcing k to be within 0 < k < q, clamping avoids ever needing to return∞ (except in the case where an adversary
provides a group element with small order, as discussed in Section 2.7, in which case it’s fine to return zero). In the
course of Diffie-Hellman with a base point of prime order q, ∞ will never be generated, since (P j )k = P jk = ∞ only if
jk is a multiple of q, which is only possible if j or k is a multiple of q.

4.8 Finishing off scalar multiplication

At the start of scalarmult, the x coordinate of the base point is passed in as parameter point. On line 13 this byte
array is translated into field_elem representation and copied to x. We then initialise a = 1, b = x, c = 0, and d = 1.
This gives us the starting state of the Montgomery ladder as defined in equation (23): L(P , 0) = (ac ,

b
d ) = (∞, P).

After the Montgomery ladder is finished, a and c contain the numerator and denominator of the x coordinate of curve
point P clamped . In order to return this value, we must first convert projective coordinates back into affine coordinates by
dividing the two, as discussed in Section 3.3: we use the finverse function to replace c with its multiplicative inverse,
and then multiply a and c using fmul.

Finally, we use the pack25519 function, described in Section 3.4, to convert the field_elem representation of the
result back into an array of 32 bytes, and we write the result to the output variable out. This value can now be used as
a public key (if point was the base point), or as shared secret to initialise a symmetric encryption scheme (if point was
a public key or the group element received from the other user), as shown in Section 4.3.

5 CONCLUSIONS

This paper has shown how to derive the X25519 implementation in TweetNaCl, line by line, from first principles.
Starting by assuming only minimal mathematical background knowledge we have explored how modern, constant-time
cryptography is implemented, and justified the correctness of this implementation. Although we have only studied one
particular implementation, other implementations such as libsodium share many principles with the code studied here;
after reading this paper, you will find it much easier to figure out what other implementations are doing.
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For future work it would be interesting to expand this discussion to other common algorithms in elliptic curve
cryptography, such as the Ed25519 signature scheme, and other curves such as NIST curves and the secp256k1 curve
used by Bitcoin. The Ristretto255 prime-order group [16], which eliminates the cofactor of Curve25519, would also be
interesting to discuss. I believe that by carefully studying existing implementations of cryptographic algorithms, and
by analysing in detail what makes them correct, we can gain a deeper understanding of cryptography in general and
improve the quality of implementations of cryptographic protocols.
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A DIFFERENCES TO THE ORIGINAL TWEETNACL

The code listings in this paper are based on version 20140427 of Bernstein et al.’s TweetNaCl implementation [10].
I have made a number of changes in the interest of readability; these changes do not affect the functionality or the
constant-time property of the code. This appendix details those changes.

• All functions that are not part of the X25519 implementation are omitted.
• All uses of the FOR and sv macros are replaced with their definitions.
• The gf type definition is renamed to field_elem.
• I added whitespace around operators to improve readability.
• In the unpack25519 function the parameters o and n are renamed to out and in, respectively.
• The car25519 function is renamed to carry25519, its parameter o is renamed to elem, and its local variable c is
renamed to carry. Its loop body originally read:

o[i]+=(1LL<<16);

c=o[i]>>16;

o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);

o[i]-=c<<16;

The addition of 216 to o[i] and the subsequent subtraction of 1 from o[i+1] cancel out and serve no apparent
purpose, so I removed them. I hypothesise that perhaps the addition of 216 was supposed to ensure that o[i]
is non-negative, but this is not true because it is possible to have o[i] < −216, and it is not necessary because
the code handles negative values correctly anyway. Dan Bernstein and Tanja Lange did not respond to my
emails requesting a clarification of these lines of code. My simplified version of the loop body also replaces the
hard-to-read “multiply-by-boolean” idiom with a simple if statement:

carry = elem[i] >> 16;

elem[i] -= carry << 16;

if (i < 15) elem[i + 1] += carry; else elem[0] += 38 * carry;

It is safe to perform a conditional branch on the value of i since it is not a secret (it always ranges from 0 to 15).
• The A function is renamed to fadd, and its parameter o is renamed to out.
• The Z function is renamed to fsub, and its parameter o is renamed to out.
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• The M function is renamed to fmul, its parameter o is renamed to out, and its local variable t is renamed to
product.

• I removed the S (square) function, which only called M anyway, and replaced it with calls to fmul.
• The inv25519 function is renamed to finverse, its parameters o and i are renamed to out and in respectively,
and its local variable a is renamed to i (since it is used as loop counter).

• The sel25519 function is renamed to swap25519, and its parameter b is renamed to bit.
• In the pack25519 function the parameters o and n are renamed to out and in respectively, and the local variable
b is renamed to carry.

• The crypto_scalarmult_base function is renamed to scalarmult_base, and its parameters q and n are renamed
to out and scalar, respectively.

• The crypto_box_keypair function is renamed to generate_keypair, and its parameters y and x are renamed
to pk and sk, respectively.

• The x25519 function is added as an alias of scalarmult.
• The crypto_scalarmult function is renamed to scalarmult, its parameters q, n and p are renamed to out,
scalar and point, respectively, and its local variables z and r are renamed to clamped and bit, respectively. The
first loop’s upper bound is changed from 31 to 32 and the following two lines (which perform the clamping) are
slightly refactored to make the code clearer without changing its behaviour. I have changed the variable x, which
was originally an 80-element array of i64, to be of type field_elem (i.e. a 16-element array of i64) instead.
The first 16 elements of x have the same function as they did originally (namely, the internal representation
of the x coordinate of the input point). The original code, after completing the Montgomery ladder, copies the
value of local variable a to indexes 16 . . . 31 of x, c to indexes 32 . . . 47, b to indexes 48 . . . 63, and d to indexes
64 . . . 79, and then performs the last three function calls (the inversion of c, the multiplication of a and c, and
the pack25519 of the result) on offsets of the variable x. The purpose of copying a, b, c and d to x is unclear,
since nothing ever uses the fact that these values have been copied into one contiguous array. Perhaps it is a
remnant of earlier debugging logic? Dan Bernstein and Tanja Lange did not respond to my emails requesting a
clarification of why this is happening. I therefore removed the copying into x and changed the last three function
calls of scalarmult to operate directly on a and c instead.

I have run the modified code with the test vectors provided as part of the NaCl package [7], and checked that they
compute the same result.
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