Concepts in Programming Languages
Additional non-examinable notes

Alan Mycroft

Computer Laboratory
University of Cambridge

CST Paper 7: 2021-2022 (Easter Term)

www.cl.cam.ac.uk/teaching/2122/ConceptsPL/

1/265

www.cl.cam.ac.uk/teaching/2122/ConceptsPL/

C++ lambdas: variable capture (value or reference)

// LLVM use: c++ —-std=c++14 to get lambda support

#include <iostream>
int main ()

{

}

int a=0,b=0;

// C++ use of ‘[]’ (lambda)needs to know how
// free variables are bound:

auto f = [a,&b] (int x) —->int { return x+a+b;};
at++; b+=10;

std::cout << "f(42)=" << f(42) << std::endl;
// gives "f (42)=52" -- think why...

return 0;

Notes:

» auto f = [](int x) ->int { return x+a+b;}; gives

“error: variable 'a’ cannot be implicitly captured in a
lambda with no capture-default specified.”

» The type of fis a C++ ‘functor’, but that’s another story.

999 /999

— Topic Xl

Concepts growing in importance in 2022

» Type-managed storage [example: Rust]

» Resumable exceptions/algebraic effect handlers
[examples: Eff and Koka]

244/ 265

Approaches to storage allocation

Manual, e.g. C/C++
Danger: user-incompetence (use after free)

Automatic, e.g. Java, Python
Danger: unexpected delays (GC in a flight controller???)

Ban it, MISRA (motor industry embedded coding standard)
Rule 18-4-1 “Dynamic heap memory allocation shall not be
used.”

Type-managed — Rust

Upside: type system ensures memory- and thread-safety
and automatically adds calls to deallocate storage. No GC.
Downside: search online for “Rust hard to learn” — but this
is perhaps an advantage for smart programmers!

Fact: Rust is ranked 19 in the 2022 Redmonk language
rankings — so there are plenty of smart programmers and
interesting companies about!

245/ 265

Storage management is more than allocation and
deallocation

Regardless of manual or automatic deallocation there’s a wider
issue: ownership (related to the sweet spots on slides 222)

> If | pass a mutable object to be incorporated into a global
datastructure, then logically the call transfers ownership
from the caller to the callee, so | should never refer to it
again — just like free?

» When an API call returns me a record (which | plan to
mutate) is the caller or returner (callee) responsible for
copying it?

» Can we check this sort of property at compile time? Types?

Reasoning about ownership is more-general than reasoning
about manual deallocation (freeing an object is just like passing
ownership to the pool of free memory).

246 / 265

Type Systems — weakness

In traditional type systems I' - e : t, variables have the same
type throughout the scope that introduce them.

This means that the three errors in the following program can’t
be detected by the type system:

{ char *x = malloc(10); // x has type char =

foo (x); // x still has type char =«
free(x); // x has type char = (but should not??)
foo(x); // a use—after—-free disaster...
x = malloc(20); // type char » is right again for x
x = malloc(30); // an unfaulted memory leak
} // and another one (x gone out-of-scope)

Replacing free (x) with AddToGlobalDataStructure (x)
shows classical types are equally weak at controlling sharing of
data in languages like Java (details on next slide).

247/ 265

Type Systems — weakness (2)

{ char *x = malloc(sizeof (SomeRecord));
x—>fieldl = 4; x->field2 = 5;
AddToGlobalDataStructure (x) ;
// x = malloc (sizeof (SomeRecord)) ;
x->fieldl = 8; x->field2 = 9;
AddToGlobalDataStructure (x) ;
// free(x);

}

Is there a bug in this code? [Almost certainly.] But what is it?

» AddToGlobalDataStructure wants to take ownership of x,
so the problem is due to commenting out line 4?

» AddToGlobalDataStructure merely reads the fields of x, so
the problem is due to commenting out line 77

» How can we document this formally? [Answer: “Use Rust”]

248/ 265

Solutions

» Code it all in the type system: linear type, substructural
types, separation logic.

» Treat reference types as having two attributes: type and
ownership.

» Just different phrasing, Rust follows the latter.
» Rust performs type-checking then runs the borrow checker.

Borrow? Well, if we have owners we might also lend and
borrow, right?

[Thanks to Brendan Coll (CST Part 1l 2021/22) for his
comments on these notes on Rust.]

249 /265

Rust by example

(from the manual)
» Rust types look a bit like Java types with C-like qualifiers,
but be careful.

» Box<i32> is like ref in ML or a boxed int in Java:

fn create_box () {
let _boxl = Box::new(3132); // ref to heap int
// ' _boxl’ is destroyed (’dropped’) and its memory freed
// Resembles C++ RAII/destructors.
}
// destroy_box takes ownership of an item of
// heap-allocated memory (default call-by-value)
fn destroy_box(c: Box<i32>) {
println! ("Destroying a box that contains {}", c);
// 'c’ goes out of scope here and is deallocated.

» Passing an object by value passes its ownership, and
owners can destroy things (think cars etc.)
But but but ...

250/ 265

Copying and passing by value as similar

Rust calls 1et b=a below (and passing by value) a move.

fn main () {
let x = 5u32; // stack allocated int
let v = x; // copy X to vy

println! ("x is {}, and y is {}l", x, vy); // use both

// BUT:
let a = Box::new(5132); // stack ref to heap-allocated int
println! ("a contains: {}", a); // (borrows the ref)

let b = a; // copy a to b —— transfers ownership
println! ("a contains: {}", a); // error, ’"a’ not owner

destroy_box (b) ;
println! ("b contains: {}", b); // error, b’ not owner

}

Can we really write programs?

251/265

Mutability

Mutability of data can be changed when ownership is
transferred (think why). Note » is not quite like C:

fn main () {
let immutable_box = Box::new(5u32);
println! ("immutable_box contains {}", immutable_box);
ximmutable _box = 4; // error

// *Movex the box, changing the ownership (and mutability)
let mut mutable_box = immutable_box;

println! ("mutable_box contains {}", mutable_box); // 5

*mutable_box = 4;
println! ("mutable_box now contains {}", mutable_box); // 4

252 /265

Borrowing

fn borrow_box (x: &Box<i32>) {
println! ("A borrowed box (see below): {}={}" &x, x); }

fn borrow_twice(x: &Box<i32>, y: &Box<i32>) {
println! ("Borrow two boxes: {}, {}", x, v); }

fn borrow_and_eat (x: &Box<i32>, y: Box<i32>) {
println! ("Borrow box {}, and destroy box {}", x, v); }

fn main () {
let b = Box::new(5132);
let ¢ = Box::new(6i32);
borrow_box (&b); // 5=5

borrow_twice (&b, &c); // 5,6

borrow_twice (&b, &b); // 5,5

borrow_and_eat (&b,c); // 5,6

borrow_and_eat (&b,b); // error (borrow checker)

}

Subtlety: printin! is @ macro which implicitly inserts « before
borrowed arguments, see borrow_box above using x twice.
253 /265

Borrowing — more details
Can borrow (smut) a mutable object once, or an immutable
object many times (cf. Multiple Reader Single Writer
(MRSW) in concurrent systems). Good for concurrent
access, and also for the AddToGlobalDataStructure
example earlier.
Rust’s borrowing discipline prevents unsafe uses of
aliasing.
Can borrow parts of an object
All borrowing must be completed before ownership can be
transferred
Gives memory safety — no referencing freed memory, and
pretty well avoids memory leaks. [Subtleties: you can
break memory safety by using unsafe to cheat the type
system; you can leak memory if you really try but not using
examples we have seen.]
Rust advocates claim that these rules are an acceptable
the sweet spot to ensure memory safety.

254/ 265

Resumable exceptions
Normally called (Algebraic) Effect Handlers

Start by revisiting exceptions (SML, OCaml, Java are all
semantically similar):

» exception Foo; declare exception Foo
> raise e; raise an exception
> try e catch Foo => e’; handle exception Foo

Exceptions behave syntactically like constructors (for type exn
in SML/OCaml and subclasses of Throwable in Java), and
hence may take parameters; the catch part of try is like
pattern matching.

[Thanks to Dan Gooding (CST Part 11 2021/22) for examples
and general discussion; see also his Part Il project on Koka.]

255/ 265

Exceptions: dynamic or static scoping?

> A mixture!

» Declaring an exception is statically scoped
exception Foo;

» Handling an exception is like dynamic scoping

exception Foo;

fun £ () :int = raise Foo;

fun g() = (try £() catch Foo => 1) + £();

fun main() = (try g() catch Foo => 42)
gives 42.

Subtlety: OCaml doesn’t syntactically allow local exception

declarations, but wrapping the exception in a module
circumvents this.

256 / 265

Resumable exceptions

Resumable exceptions are generally called effects.
Why? Can see calls to side-effecting operations like 10 as
having exceptional behaviour handled by OS (a system
call), and then your program is resumed.

In general effects have result types to allow
resume-with-a-value (think read ()).

We now look at Koka programs using resumable
exceptions to model yield, dynamic scoping and Prolog
non-determinism.

We use resume to return a value from an effect

Koka subtlety: effects can be declared as ct1 or fun.
Declaring an effect as fun is syntactic sugar — such code
desugars to use ct1 and inserts resume automatically —
but also allows the compiler to generate more efficient
code.

257/ 265

A simple Koka program

// A generator effect with one ’fun’ operation
effect yieldeff
fun yield(x : int) : ()

// Traverse a list and yield the elements

fun traverse(xs : list<int>) : yieldeff ()
match xs
Cons (x,xx) —> vyield(x); traverse (xx)
Nil -> ()
fun main() : console ()

with fun yield(i : int)
println("yielded " ++ i.show)
[1,2,3].traverse

[Modified from https://koka-lang.github.io/koka/doc/index.html]
Gives "yielded 1" "yielded 2" "yielded 3"

258 / 265

Using ct1 exceptions

An optionally resumable (ct 1) effect

effect yieldeff
ctl yield(x : int) : ()

// Traverse a list and yield the elements
fun traverse(xs : list<int>) : yieldeff ()
match xs
Cons (x,xx) —-> vyield(x); traverse (xx)
Nil > ()

fun main() : console ()
with ctl yield(i : int)
if (i>2) then () // don’t resume

else // unusual syntax to reflect fun desugaring:

resume (println("yielded " ++ i.show))
[1,2,3,4] .traverse

Gives "yielded 1" "yielded 2"

259 /265

Effect names vs. effect-operation names
Minor naming subtlety

Why did | distinguish yield from yieldeff?

Pedagogy! Just like avoiding 1ist : int 1ist when
learning ML

Experts tend not to bother when an effect only has a single
effect operation (like yield)
But necessary for effects with multiple operations:

effect state<a> {
ctl get () : a
ctl set(s : a) : ()
}

260 /265

Dynamic scoping — using ct1 effects

// Simulation of dynamic scoping
effect dyneff
ctl dynvar (s : string) : int

fun f1() : dyneff int
dynvar ("x") + dynvar("y") + dynvar("z");

fun f2(x : int) : dyneff int
with ctl dynvar(s)
if s=="x" then resume(x) // x visible as dynamic
else if s=="z" then resume(20) // bind z to 20
else resume (dynvar(s)); // look in outer scope
£1()

fun foo() : dyneff int
dynvar ("x") + £2(500) + 1

fun main() : console ()
with ctl dynvar(s)
resume (1000) // unbound vars give 1000
println("foo gave " ++ foo().show) // 2521

261/265

Dynamic scoping — using run effects

// Simulation of dynamic scoping using fun effects

effect dyneff
fun dynvar (s : string) : int

fun f1() : dyneff int
dynvar ("x") + dynvar ("y") + dynvar("z");

fun f2(x : int) : dyneff int
with fun dynvar(s)
if s=="x" then x else if s=="z" then 20
else dynvar(s); // look in outer scope
£1()

fun foo() : dyneff int
dynvar ("x") + £2(500) + 1

fun main() : console ()
with fun dynvar(s)
1000 // unbound vars give 1000

println ("foo gave " ++ foo().show) // 2521

262 /265

Prolog style backtracking as effects

fun myor (a: bool, b: bool) a&&b; // define non-short-circuit OR

effect choose
ctl flip() : bool // new: handlers resume flip() more than once

fun mystery () : <choose,console> bool // a function to test
val x = flip/()
val y = flip()
val z = flip/()

val myst = !x && y && !z
// this debug line causes the uses of ’console’
println(x.show ++ y.show ++ z.show ++ "->" ++ myst.show)
myst
fun satisfiable(p : () —> <choose,console> bool) : <console> bool

// Try all inputs to see if p satisfiable;
// the order is: xyz = 000, 001, 010, 011, 100,
with ctl flip()
// for each input variable, try both values:
myor (resume (False), resume (True)) // short-circuit OR differs(!)

p()

fun main ()
satisfiable (mystery) .println // True

263 /265

The bigger picture
» We've focused on effects including exceptions (never
resume), fun effects (resume once), and Prolog-style
multiple resumptions.
» Effects are a structured use of continuations.
» Koka has a type system which models possible effects
(Haskell notion of ‘pure’ includes effects {div, exn}):

fun sqr: (int) -> total int // total: mathematical total function
fun divide : (int,int) -> exn int // exn: may raise an exception (partial)
fun turing : (tape) -> div int // div: may not terminate (diverge)
fun print : (string) -> console () // console: may write to the console
funrand: () -> ndet int // ndet: non-deterministic

» Various other goodies: type and effect polymorphism; and
Perceus compiler store re-use optimiser:

C, C++, Rust Koka OCaml, C#, Java, ..

Manual Perceus

v

performance Tx ~2X

264 / 265

Places to look for more detail

» https://www.rust—-lang.org/
» https://www.eff-lang.org/
» https://koka-lang.github.io/

Such languages (or subsets of their features) can make
interesting Part Il projects.

265/ 265

