
Concepts in Programming Languages
Additional non-examinable notes

Alan Mycroft

Computer Laboratory
University of Cambridge

CST Paper 7: 2021–2022 (Easter Term)

www.cl.cam.ac.uk/teaching/2122/ConceptsPL/

1 / 265

www.cl.cam.ac.uk/teaching/2122/ConceptsPL/

C++ lambdas: variable capture (value or reference)
// LLVM use: c++ --std=c++14 to get lambda support

#include <iostream>
int main()
{ int a=0,b=0;

// C++ use of ‘[]’ (lambda)needs to know how
// free variables are bound:
auto f = [a,&b](int x) ->int { return x+a+b;};
a++; b+=10;
std::cout << "f(42)=" << f(42) << std::endl;
// gives "f(42)=52" -- think why...
return 0;

}

Notes:
I auto f = [](int x) ->int { return x+a+b;}; gives

“error: variable ’a’ cannot be implicitly captured in a
lambda with no capture-default specified.”

I The type of f is a C++ ‘functor’, but that’s another story.
999 / 999

˜ Topic XII ˜
Concepts growing in importance in 2022

I Type-managed storage [example: Rust]
I Resumable exceptions/algebraic effect handlers

[examples: Eff and Koka]

244 / 265

Approaches to storage allocation

I Manual, e.g. C/C++
Danger: user-incompetence (use after free)

I Automatic, e.g. Java, Python
Danger: unexpected delays (GC in a flight controller???)

I Ban it, MISRA (motor industry embedded coding standard)
Rule 18-4-1 “Dynamic heap memory allocation shall not be
used.”

I Type-managed – Rust
Upside: type system ensures memory- and thread-safety
and automatically adds calls to deallocate storage. No GC.
Downside: search online for “Rust hard to learn” – but this
is perhaps an advantage for smart programmers!
Fact: Rust is ranked 19 in the 2022 Redmonk language
rankings – so there are plenty of smart programmers and
interesting companies about!

245 / 265

Storage management is more than allocation and
deallocation

Regardless of manual or automatic deallocation there’s a wider
issue: ownership (related to the sweet spots on slides 222)
I If I pass a mutable object to be incorporated into a global

datastructure, then logically the call transfers ownership
from the caller to the callee, so I should never refer to it
again – just like free?

I When an API call returns me a record (which I plan to
mutate) is the caller or returner (callee) responsible for
copying it?

I Can we check this sort of property at compile time? Types?
Reasoning about ownership is more-general than reasoning
about manual deallocation (freeing an object is just like passing
ownership to the pool of free memory).

246 / 265

Type Systems – weakness

In traditional type systems Γ ` e : t , variables have the same
type throughout the scope that introduce them.

This means that the three errors in the following program can’t
be detected by the type system:

{ char *x = malloc(10); // x has type char *
foo(x); // x still has type char *
free(x); // x has type char * (but should not??)
foo(x); // a use-after-free disaster...
x = malloc(20); // type char * is right again for x
x = malloc(30); // an unfaulted memory leak

} // and another one (x gone out-of-scope)

Replacing free(x) with AddToGlobalDataStructure(x)

shows classical types are equally weak at controlling sharing of
data in languages like Java (details on next slide).

247 / 265

Type Systems – weakness (2)

{ char *x = malloc(sizeof(SomeRecord));
x->field1 = 4; x->field2 = 5;
AddToGlobalDataStructure(x);
// x = malloc(sizeof(SomeRecord));
x->field1 = 8; x->field2 = 9;
AddToGlobalDataStructure(x);
// free(x);

}

Is there a bug in this code? [Almost certainly.] But what is it?
I AddToGlobalDataStructure wants to take ownership of x,

so the problem is due to commenting out line 4?
I AddToGlobalDataStructure merely reads the fields of x, so

the problem is due to commenting out line 7?
I How can we document this formally? [Answer: “Use Rust”]

248 / 265

Solutions

I Code it all in the type system: linear type, substructural
types, separation logic.

I Treat reference types as having two attributes: type and
ownership.

I Just different phrasing, Rust follows the latter.
I Rust performs type-checking then runs the borrow checker.

Borrow? Well, if we have owners we might also lend and
borrow, right?

[Thanks to Brendan Coll (CST Part II 2021/22) for his
comments on these notes on Rust.]

249 / 265

Rust by example
(from the manual)

I Rust types look a bit like Java types with C-like qualifiers,
but be careful.

I Box<i32> is like ref in ML or a boxed int in Java:

fn create_box() {
let _box1 = Box::new(3i32); // ref to heap int
// ’_box1’ is destroyed (’dropped’) and its memory freed
// Resembles C++ RAII/destructors.

}
// destroy_box takes ownership of an item of
// heap-allocated memory (default call-by-value)
fn destroy_box(c: Box<i32>) {
println!("Destroying a box that contains {}", c);
// ’c’ goes out of scope here and is deallocated.

}

I Passing an object by value passes its ownership, and
owners can destroy things (think cars etc.)

But but but . . .
250 / 265

Copying and passing by value as similar

Rust calls let b=a below (and passing by value) a move.

fn main() {
let x = 5u32; // stack allocated int
let y = x; // copy x to y
println!("x is {}, and y is {}", x, y); // use both

// BUT:
let a = Box::new(5i32); // stack ref to heap-allocated int
println!("a contains: {}", a); // (borrows the ref)

let b = a; // copy a to b -- transfers ownership
println!("a contains: {}", a); // error, ’a’ not owner

destroy_box(b);
println!("b contains: {}", b); // error, ’b’ not owner

}

Can we really write programs?

251 / 265

Mutability

Mutability of data can be changed when ownership is
transferred (think why). Note * is not quite like C:

fn main() {
let immutable_box = Box::new(5u32);
println!("immutable_box contains {}", immutable_box);

*immutable_box = 4; // error

// *Move* the box, changing the ownership (and mutability)
let mut mutable_box = immutable_box;

println!("mutable_box contains {}", mutable_box); // 5

*mutable_box = 4;
println!("mutable_box now contains {}", mutable_box); // 4

}

252 / 265

Borrowing
fn borrow_box(x: &Box<i32>) {

println!("A borrowed box (see below): {}={}" &x, x); }

fn borrow_twice(x: &Box<i32>, y: &Box<i32>) {
println!("Borrow two boxes: {}, {}", x, y); }

fn borrow_and_eat(x: &Box<i32>, y: Box<i32>) {
println!("Borrow box {}, and destroy box {}", x, y); }

fn main() {
let b = Box::new(5i32);
let c = Box::new(6i32);
borrow_box(&b); // 5=5
borrow_twice(&b,&c); // 5,6
borrow_twice(&b,&b); // 5,5
borrow_and_eat(&b,c); // 5,6
borrow_and_eat(&b,b); // error (borrow checker)

}

Subtlety: println! is a macro which implicitly inserts & before
borrowed arguments, see borrow_box above using x twice.

253 / 265

Borrowing – more details
I Can borrow (&mut) a mutable object once, or an immutable

object many times (cf. Multiple Reader Single Writer
(MRSW) in concurrent systems). Good for concurrent
access, and also for the AddToGlobalDataStructure
example earlier.

I Rust’s borrowing discipline prevents unsafe uses of
aliasing.

I Can borrow parts of an object
I All borrowing must be completed before ownership can be

transferred
I Gives memory safety – no referencing freed memory, and

pretty well avoids memory leaks. [Subtleties: you can
break memory safety by using unsafe to cheat the type
system; you can leak memory if you really try but not using
examples we have seen.]

I Rust advocates claim that these rules are an acceptable
the sweet spot to ensure memory safety.

254 / 265

Resumable exceptions
Normally called (Algebraic) Effect Handlers

Start by revisiting exceptions (SML, OCaml, Java are all
semantically similar):
I exception Foo; declare exception Foo

I raise e; raise an exception
I try e catch Foo => e’; handle exception Foo

Exceptions behave syntactically like constructors (for type exn

in SML/OCaml and subclasses of Throwable in Java), and
hence may take parameters; the catch part of try is like
pattern matching.

[Thanks to Dan Gooding (CST Part II 2021/22) for examples
and general discussion; see also his Part II project on Koka.]

255 / 265

Exceptions: dynamic or static scoping?

I A mixture!
I Declaring an exception is statically scoped

exception Foo;

I Handling an exception is like dynamic scoping
exception Foo;
fun f():int = raise Foo;
fun g() = (try f() catch Foo => 1) + f();
fun main() = (try g() catch Foo => 42)

gives 42.

Subtlety: OCaml doesn’t syntactically allow local exception
declarations, but wrapping the exception in a module

circumvents this.

256 / 265

Resumable exceptions

I Resumable exceptions are generally called effects.
Why? Can see calls to side-effecting operations like IO as
having exceptional behaviour handled by OS (a system
call), and then your program is resumed.

I In general effects have result types to allow
resume-with-a-value (think read()).

I We now look at Koka programs using resumable
exceptions to model yield, dynamic scoping and Prolog
non-determinism.

I We use resume to return a value from an effect
I Koka subtlety: effects can be declared as ctl or fun.

Declaring an effect as fun is syntactic sugar – such code
desugars to use ctl and inserts resume automatically –
but also allows the compiler to generate more efficient
code.

257 / 265

A simple Koka program

// A generator effect with one ’fun’ operation
effect yieldeff

fun yield(x : int) : ()

// Traverse a list and yield the elements
fun traverse(xs : list<int>) : yieldeff ()

match xs
Cons(x,xx) -> yield(x); traverse(xx)
Nil -> ()

fun main() : console ()
with fun yield(i : int)
println("yielded " ++ i.show)

[1,2,3].traverse

[Modified from https://koka-lang.github.io/koka/doc/index.html]
Gives "yielded 1" "yielded 2" "yielded 3"

258 / 265

Using ctl exceptions

An optionally resumable (ctl) effect

effect yieldeff
ctl yield(x : int) : ()

// Traverse a list and yield the elements
fun traverse(xs : list<int>) : yieldeff ()
match xs

Cons(x,xx) -> yield(x); traverse(xx)
Nil -> ()

fun main() : console ()
with ctl yield(i : int)

if (i>2) then () // don’t resume
else // unusual syntax to reflect fun desugaring:
resume(println("yielded " ++ i.show))

[1,2,3,4].traverse

Gives "yielded 1" "yielded 2"

259 / 265

Effect names vs. effect-operation names
Minor naming subtlety

I Why did I distinguish yield from yieldeff?
I Pedagogy! Just like avoiding list : int list when

learning ML
I Experts tend not to bother when an effect only has a single

effect operation (like yield)
I But necessary for effects with multiple operations:

effect state<a> {
ctl get() : a
ctl set(s : a) : ()

}

260 / 265

Dynamic scoping – using ctl effects
// Simulation of dynamic scoping
effect dyneff

ctl dynvar (s : string) : int

fun f1() : dyneff int
dynvar("x") + dynvar("y") + dynvar("z");

fun f2(x : int) : dyneff int
with ctl dynvar(s)

if s=="x" then resume(x) // x visible as dynamic
else if s=="z" then resume(20) // bind z to 20
else resume(dynvar(s)); // look in outer scope

f1()

fun foo() : dyneff int
dynvar("x") + f2(500) + 1

fun main() : console ()
with ctl dynvar(s)

resume(1000) // unbound vars give 1000
println("foo gave " ++ foo().show) // 2521

261 / 265

Dynamic scoping – using fun effects
// Simulation of dynamic scoping using fun effects
effect dyneff

fun dynvar (s : string) : int

fun f1() : dyneff int
dynvar("x") + dynvar("y") + dynvar("z");

fun f2(x : int) : dyneff int
with fun dynvar(s)

if s=="x" then x else if s=="z" then 20
else dynvar(s); // look in outer scope

f1()

fun foo() : dyneff int
dynvar("x") + f2(500) + 1

fun main() : console ()
with fun dynvar(s)

1000 // unbound vars give 1000
println("foo gave " ++ foo().show) // 2521

262 / 265

Prolog style backtracking as effects
fun myor(a: bool, b: bool) a&&b; // define non-short-circuit OR

effect choose
ctl flip() : bool // new: handlers resume flip() more than once

fun mystery() : <choose,console> bool // a function to test
val x = flip()
val y = flip()
val z = flip()
val myst = !x && y && !z
// this debug line causes the uses of ’console’
println(x.show ++ y.show ++ z.show ++ "->" ++ myst.show)
myst

fun satisfiable(p : () -> <choose,console> bool) : <console> bool
// Try all inputs to see if p satisfiable;
// the order is: xyz = 000, 001, 010, 011, 100, ...
with ctl flip()
// for each input variable, try both values:
myor(resume(False), resume(True)) // short-circuit OR differs(!)

p()

fun main()
satisfiable(mystery).println // True

263 / 265

The bigger picture
I We’ve focused on effects including exceptions (never

resume), fun effects (resume once), and Prolog-style
multiple resumptions.

I Effects are a structured use of continuations.
I Koka has a type system which models possible effects

(Haskell notion of ‘pure’ includes effects {div,exn}):
fun sqr : (int) -> total int // total: mathematical total function

fun divide : (int,int) -> exn int // exn: may raise an exception (partial)

fun turing : (tape) -> div int // div: may not terminate (diverge)

fun print : (string) -> console () // console: may write to the console

fun rand : () -> ndet int // ndet: non-deterministic

I Various other goodies: type and effect polymorphism; and
Perceus compiler store re-use optimiser:

264 / 265

Places to look for more detail

I https://www.rust-lang.org/

I https://www.eff-lang.org/

I https://koka-lang.github.io/

Such languages (or subsets of their features) can make
interesting Part II projects.

265 / 265

