Complexity Theory

Lecture 8

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2122/Complexity

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?
- Can you use a SAT-solver?

Validity

We define VAL—the set of valid Boolean expressions-to be those Boolean expressions for which every assignment of truth values to variables yields an expression equivalent to true.

$$
\phi \in \mathrm{VAL} \quad \Leftrightarrow \quad \neg \phi \notin \mathrm{SAT}
$$

By an exhaustive search algorithm similar to the one for SAT, VAL is in $\operatorname{TIME}\left(n^{2} 2^{n}\right)$.

Is VAL $\in N P$?

Validity

$\overline{\mathrm{VAL}}=\{\phi \mid \phi \notin \mathrm{VAL}\}$-the complement of VAL is in NP.
Guess a falsifying truth assignment and verify it.
Such an algorithm does not work for VAL.
In this case, we have to determine whether every truth assignment results in true-a requirement that does not sit as well with the definition of acceptance by a nondeterministic machine.

Complementation

If we interchange accepting and rejecting states in a deterministic machine that decides the language L, we get one that accepts \bar{L}.

$$
\text { If a language } L \in P \text {, then also } \bar{L} \in P \text {. }
$$

Complexity classes defined in terms of nondeterministic machine models are not necessarily closed under complementation of languages.

Define, co-NP - the languages whose complements are in NP.

Succinct Certificates

The complexity class NP can be characterised as the collection of languages of the form:

$$
L=\{x \mid \exists y R(x, y)\}
$$

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.
2. R is polynomially balanced. That is, there is a polynomial p such that if $R(x, y)$ and the length of x is n, then the length of y is no more than $p(n)$.

co-NP

As co-NP is the collection of complements of languages in NP, and P is closed under complementation, co-NP can also be characterised as the collection of languages of the form:

$$
L=\left\{x|\forall y| y \mid<p(|x|) \rightarrow R^{\prime}(x, y)\right\}
$$

NP - the collection of languages with succinct certificates of membership. co-NP - the collection of languages with succinct certificates of disqualification.

Any of the situations is consistent with our present state of knowledge:

- $P=N P=c o-N P$
- $P=N P \cap$ co-NP $\neq N P \neq c o-N P$
- $P \neq N P \cap$ co-NP $=N P=c o-N P$
- $P \neq N P \cap$ co-NP $\neq N P \neq$ co-NP

co-NP-complete

VAL - the collection of Boolean expressions that are valid is co-NP-complete.
Any language L that is the complement of an NP-complete language is co-NP-complete.
Any reduction of a language L_{1} to L_{2} is also a reduction of $\overline{L_{1}}$-the complement of L_{1}-to \bar{L}_{2}-the complement of L_{2}.
There is an easy reduction from the complement of SAT to VAL, namely the map that takes an expression to its negation.

$$
\begin{gathered}
V A L \in P \Rightarrow P=N P=c o-N P \\
V A L \in N P \Rightarrow N P=c o-N P
\end{gathered}
$$

Prime Numbers

Consider the decision problem PRIME:
Given a number x, is it prime?

This problem is in co-NP.

$$
\forall y(y<x \rightarrow(y=1 \vee \neg(\operatorname{div}(y, x))))
$$

Note again, the algorithm that checks for all numbers up to \sqrt{n} whether any of them divides n, is not polynomial, as \sqrt{n} is not polynomial in the size of the input string, which is $\log n$.

Primality

Another way of putting this is that Composite is in NP.
Pratt (1976) showed that PRIME is in NP, by exhibiting succinct certificates of primality based on:

A number $p>2$ is prime if, and only if, there is a number r, $1<r<p$, such that $r^{p-1}=1 \bmod p$ and $r^{\frac{p-1}{q}} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

