Completeness

The usefulness of reductions is that they allow us to establish the relative complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be **NP-hard** if for every language $A \in \text{NP}$, $A \leq_{P} L$.

A language L is **NP-complete** if it is in NP and it is NP-hard.
SAT is NP-complete

Cook and Levin independently showed that the language SAT of satisfiable Boolean expressions is NP-complete.

To establish this, we need to show that for every language L in NP, there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

$$M = (Q, \Sigma, s, \delta)$$

and a bound k such that a string x of length n is in L if, and only if, it is accepted by M within n^k steps.
We need to give, for each \(x \in \Sigma^* \), a Boolean expression \(f(x) \) which is satisfiable if, and only if, there is an accepting computation of \(M \) on input \(x \).

\(f(x) \) has the following variables:

\[
\begin{align*}
S_{i,q} & \quad \text{for each } i \leq n^k \text{ and } q \in Q \\
T_{i,j,\sigma} & \quad \text{for each } i, j \leq n^k \text{ and } \sigma \in \Sigma \\
H_{i,j} & \quad \text{for each } i, j \leq n^k
\end{align*}
\]
Intuitively, these variables are intended to mean:

- $S_{i,q}$ – the state of the machine at time i is q.
- $T_{i,j,\sigma}$ – at time i, the symbol at position j of the tape is σ.
- $H_{i,j}$ – at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula $f(x)$, so that it enforces these meanings.
Consistency

The head is never in two places at once

\[\bigwedge_i \bigwedge_j (H_{i,j} \rightarrow \bigwedge_{j' \neq j} (\neg H_{i,j'})) \]

The machine is never in two states at once

\[\bigwedge_q \bigwedge_i (S_{i,q} \rightarrow \bigwedge_{q' \neq q} (\neg S_{i,q'})) \]

Each tape cell contains only one symbol

\[\bigwedge_i \bigwedge_j \bigwedge_{\sigma} (T_{i,j,\sigma} \rightarrow \bigwedge_{\sigma' \neq \sigma} (\neg T_{i,j,\sigma'})) \]
Computation

The tape does not change except under the head

\[\bigwedge_i \bigwedge_j \bigwedge_{j' \neq j} \bigwedge_{\sigma} (H_{i,j} \land T_{i,j',\sigma}) \rightarrow T_{i+1,j',\sigma} \]

Each step is according to \(\delta \).

\[\bigwedge_i \bigwedge_j \bigwedge_{\sigma} \bigwedge_{q} (H_{i,j} \land S_{i,q} \land T_{i,j,\sigma}) \]

\[\rightarrow \bigvee_\Delta (H_{i+1,j'} \land S_{i+1,q'} \land T_{i+1,j',\sigma'}) \]
where Δ is the set of all triples (q', σ', D) such that $((q, \sigma), (q', \sigma', D)) \in \delta$ and

$$j' = \begin{cases} j & \text{if } D = S \\ j - 1 & \text{if } D = L \\ j + 1 & \text{if } D = R \end{cases}$$

Finally, the accepting state is reached

$$\bigvee_{i} S_{i,\text{acc}}$$
Initialization

Initial state is \(s \) and the head is initially at the beginning of the tape.

\[S_{1,s} \land H_{1,1} \]

The initial tape contents are \(x \)

\[
\bigwedge_{j \leq n} T_{1,j,x_j} \land \bigwedge_{n < j} T_{1,j,\sqcup}
\]
A Boolean expression is in *conjunctive normal form* if it is the conjunction of a set of *clauses*, each of which is the disjunction of a set of *literals*, each of these being either a *variable* or the *negation* of a variable.

For any Boolean expression ϕ, there is an equivalent expression ψ in conjunctive normal form.

ψ can be exponentially longer than ϕ.

However, **CNF-SAT**, the collection of satisfiable CNF expressions, is **NP-complete**.
3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form and each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in 3CNF that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from CNF-SAT to 3SAT.
Polynomial time reductions are clearly closed under composition. So, if $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then we also have $L_1 \leq_P L_3$.

If we show, for some problem A in NP that

\[\text{SAT} \leq_P A \]

or

\[3\text{SAT} \leq_P A \]

it follows that A is also NP-complete.