
Complexity Theory
Lecture 4

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2122/Complexity



Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x , c) is accepted by V for some c}

If V runs in time polynomial in the length of x , then we say that
L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution
to some design constraints or specifications.

Anuj Dawar Complexity Theory



Nondeterminism

If, in the definition of a Turing machine, we relax the condition on δ
being a function and instead allow an arbitrary relation, we obtain a
nondeterministic Turing machine.

δ ⊆ (Q × Σ)× (Q ∪ {acc, rej} × Σ× {R, L,S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

{x | (s, ., x)→?
M (acc,w , u) for some w and u}

though, for some x , there may be computations leading to accepting as
well as rejecting states.

Anuj Dawar Complexity Theory



Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree
of successive configurations.

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
...

...

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

Anuj Dawar Complexity Theory



Nondeterministic Complexity Classes

We have already defined TIME(f ) and SPACE(f ).

NTIME(f ) is defined as the class of those languages L which are
accepted by a nondeterministic Turing machine M, such that for every
x ∈ L, there is an accepting computation of M on x of length O(f (n)),
where n is the length of x .

NP =
∞⋃
k=1

NTIME(nk)

Anuj Dawar Complexity Theory



Nondeterminism

(s, ., x)

(q0, u0,w0) (q1, u1,w1)
(q2, u2,w2)

(q00, u00,w00)

(q11, u11,w11)
...

...

(rej, u2,w2)

(acc, . . .)

(q10, u10,w10)

For a language in NTIME(f ), the height of the tree can be bounded by
f (n) when the input is of length n.

Anuj Dawar Complexity Theory



NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V , which
runs in time p(n).

The following describes a nondeterministic algorithm that accepts L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x , c)

Anuj Dawar Complexity Theory



NP

In the other direction, suppose M is a nondeterministic machine that
accepts a language L in time nk .

We define the deterministic algorithm V which on input (x , c) simulates
M on input x .
At the i th nondeterministic choice point, V looks at the i th character in
c to decide which branch to follow.
If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Anuj Dawar Complexity Theory



Generate and Test

We can think of nondeterministic algorithms in the generate-and test
paradigm:

yes

no
generatex Vx verify

Where the generate component is nondeterministic and the verify
component is deterministic.

Anuj Dawar Complexity Theory



Reductions

Given two languages L1 ⊆ Σ?
1, and L2 ⊆ Σ?

2,

A reduction of L1 to L2 is a computable function

f : Σ?
1 → Σ?

2

such that for every string x ∈ Σ?
1,

f (x) ∈ L2 if, and only if, x ∈ L1

Anuj Dawar Complexity Theory



Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is
polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2

Anuj Dawar Complexity Theory



Reductions 2

If L1 ≤P L2 we understand that L1 is no more difficult to solve than L2,
at least as far as polynomial time computation is concerned.

That is to say,
If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and then
using the polynomial time algorithm for L2.

Anuj Dawar Complexity Theory


