We can construct an algorithm to show that the Reachability problem is in NL:

1. write the index of node a in the work space;
2. if i is the index currently written on the work space:
 2.1 if $i = b$ then accept, else guess an index j (log n bits) and write it on the work space.
 2.2 if (i, j) is not an edge, reject, else replace i by j and return to (2).
Savitch’s Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i.
\[O((\log n)^2) \] space Reachability algorithm:

\[
\text{Path}(a, b, i) \\
\text{if } i = 1 \text{ and } a \neq b \text{ and } (a, b) \text{ is not an edge reject} \\
\text{else if } (a, b) \text{ is an edge or } a = b \text{ accept} \\
\text{else, for each node } x, \text{ check:} \\
1. \text{Path}(a, x, \lfloor i/2 \rfloor) \\
2. \text{Path}(x, b, \lceil i/2 \rceil) \\
\]

if such an \(x \) is found, then accept, else reject.

The maximum depth of recursion is \(\log n \), and the number of bits of information kept at each stage is \(3 \log n \).
Savitch’s Theorem

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

$$\text{NSPACE}(f) \subseteq \text{SPACE}(f^2)$$

for $$f(n) \geq \log n$$.

This yields

$$\text{PSPACE} = \text{NPSPACE} = \text{co-NPSPACE}.$$
Complementation

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If \(f(n) \geq \log n \), then

\[
\text{NSPACE}(f) = \text{co-NSPACE}(f)
\]

In particular

\[
\text{NL} = \text{co-NL}.
\]
Logarithmic Space Reductions

We write

\[A \leq_L B \]

if there is a reduction \(f \) of \(A \) to \(B \) that is computable by a deterministic Turing machine using \(O(\log n) \) workspace (with a read-only input tape and write-only output tape).

Note: We can compose \(\leq_L \) reductions. So,

if \(A \leq_L B \) and \(B \leq_L C \) then \(A \leq_L C \)
Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if $\text{SAT} \leq_L A$ for some problem A in L then not only $P = \text{NP}$ but also $L = \text{NP}$.