Complexity Theory

Lecture 11

Anuj Dawar

http://www.cl.cam.ac.uk/teaching/2122/Complexity

NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if *i* is the index currently written on the work space:
 - 2.1 if i = b then accept, else guess an index j (log n bits) and write it on the work space.
 - 2.2 if (i,j) is not an edge, reject, else replace i by j and return to (2).

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most i.

 $O((\log n)^2)$ space Reachability algorithm:

Path(a, b, i)if i = 1 and $a \neq b$ and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check:

- 1. Path $(a, x, \lfloor i/2 \rfloor)$
- 2. Path $(x, b, \lceil i/2 \rceil)$

if such an x is found, then accept, else reject.

The maximum depth of recursion is $\log n$, and the number of bits of information kept at each stage is $3 \log n$.

Savitch's Theorem

The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows:

$$NSPACE(f) \subseteq SPACE(f^2)$$

for
$$f(n) \ge \log n$$
.

This yields

PSPACE = NPSPACE = co-NPSPACE.

Complementation

A still more clever algorithm for Reachability has been used to show that nondeterministic space classes are closed under complementation:

If
$$f(n) \ge \log n$$
, then

$$NSPACE(f) = co-NSPACE(f)$$

In particular

$$NL = co-NL$$
.

Logarithmic Space Reductions

We write

$$A <_{I} B$$

if there is a reduction f of A to B that is computable by a deterministic Turing machine using $O(\log n)$ workspace (with a *read-only* input tape and *write-only* output tape).

Note: We can compose \leq_L reductions. So,

if
$$A \leq_L B$$
 and $B \leq_L C$ then $A \leq_L C$

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of NP-completeness, we can see that SAT and the various other NP-complete problems are actually complete under \leq_L reductions.

Thus, if SAT $\leq_L A$ for some problem A in L then not only P = NP but also L = NP.