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Topic 4: Network Layer
Our goals:
• understand principles behind network layer 

services:
– network layer service models
– forwarding versus routing (versus switching)
– how a router works
– routing (path selection)
– IPv6

For the most part, the Internet is our example – again.



Name: a something

Address: Where is a something

Routing: How do I get to the something

Forwarding: What path do I take next
to get to the something
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Recall: Network layer is responsible 
for GLOBAL delivery



Addressing (at a conceptual level)
• Assume all hosts have unique IDs

• No particular structure to those IDs

• Later in topic I will talk about real IP addressing

• Do I route on location or identifier? 

• If a host moves, should its address change?
– If not, how can you build scalable Internet?
– If so, then what good is an address for identification?
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Packets (at a conceptual level)

• Assume packet headers contain:
– Source ID, Destination ID, and perhaps other 

information
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Destination
Identifier

Source
Identifier

Payload

Why include
this?



Switches/Routers

• Multiple ports (attached to other switches or hosts)

• Ports are typically duplex (incoming and outgoing)
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incoming links outgoing linksSwitch



A Variety of (Internet Protocol-based) Networks

• ISPs: carriers
– Backbone
– Edge
– Border (to other ISPs)

• Enterprises: companies, universities
– Core
– Edge
– Border (to outside)

• Datacenters: massive collections of machines
– Top-of-Rack
– Aggregation and Core
– Border (to outside)
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A Variety of (Internet Protocol-based) Routers

• ISPs: carriers
– Backbone
– Edge
– Border (to other ISPs)

• Enterprises: companies, universities
– Core
– Edge
– Border (to outside)

• Datacenters: massive collections of machines
– Top-of-Rack
– Aggregation and Core
– Border (to outside)
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Switches forward packets

EDINBURGH

OXFORD

GLASGOW

UCL

Destination Next Hop

GLASGOW 4

OXFORD 5

EDIN 2

UCL 3

Forwarding Table
111010010 EDIN

switch#2

switch#5

switch#3

switch#4
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Forwarding Decisions
• When packet arrives..

– Must decide which outgoing port to use
– In single transmission time 
– Forwarding decisions must be simple

• Routing state dictates where to forward packets
– Assume decisions are deterministic

• Global routing state is the collection of routing state in 
each of the routers
– Will focus on where this routing state comes from
– But first, a few preliminaries….
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Forwarding vs Routing

• Forwarding: “data plane”
– Directing a data packet to an outgoing link
– Individual router using routing state

• Routing: “control plane”
– Computing paths the packets will follow
– Routers talking amongst themselves
– Jointly creating the routing state

• Two very different timescales….
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Router definitions

1

2

3

45
…

N-1

N

• N = number of external router “ports”
• R = speed (“line rate”) of a port
• Router capacity = N x R

R bits/sec



Networks and routers

AT&T INTEL

MIT

JANET

core

core

edge (ISP)

edge (enterprise)

home,
small business

BT



Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
R3E
R3D
Next HopDestination

D



Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E
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R5F
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Next HopDestination
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Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
Port EE
Port DD
Next HopDestination

D



What does a router do?

A

B

C

R1

R2

R3

R4 D

E

FR5

1. Every router performs a per-packet lookup for every packet
2. Each router performs a lookup in it’s local lookup table
3. Each router performs lookups (ENTIRELY) independently of every other router



What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control 
Processor

Linecards (output)

Processes packets
on their way in

Processes packets
before they leave

Transfers packets 
from input to 
output ports

Input and Output for
the same port are on one 

physical linecard



What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control 
Processor

Linecards (output)

(1) Implement IGP
and BGP protocols;

compute routing tables
(2) Push forwarding 

tables to the line cards



What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
Fabric

Route/Control 
Processor

Linecards (output)

Constitutes the 
data plane

Constitutes the 
control plane

A decision for 
each packet.

Makes decisions 
over long time 
horizons : network 
change



Context and Terminology
“End hosts”

“Clients”, “Users”
“End points”

“Interior Routers”

“Border Routers”

“Autonomous System (AS)” or “Domain”
Region of a network under a single administrative entity

“Route” or “Path”
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Context and Terminology

111010010

M
I
T

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

MIT
Internet routing protocols are responsible for constructing 

and updating the forwarding tables at routers



Routing Protocols

• Routing protocols implement the core function of a network
– Establish paths between nodes
– Part of the network’s “control plane” 

• Network modeled as a graph
– Routers are graph vertices 
– Links are edges
– Edges have an associated “cost”

• e.g., distance, loss  

• Goal: compute a “good” path from source to destination
– “good” usually means the shortest (least cost) path

A

ED

CB

F

2
2

1
3

1

1

2

5
3

5
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Internet Routing

• Internet Routing works at two levels

• Each AS runs an intra-domain routing protocol that 
establishes routes within its domain 
– (AS -- region of network under a single administrative entity)
– Link State, e.g., Open Shortest Path First (OSPF)
– Distance Vector, e.g., Routing Information Protocol (RIP)

• ASes participate in an inter-domain routing protocol that 
establishes routes between domains
– Path Vector, e.g., Border Gateway Protocol (BGP)
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Addressing (to date)
- a reminder -

• Recall each host has a unique ID (address)

• No particular structure to those IDs
(e.g. Ethernet)

• IP addressing – in contrast – has implicit 
structure
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Outline
• Popular Routing Algorithms:

– Link State Routing
– Distance Vector Algorithm 

• Routing: goals and metrics
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Link-State Routing
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Examples:

Open Shortest Path First (OSPF) or 
Intermediate System to Intermediate System

(written as IS-IS/ISIS and pronounced eye-esss-eye-esss)

The two common Intradomain routing or
interior gateway protocols (IGP)



Link State Routing
• Each node maintains its local “link state” (LS)

– i.e., a list of its directly attached links and their costs

(N1,N2)
(N1,N4)
(N1,N5)

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6
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Link State Routing
• Each node maintains its local “link state” (LS)
• Each node floods its local link state 

– on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)
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Link State Routing
• Each node maintains its local “link state” (LS)
• Each node floods its local link state 
• Hence, each node learns the entire network topology

– Can use Dijkstra’s to compute the shortest paths between nodes

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C
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Dijkstra’s Shortest Path Algorithm
• INPUT:

– Network topology (graph), with link costs

• OUTPUT:
– Least cost paths from one node to all other nodes

• Iterative: after k iterations, a node knows the 
least cost path to its k closest neighbors

• This is covered in Algorithms
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• Running Dijkstra at node A gives the shortest 
path from A to all destinations

• We then construct the forwarding table

The Forwarding Table

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5 Destination Link
B (A,B)

C (A,D)

D (A,D)

E (A,D)

F (A,D)
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Issue #1: Scalability

• How many messages needed to flood link state messages? 
– O(N x E), where N is #nodes; E is #edges in graph

• Processing complexity for Dijkstra’s algorithm?
– O(N2), because we check all nodes w not in S at each 

iteration and we have O(N) iterations
– more efficient implementations: O(N log(N))

• How many entries in the LS topology database? O(E)

• How many entries in the forwarding table? O(N)
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• Inconsistent link-state database
– Some routers know about failure before 

others
– The shortest paths are no longer consistent
– Can cause transient forwarding loops

Issue#2: Transient Disruptions

A

ED

CB

F

A and D think that this
is the path to C

E thinks that this
is the path to C

A

ED

CB

F

Loop!
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Distance Vector Routing
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Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles
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Experiment
• Your job: find the (route to) the youngest person in the room

• Ground Rules
– You may not leave your seat, nor shout loudly

across the class 
– You may talk with your immediate neighbors

(N-S-E-W only) 
(hint: “exchange updates” with them)

• At the end of 5 minutes, I will pick a victim and ask: 
– who is the youngest person in the room? (date&name)
– which one of your neighbors first told you this info.? 

37
EQUIPMENT REQUIRED: PIECE OF PAPER and a PEN (or your emotional equivalent)



Go!
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Distance-Vector Routing
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Example:

Routing Information Protocol (RIP)



Example of Distributed Computation

I am one hop away

I am one hop away

I am one hop away

I am two hops away

I am two hops away

I am two hops away

I am two hops away

I am three hops away

I am three hops away

Destination
I am three hops away
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Distance Vector Routing

Each router sends its knowledge about the “whole” network
to its neighbors. Information sharing at regular intervals.

• Each router knows the links to its neighbors
– Does not flood this information to the whole network

• Each router has provisional “shortest path” to 
every other router
– E.g.:  Router A: “I can get to router B with cost 11”

• Routers exchange this distance vector information with 
their neighboring routers
– Vector because one entry per destination

• Routers look over the set of options offered by their 
neighbors and select the best one

• Iterative process converges to set of shortest paths
41



A few other inconvenient truths

• What if we use a non-additive metric?
– E.g., maximal capacity

• What if routers don’t use the same metric?
– I want low delay, you want low loss rate?

• What happens if nodes lie?
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Can You Use Any Metric?

• I said that we can pick any metric.  Really?
• What about maximizing capacity?
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What Happens Here?
All nodes want to maximize capacityA high capacity link gets reduced to low capacityProblem:“cost” does not change around loop

Additive measures avoid this problem! 44



No agreement on metrics?

• If the nodes choose their paths according to 
different criteria, then bad things might happen

• Example
– Node A is minimizing latency
– Node B is minimizing loss rate
– Node C is minimizing price

• Any of those goals are fine, if globally adopted
– Only a problem when nodes use different criteria

• Consider a routing algorithm where paths are 
described by delay, cost, loss
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What Happens Here?

Low price link

Low loss link

Low delay linkLow loss link

Low delay link

Low price link

Cares about price, 
then loss

Cares about delay,
then price

Cares about loss,
then delay
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Must agree on loop-avoiding metric

• When all nodes minimize same metric

• And that metric increases around loops

• Then process is guaranteed to converge
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What happens when routers lie?

• What if a router claims a 1-hop path to 
everywhere?

• All traffic from nearby routers gets sent there

• How can you tell if they are lying?

• Can this happen in real life?
– It has, several times….
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Link State vs. Distance Vector

• Core idea
– LS: tell all nodes about your immediate neighbors
– DV: tell your immediate neighbors about (your least 

cost distance to) all nodes
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Link State vs. Distance Vector

• LS: each node learns the complete network map; each node 
computes shortest paths independently and in parallel

• DV: no node has the complete picture; nodes cooperate to 
compute shortest paths in a distributed manner

!LS has higher messaging overhead
!LS has higher processing complexity
!LS is less vulnerable to looping
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Link State vs. Distance Vector

Message complexity
• LS: O(NxE) messages; 

– N is #nodes; E is #edges

• DV: O(#Iterations x E)
– where #Iterations is ideally 

O(network diameter) but varies due 
to routing loops or the 
count-to-infinity problem

Processing complexity
• LS: O(N2)
• DV: O(#Iterations x N)

Robustness: what happens if router 
malfunctions?

• LS: 
– node can advertise incorrect link

cost
– each node computes only its own

table
• DV:

– node can advertise incorrect path
cost

– each node’s table used by others; 
error propagates through network

51



Routing: Just the Beginning

• Link state and distance-vector are the 
deployed routing paradigms for intra-domain 
routing 

• Inter-domain routing (BGP)
– more Part II (Principles of Communications)
– A version of DV
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What are desirable goals for a routing 
solution?

• “Good” paths (least cost)
• Fast convergence after change/failures

– no/rare loops
• Scalable 

– #messages
– table size 
– processing complexity

• Secure
• Policy
• Rich metrics (more later)
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Delivery models

• What if a node wants to send to more than 
one destination?
– broadcast: send to all
– multicast: send to all members of a group
– anycast: send to any member of a group

• What if a node wants to send along more 
than one path?
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Metrics

• Propagation delay
• Congestion
• Load balance
• Bandwidth (available, capacity, maximal, bbw)
• Price
• Reliability 
• Loss rate 
• Combinations of the above

In practice, operators set abstract “weights” (much 
like our costs); how exactly is a bit of a black art
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From Routing back to Forwarding

• Routing: “control plane”
– Computing paths the packets will follow
– Routers talking amongst themselves
– Jointly creating the routing state

• Forwarding: “data plane”
– Directing a data packet to an outgoing link
– Individual router using routing state

• Two very different timescales….
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Basic Architectural Components
of an IP Router

Control Plane
network-change

processing

Datapath
per-packet 
processing

SwitchingForwarding
Table

Routing
Table

Routing 
Protocols

Management
& CLI Softw

are
H

ardw
are
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Independent operation!

Control Plane
network-change

processing

Datapath
per-packet 
processing

SwitchingForwarding
Table

Routing
Table

Routing 
Protocols

Management
& CLI Softw

are
H

ardw
are

If the control-plane fails…..

The data-path is not affected…
like a loyal pet it will keep going using the current (last) 

table update

This is a feature not a bug
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Per-packet processing in an IP 
Router

1. Accept packet arriving on an incoming link.
2. Lookup packet destination address in the 

forwarding table, to identify outgoing port(s).
3. Manipulate packet header: e.g., decrement 

TTL, update header checksum.
4. Send packet to the outgoing port(s).
5. Buffer packet in the queue.
6. Transmit packet onto outgoing link.
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Generic Router Architecture

Lookup
IP Address

Update
Header

Header Processing
Data Hdr Data Hdr

~1M prefixes
Off-chip DRAM

Address
Table

IP Address Next Hop

Queue
Packet

Buffer
Memory

~1M packets
Off-chip DRAM



Forwarding tables

Entry Destination Port

1
2
⋮

232

0.0.0.0
0.0.0.1
⋮

255.255.255.255

1
2
⋮

12
~ 4 billion entries

Naïve approach:
One entry per address

Improved approach:
Group entries to reduce table size
Entry Destination Port

1
2
⋮

50

0.0.0.0 – 127.255.255.255
128.0.0.1 – 128.255.255.255

⋮
248.0.0.0 – 255.255.255.255

1
2
⋮

12

IP address 32 bits wide → ~ 4 billion unique address
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Generic Router Architecture
Lookup

IP Address
Update
Header

Header Processing

Address
Table

Lookup
IP Address

Update
Header

Header Processing

Address
Table

Lookup
IP Address

Update
Header

Header Processing

Address
Table

Data Hdr

Data Hdr

Data Hdr

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Data Hdr

Data Hdr

Data Hdr



IP addresses as a line

0 232-1

Entry Destination Port

1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

All IP addresses

EuropeUSA

OxfordCambridge

Your computer My computer
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Longest Prefix Match (LPM)
Entry Destination Port

1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Universities

Continents

Planet

DataTo: 
Cambridge

Matching entries:
• Cambridge
• Europe
• Everywhere

Most specific
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Longest Prefix Match (LPM)
Entry Destination Port

1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Universities

Continents

Planet

DataTo: France

Matching entries:
• Europe
• Everywhere

Most specific
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Implementing Longest Prefix Match

Entry Destination Port

1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Most specific

Least specific

Searching

FOUND
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Forwarding table realities

67

• High Speed: Must be “packet-rate” lookup
• about 200M lookups / second for 100Gbps

• Large (messy) tables – (BGP Jan 2021 stats)
• 866,000+ routing prefix entries for IPv4
• 104,000+ routing prefix entries for IPv6

• Changing and Growing
the harsh side of “up and to the right”

Hudson 2020 report https://blog.apnic.net/2021/01/05/bgp-in-2020-the-bgp-table/

Open problems : continual growth is continual demand for innovation 
opportunities in control, algorithms, & network hardware
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The Internet version of a Network layer

forwarding
table

Host, router network layer functions:

Routing protocols
•path selection
•RIP, OSPF, BGP

IP protocol
•addressing conventions
•datagram format
•packet handling conventions

ICMP protocol
•error reporting
•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer



IPv4 Packet Structure
20 Bytes of Standard Header, then Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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(Packet) Network Tasks One-by-One

• Read packet correctly
• Get packet to the destination
• Get responses to the packet back to source
• Carry data
• Tell host what to do with packet once arrived
• Specify any special network handling of the 

packet
• Deal with problems that arise along the path
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Reading Packet 
Correctly

• Version number (4 bits)
– Indicates the version of the IP protocol
– Necessary to know what other fields to expect
– Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
– Number of 32-bit words in the header
– Typically “5” (for a 20-byte IPv4 header)
– Can be more when IP options are used

• Total length (16 bits)
– Number of bytes in the packet
– Maximum size is 65,535 bytes (216 -1)
– … though underlying links may impose smaller limits

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Getting Packet to 
Destination and Back

• Two IP addresses
– Source IP address (32 bits)
– Destination IP address (32 bits)

• Destination address
– Unique identifier/locator for the receiving host
– Allows each node to make forwarding decisions

• Source address
– Unique identifier/locator for the sending host
– Recipient can decide whether to accept packet
– Enables recipient to send a reply back to source

72

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Telling Host How to 
Handle Packet

• Protocol (8 bits)
– Identifies the higher-level protocol
– Important for demultiplexing at receiving host

• Most common examples
– E.g., “6” for the Transmission Control Protocol (TCP)
– E.g., “17” for the User Datagram Protocol (UDP)

IP header IP header

TCP header UDP header

protocol=6 protocol=17

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Special Handling

• Type-of-Service (8 bits)
– Allow packets to be treated differently based on 

needs
– E.g., low delay for audio, high bandwidth for bulk 

transfer
– Has been redefined several times

• Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



Potential Problems

• Header Corrupted: Checksum

• Loop: TTL

• Packet too large: Fragmentation
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Header Corruption

• Checksum (16 bits)
– Particular form of checksum over packet header

• If not correct, router discards packets
– So it doesn’t act on bogus information

• Checksum recalculated at every router
– Why?
– Why include TTL?
– Why only header?76

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Preventing Loops
(aka Internet Zombie plan)

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

• Forwarding loops cause packets to cycle forever
– As these accumulate, eventually consume all capacity

• Time-to-Live (TTL) Field  (8 bits)
– Decremented at each hop, packet discarded if reaches 0
– …and “time exceeded” message is sent to the source

• Using “ICMP” control message; basis for traceroute
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Fragmentation
(some assembly required)

• Fragmentation: when forwarding a packet, an 
Internet router can split it into multiple pieces 
(“fragments”) if too big for next hop link

• Must reassemble to recover original packet
– Need fragmentation information (32 bits)
– Packet identifier, flags, and fragment offset

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload



IP Fragmentation & Reassembly
• network links have MTU 

(max.transfer size) - largest 
possible link-level frame.
– different link types, different 

MTUs 
• large IP datagram divided 

(“fragmented”) within net
– one datagram becomes 

several datagrams
– “reassembled” only at final 

destination
– IP header bits used to identify, 

order related fragments

• IPv6 does things differently…

fragmentation: 
in: one large datagram
out: 3 smaller datagrams

reassembly
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IP Fragmentation and Reassembly

ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=185

fragflag
=1

length
=1500

ID
=x

offset
=370

fragflag
=0

length
=1040

One large datagram becomes
several smaller datagrams

Example
r 4000 byte datagram
r MTU = 1500 bytes

1480 bytes in 
data field

offset =
1480/8 

Question: What happens when a fragment is lost?
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4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Fragmentation 
Details

• Identifier (16 bits): used to tell which fragments 
belong together

• Flags (3 bits):
– Reserved (RF): unused bit
– Don’t Fragment (DF): instruct routers to not fragment 

the packet even if it won’t fit
• Instead, they drop the packet and send back a “Too Large”

ICMP control message
• Forms the basis for “Path MTU Discovery”

– More (MF): this fragment is not the last one
• Offset (13 bits): what part of datagram this 

fragment covers in 8-byte units 
Pop quiz question: Why do frags use offset and not a frag number? 81



Options

• End of Options List
• No Operation (padding between options)
• Record Route
• Strict Source Route
• Loose Source Route
• Timestamp
• Traceroute
• Router Alert
• …..
82

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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IP Addressing: introduction
• IP address: 32-bit 

identifier for host, router 
interface

• interface: connection 
between host/router and 
physical link
– routers typically have 

multiple interfaces
– host typically has one 

interface
– IP addresses associated 

with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11
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Subnets
• IP address:

– subnet part (high order bits)
– host part (low order bits) 

• What’s a subnet ?
– device interfaces with same 

subnet part of IP address
– can physically reach each 

other without intervening 
router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet

223.1.1.0/24 223.1.2.0/24

223.1.3.0/24

Subnet mask: /24

11011111  00000001 00000011 00000000

subnet
part

host
part

223.1.3.0/24

CIDR: Classless InterDomain Routing
– subnet portion of address of arbitrary length
– address format: a.b.c.d/x, where x is # bits in 

subnet portion of address



85

IP addresses: how to get one?

Q: How does a host get IP address?

• hard-coded by system admin in a file
– Windows: control-panel->network->configuration-

>tcp/ip->properties
– UNIX: /etc/rc.config (circa 1980’s your mileage will vary)

• DHCP: Dynamic Host Configuration Protocol: dynamically get address 
from as server
– “plug-and-play”
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DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

DHCP 
server

DHCP server: 223.1.2.5 arriving
client

time

DHCP discover

src : 0.0.0.0, 68     
dest.: 255.255.255.255,67
yiaddr:    0.0.0.0
transaction ID: 654

DHCP offer

src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src:  0.0.0.0, 68     
dest::  255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

arriving DHCP 
client needs
address in this
network

Goal: allow host to dynamically 
obtain its IP address from network 
server when it joins network

Can renew its lease on address in use
Allows reuse of addresses (only hold 
address while connected an “on”)
Support for mobile users who want to 
join network (more shortly)
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IP addresses: how to get one?

Q: How does network get subnet part of IP addr?
A: gets allocated portion of its provider ISP’s 

address space

ISP's block          11001000  00010111  00010000  00000000    200.23.16.0/20 

Organization 0    11001000  00010111  00010000  00000000    200.23.16.0/23 
Organization 1    11001000  00010111  00010010  00000000    200.23.18.0/23 
Organization 2    11001000  00010111  00010100  00000000    200.23.20.0/23 

...                                          …..                                   ….                ….
Organization 7    11001000  00010111  00011110  00000000    200.23.30.0/23
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Hierarchical addressing: route aggregation

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

Hierarchical addressing allows efficient advertisement of routing 
information:
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Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...
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IP addressing: the last word...

Q: How does an ISP get a block of addresses?
A: ICANN: Internet Corporation for Assigned 

Names and Numbers

– allocates addresses
– manages DNS
– assigns domain names, resolves disputes
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or 
destination in this network
have 10.0.0/24 address for 

source, destination (as usual)

All datagrams leaving local
network have same single source NAT IP 

address: 138.76.29.7,
different source port numbers

Cant get more IP addresses?  well there is always…..
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NAT: Network Address Translation

• Motivation: local network uses just one IP address as far as 
outside world is concerned:

– range of addresses not needed from ISP:  just one IP 
address for all devices

– can change addresses of devices in local network 
without notifying outside world

– can change ISP without changing addresses of 
devices in local network

– devices inside local net not explicitly addressable, 
visible by outside world (a security plus).
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NAT: Network Address Translation
Implementation: NAT router must:

– outgoing datagrams: replace (source IP address, port #) 
of every outgoing datagram to (NAT IP address, new port 
#)

. . . remote clients/servers will respond using (NAT IP address, 
new port #) as destination addr.

– remember (in NAT translation table) every (source IP 
address, port #)  to (NAT IP address, new port #) 
translation pair

– incoming datagrams: replace (NAT IP address, new port 
#) in dest fields of every incoming datagram with 
corresponding (source IP address, port #) stored in NAT 
table
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40.186, 80

NAT translation table
WAN side addr        LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345

……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: Reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345
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NAT: Network Address Translation

• 16-bit port-number field: 
– 60,000+ simultaneous connections with a single 

WAN-side address!
• NAT is controversial:

– routers should only process up to layer 3
– violates end-to-end argument (?)

• NAT possibility must be taken into account by app 
designers, eg, P2P applications

– address shortage should instead be solved by IPv6
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NAT traversal problem
• client wants to connect to 

server with address 10.0.0.1
– server address 10.0.0.1 local to 

LAN (client can’t use it as 
destination addr)

– only one externally visible NATted
address: 138.76.29.7

• solution 1: statically configure 
NAT to forward incoming 
connection requests at given 
port to server
– e.g., (138.76.29.7, port 2500) 

always forwarded to 10.0.0.1 port 
25000

10.0.0.1

10.0.0.4

NAT 
router

138.76.29.7

Client ?



97

NAT traversal problem
• solution 2: Universal Plug and Play 

(UPnP) Internet Gateway Device 
(IGD) Protocol.  Allows NATted host 
to:
"learn public IP address 

(138.76.29.7)
"add/remove port mappings 

(with lease times)

i.e., automate static NAT port 
map configuration

10.0.0.1

10.0.0.4

NAT 
router

138.76.29.7

IGD
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NAT traversal problem
• solution 3: relaying (was used in (really old) Skype)

– NATed client establishes connection to relay
– External client connects to relay
– relay bridges packets between to connections

138.76.29.7

Client

10.0.0.1

NAT 
router

1. connection to
relay initiated
by NATted host

2. connection to
relay initiated
by client

3. relaying 
established



Remember this?  Traceroute at work…

traceroute munnari.oz.au
traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets
1  gatwick.net.cl.cam.ac.uk (128.232.32.2)  0.416 ms 0.384 ms 0.427 ms
2  cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9)  0.393 ms 0.440 ms 0.494 ms
3  route-nwest.route-mill.net.cam.ac.uk (192.84.5.137)  0.407 ms 0.448 ms 0.501 ms
4  route-mill.route-enet.net.cam.ac.uk (192.84.5.94)  1.006 ms  1.091 ms  1.163 ms
5  xe-11-3-0.camb-rbr1.eastern.ja.net (146.97.130.1)  0.300 ms  0.313 ms  0.350 ms
6  ae24.lowdss-sbr1.ja.net (146.97.37.185)  2.679 ms  2.664 ms  2.712 ms
7  ae28.londhx-sbr1.ja.net (146.97.33.17)  5.955 ms  5.953 ms  5.901 ms
8  janet.mx1.lon.uk.geant.net (62.40.124.197)  6.059 ms  6.066 ms  6.052 ms
9  ae0.mx1.par.fr.geant.net (62.40.98.77)  11.742 ms  11.779 ms  11.724 ms
10  ae1.mx1.mad.es.geant.net (62.40.98.64)  27.751 ms  27.734 ms  27.704 ms
11  mb-so-02-v4.bb.tein3.net (202.179.249.117)  138.296 ms 138.314 ms 138.282 ms
12  sg-so-04-v4.bb.tein3.net (202.179.249.53)  196.303 ms 196.293 ms 196.264 ms
13  th-pr-v4.bb.tein3.net (202.179.249.66)  225.153 ms 225.178 ms 225.196 ms
14  pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10)  225.163 ms 223.343 ms 223.363 ms
15  202.28.227.126 (202.28.227.126)  241.038 ms 240.941 ms 240.834 ms
16  202.28.221.46 (202.28.221.46)  287.252 ms 287.306 ms 287.282 ms
17  * * *
18  * * *
19  * * *
20  coe-gw.psu.ac.th (202.29.149.70)  241.681 ms 241.715 ms 241.680 ms
21  munnari.OZ.AU (202.29.151.3)  241.610 ms  241.636 ms  241.537 ms

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on windows is similar)

Three delay measurements from 
rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

* means no response (probe lost, router not replying)

trans-continent
link

99
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Traceroute and ICMP
• Source sends series of UDP 

segments to dest
– First has TTL =1
– Second has TTL=2, etc.
– Unlikely port number

• When nth datagram arrives to nth 
router:
– Router discards datagram
– And sends to source an ICMP 

message (type 11, code 0)
– Message includes name of 

router& IP address

• When ICMP message arrives, 
source calculates RTT

• Traceroute does this 3 times
Stopping criterion
• UDP segment eventually arrives 

at destination host
• Destination returns ICMP “host 

unreachable” packet (type 3, 
code 3)

• When source gets this ICMP, 
stops.
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ICMP: Internet Control Message Protocol

• used by hosts & routers to 
communicate network-level 
information
– error reporting: unreachable 

host, network, port, protocol
– echo request/reply (used by 

ping)
• network-layer “above” IP:

– ICMP msgs carried in IP 
datagrams

• ICMP message: type, code plus first 8 
bytes of IP datagram causing error

Type Code description
0        0         echo reply (ping)
3        0         dest. network unreachable
3        1         dest host unreachable
3        2         dest protocol unreachable
3        3         dest port unreachable
3        6         dest network unknown
3        7         dest host unknown
4        0         source quench (congestion

control - not used)
8        0         echo request (ping)
9        0         route advertisement
10      0         router discovery
11      0         TTL expired
12      0         bad IP header
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Gluing it together:
How does my Network (address) interact

with my Data-Link (address) ?
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Switches vs. Routers Summary
• both store-and-forward devices

– routers: network layer devices (examine network layer headers eg IP)
– switches are link layer devices (examine Data-Link-Layer headers eg Ethernet)

• Routers: implement routing algorithms, maintain routing tables of the 
network – create network forwarding tables from routing tables

• Switches: implement learning algorithms, learn switch/DLL forwarding 
tables

Switch



104

MAC Addresses (and IPv4 ARP)
or How do I glue my network to my data-link?

• 32-bit IP address: 
– network-layer address
– used to get datagram to destination IP subnet 

• MAC (or LAN or physical or Ethernet) address:
– function: get frame from one interface to another 

physically-connected interface (same network)
– 48 bit MAC address (for most LANs)

• burned in NIC ROM, firmware, etc.



105

LAN Addresses and ARP
Each adapter on LAN has unique LAN address

Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-709-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-6F7-2B-08-53

LAN
(wired or
wireless)



106

Address Resolution Protocol
• Every node maintains an ARP table

– <IP address, MAC address> pair

• Consult the table when sending a packet
– Map destination IP address to destination MAC address
– Encapsulate and transmit the data packet

• But: what if IP address not in the table?
– Sender broadcasts: “Who has IP address 1.2.3.156?”
– Receiver responds: “MAC address 58-23-D7-FA-20-B0”
– Sender caches result in its ARP table
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Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B



108

Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B

1. A sends packet to R.
2. R sends packet to B.

B A A R B A R B
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Host A Decides to Send Through R

A

R
B

• Host A constructs an IP packet to send to B
– Source 111.111.111.111, destination 222.222.222.222

• Host A has a gateway router R
– Used to reach destinations outside of 111.111.111.0/24
– Address 111.111.111.110 for R learned via DHCP/config

B A



B A
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Host A Sends Packet Through R
• Host A learns the MAC address of R’s interface

– ARP request: broadcast request for 111.111.111.110
– ARP response: R responds with E6-E9-00-17-BB-4B

• Host A encapsulates the packet and sends to R

A

R
B

B A A R

I’m 111.111.111.110 on e6-e9-00-17-bb-4b

MAC address for 111.111.111.110 pleaseMAC address for 111.111.111.110 please
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R Decides how to Forward Packet
• Router R’s adaptor receives the packet

– R extracts the IP packet from the Ethernet frame
– R sees the IP packet is destined to 222.222.222.222

• Router R consults its forwarding table
– Packet matches 222.222.222.0/24 via other adaptor

A

R
B

B A A R
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R Sends Packet to B
• Router R’s learns the MAC address of host B

– ARP request: broadcast request for 222.222.222.222
– ARP response: B responds with 49-BD-D2-C7-52A

• Router R encapsulates the packet and sends to B

A

R
B

B A R B

R broadcasts: Who is 
222.222.22.222.222?

B replies to R 
Me! I’m 222.22.222.222 on 
49-BD-D2-C7-56-2A
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Security Analysis of ARP
• Impersonation

– Any node that hears request can answer …
– … and can say whatever they want

• Actual legit receiver never sees a problem
– Because even though later packets carry its IP 

address, its NIC doesn't capture them since the 
(naughty) packets are not its MAC address
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Key Ideas in Both ARP and DHCP
• Broadcasting: Can use broadcast to make contact

– Scalable because of limited size

• Caching: remember the past for a while
– Store the information you learn to reduce overhead
– Remember your own address & other host’s addresses

• Soft state: eventually forget the past
– Associate a time-to-live field with the information
– … and either refresh or discard the information
– Key for robustness in the face of unpredictable change



Why Not Use DNS-Like Tables?

• When host arrives:
– Assign it an IP address that will last as long it is 

present
– Add an entry into a table in DNS-server that maps 

MAC to IP addresses

• Answer: 
– Names: explicit creation, and are plentiful
– Hosts: come and go without informing network

• Must do mapping on demand
– Addresses: not plentiful, need to reuse and remap

• Soft-state enables dynamic reuse

115



IPv6
• Motivated by address exhaustion

– addresses are larger
– packet headers are laid out differently
– address management and configuration are completely different
– some DNS behavior changes
– some sockets code changes
– everybody now has a hard time parsing IP addresses

• Steve Deering focused on simplifying IP
– Got rid of all fields that were not absolutely necessary
– “Spring Cleaning” for IP

• Result is an elegant, if unambitious, protocol
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prematurely
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IPv4 IPv6 
Addresses are 32 bits (4 bytes) in length. Addresses are 128 bits (16 bytes) in length 

Address (A) resource records in DNS to map 
host names to IPv4 addresses. 

Address (AAAA) resource records in DNS to map 
host names to IPv6 addresses. 

Pointer (PTR) resource records in the IN-
ADDR.ARPA DNS domain to map IPv4 addresses 
to host names. 

Pointer (PTR) resource records in the IP6.ARPA 
DNS domain to map IPv6 addresses to host 
names. 

IPSec is optional and should be supported 
externally 

IPSec support is not optional 

Header does not identify packet flow for QoS
handling by routers 

Header contains Flow Label field, which 
Identifies packet flow for QoS handling by 
router. 

Both routers and the sending host fragment 
packets. 

Routers do not support packet fragmentation. 
Sending host fragments packets 

Header includes a checksum. Header does not include a checksum. 

Header includes options. Optional data is supported as extension headers. 

ARP uses broadcast ARP request to resolve IP to 
MAC/Hardware address. 

Multicast Neighbor Solicitation messages resolve 
IP addresses to MAC addresses. 

Internet Group Management Protocol (IGMP) 
manages membership in local subnet groups. 

Multicast Listener Discovery (MLD) messages 
manage membership in local subnet groups. 

Broadcast addresses are used to send traffic to 
all nodes on a subnet. 

IPv6 uses a link-local scope all-nodes multicast 
address. 

Configured either manually or through DHCP. Does not require manual configuration or DHCP. 

Must support a 576-byte packet size (possibly 
fragmented). 

Must support a 1280-byte packet size (without 
fragmentation). 



Larger Address Space
• IPv4 = 4,294,967,295 addresses
• IPv6 = 340,282,366,920,938,463,374,607,432,768,211,456 addresses
• 4x in number of bits translates to huge increase in address space!
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Other Significant Protocol Changes - 1
• Increased minimum MTU from 576 to 1280
• No enroute fragmentation… fragmentation only at source
• Header changes (20bytes to 40bytes)
• Replace broadcast with multicast
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Fragment 
OffsetFlags

Total LengthType of 
ServiceIHL

PaddingOptions

Destination Address

Source Address

Header ChecksumProtocolTime to Live

Identification

Version

Next 
Header Hop Limit

Flow LabelTraffic 
Class

Destination Address

Source Address

Payload Length

Version

Field’s Name Kept from IPv4 to IPv6

Fields Not Kept in IPv6

Name and Position Changed in IPv6

New Field in IPv6Le
ge

nd

IPv4 IPv6



Other Significant Protocol Changes - 2
operation is intended to be simpler within the network:
• no in-network fragmentation

• no checksums in IPv6 header

• UDP checksum required (wasn’t in IPv4) rfc6936: No more zero

• optional state carried in extension headers

– Extension headers notionally replace IP options
– Each extension header indicates the type of the following 

header,  so they can be chained
– The final ‘next header’ either indicates there is no ‘next’, or  

escapes into an transport-layer header (e.g., TCP)
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IPv6 Basic Address Structure
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IPv6 addresses are split into two primary parts:

► 64 bits is dedicated to an addressable interface (equivalent to the  
host, if it only has one interface)

► The network prefix allocated to a network by a registry can be up to 
64-bits long

► An allocation of a /64 (i.e. a 64-bit network prefix) allows one
subnet (it cannot be subdivided)

► A /63 allows two subnets; a /62 offers four, etc. /48s are common for 
older allocations (RFC 3177, obsoleted by RFC 6177).

► Longest-prefix matching operates as in IPv4.



IPv6 Address Representation (quick)
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IPv6 addresses represented as eight 16-bit blocks (4 hex 
chars)  separated by colons:
• 2001:4998:000c:0a06:0000:0000:0002:4011

But we can condense the representation by removing leading 
zeros in  each block:
• 2001:4998:c:a06:0:0:2:4011

And by reducing the consecutive block of zeros to a “::”
(this double colon rule can only be applied once)

• 2001:4998:c:a06::2:4011



IPv6 Address Families
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The address space is carved, like v4, into certain categories 1:
host-local : localhost; ::1 is equivalent to 127.0.0.1
link-local : not routed: fe80::/10 is equivalent to

169.254.0.0/16
site-local : not routed globally: fc00::/7 is equivalent to

192.168.0.0/16 or 10.0.0.0/8
global unicast : 2000::/3 is basically any v4 address not 

reserved in  some other way
multicast : ff00::/8 is equivalent to 224.0.0.0/4

1http://www.ripe.net/lir-services/new-lir/ipv6_reference_card.pdf

http://www.ripe.net/lir-services/new-lir/ipv6_reference_card.pdf


Problem with /64 Subnets
• Scanning a subnet becomes a DoS attack!

– Creates IPv6 version of 264 ARP entries in routers
– Exhaust address-translation table space

• So now we have:
ping6 ff02::1 All nodes in broadcast domain
ping6 ff02::2 All routers in broadcast domain

• Solutions
– RFC 6164 recommends use of /127 to protect router-router links
– RFC 3756 suggest “clever cache management” to address more generally
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Neighbour Discovery
• The Neighbour Discovery Protocol2 specifies a set of ICMPv6  

message types that allow hosts to discover other hosts or routing  
hardware on the network
– neighbour solicitation
– neighbour advertisement
– router solicitation
– router advertisement
– redirect

• In short, a host can solicit neighbour (host) state to determine the  
layer-2 address of a host or to check whether an address is in use

• or it can solicit router state to learn more about the network  
configuration

• In both cases, the solicit message is sent to a well-known  
multicast address

2
http://tools.ietf.org/html/rfc4861
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http://tools.ietf.org/html/rfc4861


IPv6 Dynamic Address Assignment

We have the two halves of the IPv6 address: the 
network component  and the host component. 
Those are derived in different ways.

Network (top 64 bits):
– Router Advertisements (RAs)  

Interface

Identifier (bottom 64 bits):
– Stateless, automatic: SLAAC
– Stateful, automatic: DHCPv6
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SLAAC: overview

SLAAC is:
• ... intended to make network configuration 

easy without manual  configuration or 
even a DHCP server

• ... an algorithm for hosts to automatically 
configure their network  interfaces (set up 
addresses, learn routes) without
intervention
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SLAAC: overview

• When a host goes live or an interface comes up, 
the system  wants to know more about its
environment

• It can configure link-local addresses for its 
interfaces: it uses the  interface identifier, the EUI-64

• It uses this to ask (solicit) router advertisements 
sooner than the  next periodic announcements; ask 
the network for information
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SLAAC: overview

The algorithm (assuming one interface):

1. Generate potential link-local address
2. Ask the network (multicast4) if that 

address is in use: neighbour  solicitation

3. Assuming no responses, assign to
interface
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4https://tools.ietf.org/html/rfc2373

https://tools.ietf.org/html/rfc2373


The EUI-64 Interface Identifier
• IEEE 64-bit Extended Unique Identifier (EUI-64)3

• There are various techniques to derive a 64-bit value, 
but  often times we derive from the 48-bit MAC address

1313http://tools.ietf.org/html/rfc2373

the seventh bit from the left, or the 
universal/local (U/L) bit, needs to be inverted, 
0 = local admin 1 = universal admin

http://tools.ietf.org/html/rfc2373


SLAAC: overview; Router Solicitation

Then,
• Once the host has a unique link-local address, it can send  packets 

to anything else sharing that link substrate
... but the host doesn’t yet know any routers, or public routes
... bootstrap: routers listen to a well-known multicast address

4.host asks the network (multicast) for router information: router  
solicitation

5.responses from the routers are sent directly (unicast) to the host  
that sent the router solicitation

6.the responses may indicate that the host should do more (e.g.,  use 
DHCP to get DNS information)
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Router Advertisement
Without solicitation, router advertisements are generated intermittently  
by routing hardware.

Router Advertisements:
• nodes that forward traffic periodically advertise themselves to the  

network
• periodicity and expiry of the advertisement are configurable

Router Advertisement (RA), among other things, tells a host where to  
derive its network state with two flags: M(anaged) and O(ther info):
• M: “Managed Address Configuration”, which means: use  DHCPv6 

to find your host address (and ignore option O)
• O: Other information is available via DHCPv6, such as DNS  

configuration
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Uh-oh

What problem(s) arises from totally decentralised address  
configuration?

Concerns that arise from using an EUI-64:
• Privacy: SLAAC interface identifiers don’t change over 

time, so a host can be identified across networks

• Security: embedding a MAC address into an IPv6 
address will carry that vendor’s ID(s)5, a possible threat
vector

134
5http://standards.ieee.org/develop/regauth/oui/public.html



Address Configuration: SLAAC Privacy 
Addresses

Privacy extensions for SLAAC6

– temporary addresses for initiating outgoing
sessions

– generate one temporary address per prefix
– when they expire, they are not used for new 

sessions, but can  continue to be used for 
existing sessions

– the addresses should appear random, such that 
they are difficult  to predict

– lifetime is configurable; this OSX machine sets an 
86,400s timer  (1 day)

1356https://tools.ietf.org/html/rfc4941

https://tools.ietf.org/html/rfc4941


Address Configuration: SLAAC Privacy 
Addresses

The algorithm:
• Assume: a stored 64-bit input value from previous iterations, or a  pseudo-

randomly generated value

1.take that input value and append it to the EUI-64
2.compute the MD5 message digest of that value
3.set bit 6 to zero
4.compare the leftmost 64-bits against a list of reserved interface  identifiers 

and those already assigned to an address on the local  device. If the value 
is unacceptable, re-run using the rightmost 64  bits of the result instead of 
the historic input value in step 1

5.use the leftmost 64-bits as the randomised interface identifier
6.store the rightmost 64-bits as the history value to be used in the  next 

iteration of the algorithm
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IPv6: why has the transition taken so long?

IPv4 and IPv6 are not compatible:
– different packet formats
– different addressing schemes

as the Internet has grown bigger and 
accumulated many  IPv4-only services, 
transition has proven ... Tricky

Incentive issues 
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Virgin Media policy in 2010

….When IPV6 is rolled out across the whole of the Internet 
then a lot of the ISP's will roll out IPV6, ….



IPv6: why has the transition taken so long?

• IPv4 has/had the momentum
... which led to CIDR
... and encouraged RFC1918 space and NAT

• IPv4 NAT was covered earlier in this topic (reminder)
– your ISP hands you only one IPv4 address
– you  share that across multiple devices in your household
– The NAT  handles all the translation between internal 

(“private”) and external  (“public”) space
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Transition tech: outline

• Tunnelling
• dual-stacked services, and happy eyeballs
• DNS64 and NAT648

• 464XLAT
• DNS behaviour

1398https://tools.ietf.org/html/rfc6146

https://tools.ietf.org/html/rfc6146


Transition tech: outline

• Tunnelling
• dual-stacked services, and happy eyeballs
• DNS64 and NAT648

• 464XLAT
• DNS behaviour

1408https://tools.ietf.org/html/rfc6146

Think of it as an IPv6 VPN service; which is 
essentially what it is

https://tools.ietf.org/html/rfc6146


Dual-Stack Services: Common Deployment
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It’s common for web services to play conservatively: dual-stack your edge services (e.g., 
load balancers), leaving some legacy infrastructure for later: 



Dual-Stack Services: Common 
Deployment

Aim is to reduce the pain:
– You can dual-stack the edge hosts, and carry 

state in, say, HTTP  headers indicating the 
user’s IP address (common over v4 anyway)

– You can dual-stack the backend 
opportunistically, over a longer  period of time

– You use DNS to enable/disable the v6 side 
last (if there is no  AAAA record in DNS, no 
real users will connect to the IPv6  
infrastructure
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Happy Eyeballs and DNS

• The introduction of IPv6 carried with it an 
obligation that applications attempt to use 
IPv6 before falling back to IPv4.

• What happens though if you try to 
connect to a host which doesn’t exist?9

• But the presence of IPv6 modifies the 
behaviour of DNS responses and 
response preference10
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9https://tools.ietf.org/html/rfc5461
10https://tools.ietf.org/html/rfc3484



Happy Eyeballs

• Happy Eyeballs11 was the proposed
solution
– the eyeballs in question are yours, or mine, or 

whoever is sitting in  front of their browser 
getting mad that things are unresponsive

• Modifies application behaviour

14411https://tools.ietf.org/html/rfc8305



DNS64 & NAT64
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464XLAT

• Problem: IPv6-only to the host, but an 
IPv4-only app trying to access an IPv4-only
service
– Some applications do not understand IPv6, so 

having an IPv6  address doesn’t help
– 464XLAT12 solves this problem
– In essence, DNS64 + NAT64 + a shim layer on 

the host itself to offer IPv4 addresses to apps
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Improving on IPv4 and IPv6?
• Why include unverifiable source address? 

– Would like accountability and anonymity (now neither)
– Return address can be communicated at higher layer

• Why packet header used at edge same as core?
– Edge: host tells network what service it wants
– Core: packet tells switch how to handle it

• One is local to host, one is global to network
• Some kind of payment/responsibility field?

– Who is responsible for paying for packet delivery?
– Source, destination, other?

• Other ideas?
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Summary Network Layer
• understand principles behind network layer services:

– network layer service models
– forwarding versus routing (versus switching)
– how a switch & router works
– routing (path selection)
– IPv6

• Algorithms
– Two routing approaches (LS vs DV)
– One of these in detail (LS)
– ARP

• Other Core ideas
– Caching, soft-state, broadcast
– Fate-sharing in practice….


