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Topic 3.0: The Physical Layer
Our goals:

• Understand physical channel fundamentals

– Physical channels can carry data in proportion to 
the signal and inversely in proportion to noise

– Modulation represents Digital data in analog 
channels

– Baseband vs. Broadband
– Synchronous vs. Aynchronous

Physical Channels / The Physical Layer
these example physical channels are also known as Physical Media

Twisted Pair (TP)

• two insulated copper 
wires
– Category 3: traditional 

phone wires, 10 Mbps 
Ethernet

– Category 8: 
25Gbps Ethernet

• Shielded (STP)
• Unshielded (UTP)

Coaxial cable:
• two concentric copper 

conductors
• bidirectional
• baseband:

– single channel on cable
– legacy Ethernet

• broadband:
– multiple channels on 

cable
– HFC (Hybrid Fiber Coax)

Fiber optic cable:
• high-speed operation
• point-to-point 

transmission

• (10’s-100’s Gbps)
• low error rate
• immune to 

electromagnetic 
noise
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More Physical media: Radio

• Bidirectional and multiple 
access

• propagation environment 
effects:
– reflection 

– obstruction by objects

– interference

Radio link types:
! terrestrial  microwave

" e.g. 90 Mbps channels
! LAN (e.g., Wifi)

" 11Mbps, 54 Mbps, 600 Mbps
! wide-area (e.g., cellular)

" 5G cellular: ~ 40 Mbps - 10Gbps
! satellite

" 27-50MHz typical bandwidth

" geosynchronous versus low 
altitude

" For geosync - 270 msec end-end 
delay to orbit

6

Physical Channel Characteristics
- Fundamental Limits -

symbol type: generally,
an analog waveform —
voltage, current, photo
intensity etc.

capacity: bandwidth

delay: speed of light in
medium and distance
travelled

fidelity: signal to noise
ratio

• measure of the range of frequencies of sinusoidal 
signal that channel supports

• E.g., a channel that supports sinusoids from 1 MHz to 
1.1 MHz has a bandwidth of 100 KHz

• “supports” in this context means “comes out the 
other end of the channel”

• some frequencies supported better than others

• analysing what happens to an arbitrary waveform is 
done by examining what happens to its component 
sinusoids → Fourier analysis

• bandwidth is a resource

7



Analog meet Digital

8

Analog meet Digital
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Square waves have high frequency components in them 

Channels attenuate frequencies irregularly: 
changing the shape of the signal 

Receiver signal is related to the transmitted signal +  noise

Noise may be systematic or random

Systematic noise from interfering equipment 
can in principle be eliminated (not always convenient)

Random noise caused by thermal vibration (thermal noise)

“White” noise is evenly distributed across frequencies 
signal to noise ratio S/N

more distance more noise 

Noise: Enemy of Communications

Attenuation, External Noise, 
Systematic, non-systematic, 
digitization, interference, reflection, ….
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Bandwidth vs Signal to Noise 

what’s better: high bandwidth or 
low signal to noise? 

• for channels with white noise 
have information capacity C
measured in bits per second, 
of a channel 

B is the bandwidth of the 
channel S/N is the ratio of 
received signal power to received 
noise power. 

• channels with no noise have 
infinite information capacity

• channels with any signal have 
nonzero information capacity

• channels with signal to noise 
ratio of unity have an 
information capacity in bits 
per second equal to its 
bandwidth in hertz 

• (This is actually NOT the 
definition of information 
capacity; it is derived from the 
definition) 
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(Digital) Channels

• Physical layer provides a 
channel

• Fixed rate for now

• Symbols are discrete values 
sent on the channel at fixed 
rate 

• Symbols need not be binary

• Fidelity of the channel usually 
measured as a bit error rate —
the probability that a bit sent 
as a 1 was interpreted as a 0 
by the receiver or vice versa. 

• Baud rate is the rate at which 
symbols can be transmitted 

• Data rate (or bit rate) is the 
equivalent number of binary 
digits which can be sent 

• E.g.,  if symbols represent with 
rate R then the data rate is 2 ×
R. 
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Modulation

Two definitions:

• Transform an information signal into a signal more 
appropriate for transmission on a physical medium 

• The systematic alteration of a carrier waveform by an 
information signal

In general, we mean the first here

(which encompasses the second). 

13



analog channel

Modulator Demodulator

digital in digital out
Digital channel
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Communications

15

Analog/Digital Digital/Analog

16

Recall from Digital Electronics

Conversion errors can occur in both directions
e.g.

Noise leads to incorrect digitization
Insufficient digitization resolution leads to information loss
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More Challenges

Where are the bits?

WHEN are the bits?

Bit boundaries can be asynchronous or synchronous

Asynchronous versus Synchronous
• Transmission is sporadic, divided into 

frames 

• Receiver and transmitter have 
oscillators which are close in frequency 
producing tx clocks and rx clock

• Receiver synchronises the phase of the 
rx clock with the tx clock by looking at 
one or more bit transitions 

• RX clock drifts with respect to the tx
clock but stays within a fraction of a bit 
of tx clock throughout the duration of a 
frame 

• Transmission time is limited by accuracy 
of oscillators 

• Transmission is continuous 

• Receiver continually adjusts its 
frequency to track clock from incoming 
signal 

• Requires bit transitions to inform clock

• Phase locked loop: rx clock predicts 
when incoming clock will change and 
corrects slightly when wrong. 
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Asynchronous versus Synchronous
• Transmission is sporadic, divided into 

frames 

• Receiver and transmitter have 
oscillators which are close in frequency 
producing tx clocks and rx clock
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frequency to track clock from incoming 
signal 

• Requires bit transitions to inform clock

• Phase locked loop: rx clock predicts 
when incoming clock will change and 
corrects slightly when wrong. 

19

Bit transitions are critical



Coding – a channel function
Change the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

20

MyPasswd

AA$$$$ff

MyPasswd

AA$$$$ff

AA$$$$ffff AA$$$$ffff
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Coding
Change the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

1. Encryption: MyPasswd <-> AA$$$$ff

2. Error Detection: AA$$$$ff <-> AA$$$$ffff

3. Compression: AA$$$$ffff <-> A2$4f4

4. Analog: A2$4f4 <->
22

0 1 1 1 1 10000

0 1 1 1 1 10000

0 1 1 1 1 10000

Non-Return-to-Zero (NRZ)

Non-Return-to-Zero-Mark (NRZM) 1 = transition 0 = no transition

Non-Return-to-Zero Inverted (NRZI) (note transitions on the 1)

Line Coding Examples

where Baud=bit-rate

23

0 1 0 1 1 11000

Non-Return-to-Zero (NRZ) (Baud = bit-rate)

Manchester example (Baud = 2 x bit-rate)

Clock

Line Coding Examples

0 1 0 1 1 11000

0 1 0 1 1 11000

Quad-level code (2 x Baud = bit-rate)

Clock

24

0 1 0 1 1 11000

Line Coding – Block Code example

Name 4b 5b Description

0 0000 11110 hex data 0

1 0001 01001 hex data 1

2 0010 10100 hex data 2

3 0011 10101 hex data 3

4 0100 01010 hex data 4

5 0101 01011 hex data 5

6 0110 01110 hex data 6

7 0111 01111 hex data 7

8  1000 10010 hex data 8

9  1001 10011 hex data 9

A 1010 10110 hex data A

B 1011 10111 hex data B

C 1100 11010 hex data C

D 1101 11011 hex data D

E 1110 11100 hex data E

F 1111 11101 hex data F

Name 4b 5b Description

Q -NONE- 00000 Quiet

I -NONE- 11111 Idle

J -NONE- 11000 SSD #1

K -NONE- 10001 SSD #2

T -NONE- 01101 ESD #1

R -NONE- 00111 ESD #2

H -NONE- 00100 Halt

0 1 1 0 0 11010

Block coding transfers data with a fixed
overhead: 20% less information per Baud in 
the case of 4B/5B

So to send data at 100Mbps; the line rate
(the Baud rate) must be 125Mbps.

1Gbps uses an 8b/10b codec; encoding 
entire bytes at a time but with 25% overhead

Data to send

Line-(Wire) representation

25



Line Coding Scrambling – with secrecy

Scrambling
Sequence

Scrambling
Sequence

Communications
ChannelMessage Message

Message
XOR

Sequence

Message
XOR

Sequence

26

Step 2

Step 1
….G8wDFrB

EAFDSWbzQ7

BW2fbdTqeT

ImrukTYwQY

ndYdKb4….

Scrambling
Sequence

Scrambling
Sequence

REPLICATE
SECURELY

Step 3 Don’t ever reuse Scrambling sequence, ever.  <<< this is quite important

DISTRIBUTE
SECURELY

Whitfield 
Diffie

Martin 
Hellman

Line Coding Scrambling– no secrecy

Scrambling
Sequence

Scrambling
Sequence

Communications
ChannelMessage Message

Message
XOR

Sequence

Message
XOR

Sequence

δ δ δ δ δ

e.g. (Self-synchronizing) scrambler

27

Line Coding Examples (Hybrid)

δ δ δ δ δδ δ δ δ δ

…100111101101010001000101100111010001010010110101001001110101110100…

Inserted bits marking “start of frame/block/sequence”

…10011110110101000101000101100111010001010010110101001001110101110100…

Scramble / Transmit / Unscramble

…0100010110011101000101001011010100100111010111010010010111011101111000…

Identify (and remove) “start of frame/block/sequence”
This gives you the Byte-delineations for free 
64b/66b combines a scrambler and a framer. The start of frame is a pair of bits 01 or 10: 01 means “this frame is 
data” 10 means “this frame contains data and control” – control could be configuration information, length of 
encoded data or simply “this line is idle” (no data at all) 

28

Multiple Access Mechanisms

Each dimension is orthogonal (so may be trivially combined)
Other dimensions may also be available…

29
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Code Division Multiple Access (CDMA)
(not to be confused with CSMA!)

• used  in several wireless broadcast channels (cellular, satellite, 
etc) standards 

• unique “code” assigned to each user; i.e., code set partitioning

• all users share same frequency, but each user has own 
“chipping” sequence (i.e., code) to encode data

• encoded signal = (original data) XOR (chipping sequence)

• decoding: inner-product of encoded signal and chipping 
sequence

• allows multiple users to “coexist” and transmit simultaneously 
with minimal interference (if codes are “orthogonal”)

33

CDMA Encode/Decode

slot 1 slot 0

d1 = -1

1 1 1 1

1- 1- 1- 1-

Zi,m= di
.cm

d0 = 1

1 1 1 1

1- 1- 1- 1-

1 1 1 1

1- 1- 1- 1-

1 1 11

1-1- 1- 1-

slot 0
channel
output

slot 1
channel
output

channel output Zi,m

sender
adds code code

data
bits

slot 1 slot 0

d1 = -1
d0 = 1

1 1 1 1

1- 1- 1- 1-

1 1 1 1

1- 1- 1- 1-

1 1 1 1

1- 1- 1- 1-

1 1 11

1-1- 1- 1-

slot 0
channel
output

slot 1
channel
outputreceiver

removes code

code

received
input

Di = S Zi,m
.cmm=1

M

M
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CDMA: two-sender interference

Each 
sender 
adds a 
unique
code

Sender one
removes
its unique
code
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Coding Examples summary

• Common Wired coding
– Block codecs: table-lookups

• fixed overhead, inline control signals

– Scramblers: shift registers
• overhead free

Like earlier coding schemes and error 
correction/detection; you can combine these

– e.g, 10Gb/s Ethernet may use a hybrid

CDMA (Code Division Multiple Access)
– coping intelligently with competing sources
– Mobile phones

36

Error Detection and Correction
Transmission media are not perfect and cause signal 
impairments:
1. Attenuation
– Loss of energy to overcome medium’s resistance

2. Distortion
– The signal changes its form or shape, caused in composite 

signals
3. Noise
– Thermal noise, induced noise, crosstalk, impulse noise

Interference can change the shape or timing of a signal: 
0 # 1 or 1 # 0



How to use coding to deal with errors in 
data communication?

Noise

0000 0001

Basic Idea : 

1. Add additional information (redundancy) to a message. 

2. Detect an error and discard      

Or, fix an error in the received message. 

0000 0000

Error Detection and Correction

38

Coding – a channel function
Change the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

39

MyPasswd

AA$$$$ff

MyPasswd

AA$$$$ff

AA$$$$ffff AA$$$$ffff
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Coding Examples
Changig the representation of data. 

Given Data Changed Data

Encoding 

Decoding 

1. Encryption: MyPasswd <-> AA$$$$ff

2. Error Detection: AA$$$$ff <-> AA$$$$ffff

3. Compression: AA$$$$ffff <-> A2$4f4

4. Analog: A2$4f4 <->
41

Error Detection Code: Parity
Add one bit, such that the number of all 1’s is even.

Noise

0000 0

0001 1

1001 0

0001 0

0001 1

1111 0

X
✓

Problem: This simple parity cannot detect two-bit errors.
42

✓

Error Detection Code
Sender: 
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) ERROR;
else NOERROR

Noise

=
=

43



Error Detection Code: CRC
• CRC means “Cyclic Redundancy Check”.
• “A sequence of redundant bits, called CRC, is appended to

the end of data so that the resulting data becomes exactly
divisible by a second, predetermined binary number.”

• CRC:= remainder (data÷ predetermined divisor)
• More powerful than parity. 

• It can detect various kinds of errors, including 2-bit errors.
• More complex: multiplication, binary division.
• Parameterized by n-bit divisor P. 

• Example: 3-bit divisor 101.
• Choosing good P is crucial.

44

CRC with 3-bit Divisor 101 

Multiplication by 23

D2 = D * 23

Binary Division by 101

CheckBit = (D2) rem (101)

1001

1001000

11

Add three 0’s at the end

00

1111000

1111

0

0

CRC Parity

same check bits from Parity,

but different ones from CRC

45
Kurose p478 §5.2.3
Peterson URL §2.4

Error Detection Code
Sender: 
Y = generateCRC(X div P);
send(X);
send(Y);

Receiver:

receive(X1);
receive(Y1);
Y2=generateCRC(X1Y1 div P);
if (Y2 != 0s) ERROR;
else NOERROR

Noise

0s == 
46

Transforming Error Detection to…
Sender: 
Y = generateCheckBit(X);
send(XY);

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) ERROR;
else NOERROR

Noise

=
=
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Forward Error Correction (FEC)
Sender: 
Y = generateCheckBit(X);
send(XY);

Noise

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) FIXERROR(X1Y1);
else NOERROR

!=

48

Forward Error Correction (FEC)
Sender: 
Y = generateCheckBit(X);
send(XY);

Noise

=
=

Receiver:

receive(X1Y1);
Y2=generateCheckBit(X1);
if (Y1 != Y2) FIXERROR(X1Y1);
else NOERROR

49



Basic Idea of Forward Error 
Correction

Replace erroneous data 

by its “closest” error-free data.

00 000

01 011

10 101

11 110

01 000
11 101

10 110

Good

Good
Good

Good

Bad
Bad Bad

3

4

2

1
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Error Detection vs Correction 
Error Correction:
• Cons: More check bits. False recovery.
• Pros: No need to re-send.
Error Detection:
• Cons: Need to re-send. 
• Pros: Less check bits. 
Usage:
• Correction: A lot of noise. Expensive to re-send.
• Detection: Less noise. Easy to re-send.
• Can be used together.

51
FEC: Kurose&Ross P618 §7.3.3

No Peterson&Davie reference
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Topic 3: The Data Link Layer
Our goals:
• understand principles behind data link layer services:

(these are methods & mechanisms in your networking toolbox)
– error detection, correction
– sharing a broadcast channel: multiple access
– link layer addressing
– reliable data transfer, flow control

• instantiation and implementation of various link 
layer technologies
– Wired Ethernet (aka 802.3)
– Wireless Ethernet (aka 802.11 WiFi)

• Algorithms
– Binary Exponential Back-off
– Spanning Tree (Dijkstra)

• General knowledge
– Random numbers are important and hard

53

Link Layer: Introduction
Some reminder-terminology:
• hosts and routers are nodes
• communication channels that 

connect adjacent nodes along 
communication path are links
– wired links

– wireless links

– LANs

• layer-2 packet is a frame,
encapsulates datagram

data-link layer has responsibility of 
transferring datagram from one node 
to adjacent node over a link

54

Link Layer (Channel) Services  - 1/2

• framing, physical addressing:
– encapsulate datagram into frame, adding header, trailer

– channel access if shared medium

– “MAC” addresses used in frame headers to identify source, destination  

• This is not an IP address!

• reliable delivery between adjacent nodes
– we revisit this again in the Transport Topic

– seldom used on low bit-error link (fiber, some twisted pair)

– wireless links: high error rates

55

Link Layer (Channel) Services – 2/2
• flow control:

– pacing between adjacent sending and receiving nodes

• error control:
– error detection:
– errors caused by signal attenuation, noise. 
– receiver detects presence of errors: 

• signals sender for retransmission or drops frame 
– error correction:
– receiver identifies and corrects bit error(s) without resorting to 

retransmission

• access control: half-duplex and full-duplex
– with half duplex, nodes at both ends of link can transmit, but not at same 

time
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Where is the link layer implemented?

• in each and every host
• link layer implemented in 
“adaptor” (aka network 
interface card NIC)
– Ethernet card, PCMCI card, 

802.11 card

– implements link, physical 
layer

• attaches into host’s system 
buses

• combination of hardware, 
software, firmware

controller

physical
transmission

cpu memory

host 
bus 
(e.g., PCI)

network adapter
card

host schematic

application
transport
network

link

link
physical
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Adaptors Communicating

• sending side:
– encapsulates datagram in frame
– encodes data for the physical 

layer
– adds error checking bits, 

provide reliability, flow control, 
etc.

• receiving side
– decodes data from the 

physical layer
– looks for errors, provide 

reliability, flow control, etc
– extracts datagram, passes to 

upper layer at receiving side

controller controller

sending host receiving host

datagram datagram

datagram

frame
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Multiple Access Links and Protocols
Two types of “links”:
• point-to-point

– point-to-point link between Ethernet switch and host

• broadcast (shared wire or medium)
– old-fashioned wired Ethernet (here be dinosaurs – extinct)
– upstream HFC (Hybrid Fiber-Coax – the Coax may be broadcast)
– Home plug / Powerline networking
– 802.11 wireless LAN

shared wire (e.g., 
Coax cabled Ethernet)

shared RF
(e.g., 802.11 WiFi)

shared RF
(satellite) 

humans at a
cocktail party 

(shared air, acoustical)

59

Multiple Access protocols
• single shared broadcast channel 
• two or more simultaneous transmissions by nodes: 

interference 
– collision if node receives two or more signals at the same time

multiple access protocol
• distributed algorithm that determines how nodes share 

channel, i.e., determine when node can transmit
• communication about channel sharing must use channel itself! 

– no out-of-band channel for coordination

60

Ideal Multiple Access Protocol

Broadcast channel of rate R bps
1. when one node wants to transmit, it can send at rate R
2. when M nodes want to transmit, 

each can send at average rate R/M
3. fully decentralized:

– no special node to coordinate transmissions

– no synchronization of clocks, slots

4. simple

61

MAC Protocols: a taxonomy
Three broad classes:
• Channel Partitioning

– divide channel into smaller “pieces” (time slots, frequency, code)

– allocate piece to node for exclusive use

• Random Access
– channel not divided, allow collisions

– “recover” from collisions

• “Taking turns”
– nodes take turns, but nodes with more to send can take longer 

turns
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Channel Partitioning MAC protocols: TDMA
(we discussed this earlier)

TDMA: time division multiple access
• access to channel in "rounds" 
• each station gets fixed length slot (length = pkt trans time) 

in each round 
• unused slots go idle 
• example: station LAN, 1,3,4 have pkt, slots 2,5,6 idle 

1 3 4 1 3 4

frame

6 slots
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Channel Partitioning MAC protocols: FDMA
(we discussed this earlier)

FDMA: frequency division multiple access
• channel spectrum divided into frequency bands
• each station assigned fixed frequency band
• unused transmission time in frequency bands go idle 
• example: station LAN, 1,3,4 have pkt, frequency bands 2,5,6 

idle 

fr
eq

ue
nc

y 
ba

nd
s

time

FDM cable
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“Taking Turns”MAC protocols

channel partitioning MAC protocols:

– share channel efficiently and fairly at high load
– inefficient at low load: delay in channel access, 1/N 

bandwidth allocated even if only 1 active node! 
random access MAC protocols:

– efficient at low load: single node can fully utilize 
channel

– high load: collision overhead
“taking turns” protocols:

look for best of both worlds!
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“Taking Turns”MAC protocols

Polling:
• Primary node “invites”

subordinates nodes to 
transmit in turn

• typically used with 
simpler subordinate 
devices

• concerns:
– polling overhead 

– latency

– single point of failure 
(primary)

primary

subordinates

poll

data

data
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“Taking Turns”MAC protocols
Token passing:
r control token passed from 

one node to next 
sequentially.

r token message
r concerns:

m token overhead 

m latency

m single point of failure (token)

m concerns fixed in part by a slotted 
ring (many simultaneous tokens)

T

data

(nothing
to send)

T

ATM

1 3 4 1 3 4

slot
frame

1 3 4 11 4

ATM = Asynchronous Transfer Mode – an ugly expression
think of it as ATDM – Asynchronous Time Division Multiplexing

That’s a variant of PACKET SWITCHING to the rest of us – just like Ethernet
but using fixed length slots/packets/cells

Use the media when you need it, but
ATM had virtual circuits and these needed setup….

In TDM a sender may only use a pre-allocated slot

In ATM a sender transmits labeled cells whenever necessary 

3

67



Random Access MAC Protocols
• When node has packet to send

– Transmit at full channel data rate
– No a priori coordination among nodes

• Two or more transmitting nodes Þ collision
– Data lost

• Random access MAC protocol specifies: 
– How to detect collisions
– How to recover from collisions 

• Examples 
– ALOHA and Slotted ALOHA
– CSMA, CSMA/CD, CSMA/CA (wireless)

68

Key Ideas of Random Access
• Carrier sense

– Listen before speaking, and don’t interrupt
– Checking if someone else is already sending data
– … and waiting till the other node is done

• Collision detection
– If someone else starts talking at the same time, stop
– Realizing when two nodes are transmitting at once
– …by detecting that the data on the wire is garbled

• Randomness
– Don’t start talking again right away
– Waiting for a random time before trying again

69

CSMA (Carrier Sense Multiple Access)

• CSMA: listen before transmit
– If channel sensed idle: transmit entire frame

– If channel sensed busy, defer transmission 

• Human analogy: don’t interrupt others!

• Does this eliminate all collisions?
– No, because of nonzero propagation delay

70

CSMA Collisions

71

Propagation delay: two 
nodes may not hear each 
other’s before sending.

Would slots hurt or help?

CSMA reduces but does not 
eliminate collisions

Biggest remaining problem?

Collisions still take full slot!
How do you fix that?

CSMA/CD (Collision Detection)
• CSMA/CD: carrier sensing, deferral as in CSMA

– Collisions detected within short time

– Colliding transmissions aborted, reducing wastage 

• Collision detection easy in wired LANs:
– Compare transmitted, received signals

• Collision detection difficult in wireless LANs:
– Reception shut off while transmitting (well, perhaps not)
– Not perfect broadcast (limited range) so collisions local
– Leads to use of collision avoidance instead (later)

72

CSMA/CD Collision Detection

73

B and D can tell that 
collision occurred.

Note: for this to work, 
need restrictions on 
minimum frame size and 
maximum distance.  Why?



Limits on CSMA/CD Network 
Length

• Latency depends on physical length of link
– Time to propagate a packet from one end to the other

• Suppose A sends a packet at time t
– And B sees an idle line at a time just before t+d
– … so B happily starts transmitting a packet

• B detects a collision, and sends jamming signal
– But A can’t see collision until t+2d

74

latency d
A B

Performance of CSMA/CD
• Time wasted in collisions

– Proportional to distance d

• Time spend transmitting a packet
– Packet length p divided by bandwidth b

• Rough estimate for efficiency (K some constant)

• Note:
– For large packets, small distances, E ~ 1

– As bandwidth increases, E decreases

– That is why high-speed LANs are all switched aka 
packets are sent via a switch - (any d is bad) 75

Ethernet: CSMA/CD Protocol

• Carrier sense: wait for link to be idle
• Collision detection: listen while transmitting

– No collision: transmission is complete
– Collision: abort transmission & send jam signal

• Random access: binary exponential back-off
– After collision, wait a random time before trying again
– After mth collision, choose K randomly from {0, …, 2m-1}
– … and wait for K*512 bit times before trying again

• Using min packet size as “slot”
• If transmission occurring when ready to send, wait until end of 

transmission (CSMA)
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Benefits of Ethernet
• Easy to administer and maintain
• Inexpensive
• Increasingly higher speed
• Evolvable!
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Evolution of Ethernet
• Changed everything except the frame format

– From single coaxial cable to hub-based star
– From shared media to switches
– From electrical signaling to optical

• Lesson #1
– The right interface can accommodate many changes
– Implementation is hidden behind interface

• Lesson #2
– Really hard to displace the dominant technology
– Slight performance improvements are not enough

79 80
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The Wireless Spectrum

81

Metrics for evaluation / comparison of wireless 

technologies

• Bitrate or Bandwidth
• Range - PAN, LAN, MAN, WAN  
• Two-way / One-way 
• Multi-Access / Point-to-Point
• Digital / Analog
• Applications and industries
• Frequency – Affects most physical properties:

Distance (free-space loss)
Penetration, Reflection, Absorption
Energy proportionality 
Policy: Licensed / Deregulated
Line of Sight (Fresnel zone)
Size of antenna 

$ Determined by wavelength – )
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Wireless Communication Standards 
• Cellular (800/900/1700/1800/1900Mhz):

– 2G: GSM / CDMA / GPRS /EDGE
– 3G: CDMA2000/UMTS/HSDPA/EVDO 
– 4G: LTE, WiMax

• IEEE 802.11 (aka WiFi): (some examples)

– b:  2.4Ghz band, 11Mbps (~4.5 Mbps operating rate)
– g:  2.4Ghz, 54-108Mbps (~19 Mbps operating rate)
– a:  5.0Ghz band, 54-108Mbps (~25 Mbps operating rate)
– n:  2.4/5Ghz, 150-600Mbps (4x4 mimo)
– ac: 2.4/5Ghz, 433-1300Mbps (improved coding 256-QAM)
– ad: 60Ghz, 7Gbps 
– af: 54/790Mhz, 26-35Mbps (TV whitespace)

• IEEE 802.15 – lower power wireless:

– 802.15.1:  2.4Ghz, 2.1 Mbps (Bluetooth)
– 802.15.4:  2.4Ghz, 250 Kbps (Sensor Networks)
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What Makes Wireless Different?

• Broadcast and multi-access medium…
– err, so….

• BUT, Signals sent by sender don’t always end 
up at receiver intact
– Complicated physics involved, which we won’t 

discuss

– But what can go wrong?

84

Lets focus on 802.11

aka - WiFi … 
What makes it special?

Deregulation > Innovation > Adoption > Lower cost = Ubiquitous technology

JUST LIKE ETHERNET – not lovely but sufficient
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802.11 Architecture

• Designed for limited area
• AP’s (Access Points) set to specific channel
• Broadcast beacon messages with SSID (Service Set Identifier) and MAC Address 

periodically

• Hosts scan all the channels to discover the AP’s
– Host associates with AP

802.11 frames 
exchanges

802.3 (Ethernet) 
frames exchanged

86



Wireless Multiple Access Technique?

• Carrier Sense?
– Sender can listen before sending

– What does that tell the sender?

• Collision Detection?
– Where do collisions occur?

– How can you detect them?

87

• A and C can both send to B but can’t hear each other
– A is a hidden terminal for C and vice versa

• Carrier Sense will be ineffective

Hidden Terminals

A B C

transmit range

88

Exposed Terminals

• Exposed node: B sends a packet to A; C hears this and decides 
not to send a packet to D (despite the fact that this will not 
cause interference)!

• Carrier sense would prevent a successful transmission.

A B C D

89

Key Points

• No concept of a global collision
– Different receivers hear different signals
– Different senders reach different receivers

• Collisions are at receiver, not sender
– Only care if receiver can hear the sender clearly
– It does not matter if sender can hear someone else
– As long as that signal does not interfere with receiver

• Goal of protocol:
– Detect if receiver can hear sender
– Tell senders who might interfere with receiver to shut up

90

Basic Collision Avoidance

• Since can’t detect collisions, we try to avoid
them

• Carrier sense:
– When medium busy, choose random interval
– Wait that many idle timeslots to pass before sending 

• When a collision is inferred, retransmit with 
binary exponential backoff (like Ethernet) 
– Use ACK from receiver to infer “no collision”
– Use exponential backoff to adapt contention window

91

CSMA/CA -MA with Collision Avoidance

• Before every data transmission 
– Sender sends a Request to Send (RTS) frame containing the length of the 

transmission
– Receiver respond with a Clear to Send (CTS) frame
– Sender sends data
– Receiver sends an ACK; now another sender can send data

• When sender doesn’t get a CTS back, it assumes collision 

sender receiver
other node in 
sender’s range

RTS

ACK

data
CTS

92



CSMA/CA, con’t

• If other nodes hear RTS, but not CTS: send
– Presumably, destination for first sender is out of node’s 

range …
– … Can cause problems when a CTS is lost

• When you hear a CTS, you keep quiet until scheduled 
transmission is over (hear ACK)

sender receiver
other node in 
sender’s range

RTS

ACK

data
CTS
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Overcome hidden terminal problems with 
contention-free protocol
1. B sends to C Request To Send (RTS)
2. A hears RTS and defers (to allow C to answer)
3. C replies to B with Clear To Send (CTS)
4. D hears CTS and defers to allow the data
5. B sends to C

RTS / CTS Protocols (CSMA/CA)

B C D
RTS

CTS
A

B sends to C
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Preventing Collisions Altogether
• Frequency Spectrum partitioned into several channels

– Nodes within interference range can use separate channels

– Now A and C can send without any interference!
• Most cards have only 1 transceiver

– Not Full Duplex:  Cannot send and receive at the same time

– Aggregate Network throughput doubles

A
B

C
D

95 96
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Wifi has been evolving!

Using dual band (2.4GHz + 5GHz), multiple channels, MIMO, Meshing WiFi

Outside this introduction but the state of the art is very fast and very flexible



CSMA/CA and RTS/CTS

sender receiver
RTS

ACK

data
CTS
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sender receiver

ACK

data

RTS/CTS

• helps with hidden terminal

• good for high-traffic Access Points

• often turned on/off dynamically

Without RTS/CTS

• lower latency -> faster!

• reduces wasted b/w

if the Pr(collision) is low

• good for when net is small and 
not weird

eg no hidden/exposed terminals

CSMA/CD vs CSMA/CA
(without RTS/CTS) 

CD Collision Detect
wired – listen and talk

1. Listen for others
2. Busy? goto 1.
3. Send message (and listen)
4. Collision?

a. JAM
b. increase your BEB
c. sleep
d. goto 1.

CA Collision Avoidance
wireless – talk OR listen

1. Listen for others
2. Busy? goto 1.
3. Send message
4. Wait for ACK (MAC ACK)
5. Got No ACK from MAC?

a. increase your BEB
b. sleep
c. goto 1. 

100
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Summary of MAC protocols

• channel partitioning, by time, frequency or code
– Time Division (TDMA), Frequency Division (FDMA), Code Division (CDMA)

• random access (dynamic), 
– ALOHA, S-ALOHA, CSMA, CSMA/CD

– carrier sensing: easy in some technologies (wire), hard in others 
(wireless)

– CSMA/CD used in (old-style, coax) Ethernet, and PowerLine

– CSMA/CA used in 802.11

• taking turns
– polling from central site, token passing

– Bluetooth, FDDI, IBM Token Ring 

102

MAC Addresses 

• MAC (or LAN or physical or Ethernet) address:
– function: get frame from one interface to another 

physically-connected interface (same network)
– 48 bit MAC address (for most LANs)

• burned in NIC ROM, nowadays usually software 
settable and set at boot time

103

LAN Address (more)

• MAC address allocation administered by IEEE
• manufacturer buys portion of MAC address space (to assure 

uniqueness)
• analogy:

(a) MAC address: like a National Insurance Number
(b) IP address: like a postal address

• MAC flat address  ➜ portability 
– can move LAN card from one LAN to another

• IP hierarchical address NOT portable
– address depends on IP subnet to which node is attached
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Hubs
… physical-layer (“dumb”) repeaters:

– bits coming in one link go out all other links at same rate
– all nodes connected to hub can collide with one another
– no frame buffering
– no CSMA/CD at hub: host NICs detect collisions

Co-ax or twisted pair

hub

Collision Domain
in CSMA/CD speak



CSMA in our home
Home Plug Powerline Networking….

105

Home Plug and similar Powerline 
Networking….

106

Collision Domain
in CSMA speak

To secure network traffic on a specific HomePlug network, each set of 
adapters use an encryption key  common to a specific HomePlug network
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Switch (example: Ethernet Switch)
• link-layer device: smarter than hubs, take active role

– store, forward Ethernet frames
– examine incoming frame’s MAC address, selectively

forward  frame to one-or-more outgoing links when 
frame is to be forwarded on segment, uses CSMA/CD to 
access segment

• transparent
– hosts are unaware of presence of switches

• plug-and-play, self-learning
– switches do not need to be configured

If you want to connect different physical media
(optical – copper – coax – wireless - ….) 

you NEED a switch.
Why? (Because each link, each media access protocol is specialised)
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Switch:  allows multiple simultaneous 
transmissions

• hosts have dedicated, direct 
connection to switch

• switches buffer packets
• Ethernet protocol used on each

incoming link, but no collisions; 
full duplex
– each link is its own collision 

domain

• switching: A-to-A’ and B-to-B’
simultaneously, without 
collisions 
– not possible with dumb hub

A

A’

B

B’

C

C’

switch with six interfaces
(1,2,3,4,5,6)

1 2
3

45

6
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Switch Table

• Q: how does switch know that A’
reachable via interface 4, B’
reachable via interface 5?

• A: each switch has a switch table, 
each entry:
– (MAC address of host, interface to 

reach host, time stamp)

• looks like a routing table!
• Q: how are entries created, 

maintained in switch table? 
– something like a routing protocol?

A

A’

B

B’

C

C’

switch with six interfaces
(1,2,3,4,5,6)

1 2
3

45

6

110

Switch: self-learning

• switch learns which hosts can 
be reached through which 
interfaces
– when frame received, switch 
“learns” location of sender: 
incoming LAN segment

– records sender/location pair in 
switch table

A

A’

B

B’

C

C’

1 2
3

45

6

A A’

Source: A
Dest: A’

MAC addr interface        TTL

Switch table 
(initially empty)

A 1 60
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Switch: frame filtering/forwarding
When  frame received:

1. record link associated with sending host
2. index switch table using MAC dest address
3. if entry found for destination

then {

if dest on segment from which frame arrived
then drop the frame

else forward the frame on interface indicated
}   

else flood forward on all but the interface 
on which the frame arrived
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Self-learning, 
forwarding: 

example
A

A’

B

B’

C

C’

1 2
3

45

6

A A’

Source: A
Dest: A’

MAC addr interface      TTL

Switch table 
(initially empty)

A 1 60

A A’A A’A A’A A’A A’

• frame destination 
unknown: flood

A’ A

r destination A location 
known:

A’ 4 60

selective send
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Interconnecting switches

• switches can be connected together

A

B

r Q: sending from A to G - how does S1 know to forward 
frame destined to F via S4 and S3?

r A: self learning! (works exactly the same as in single-switch 
case – flood/forward/drop)

S1

C D

E

F
S2

S4

S3

H

I

G

Flooding Can Lead to Loops
• Flooding can lead to forwarding loops

– E.g., if the network contains a cycle of switches
– “Broadcast storm”
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Solution: Spanning Trees
• Ensure the forwarding topology has no loops

– Avoid using some of the links when flooding
– … to prevent loop from forming

• Spanning tree  
– Sub-graph that covers all vertices but contains no 

cycles
– Links not in the spanning tree do not forward frames

Graph Has Cycles!

Graph Has 
No Cycles!

115

What Do We Know?

• “Spanning tree algorithm is an algorithm to create a
tree out of a graph that includes all nodes with a
minimum number of edges connecting to vertices.”

• Shortest paths to (or from) a node form a tree

• So, algorithm has two aspects :
– Pick a root
– Compute shortest paths to it

• Only keep the links on shortest-path

116



Constructing a Spanning Tree
• Switches need to elect a root

– The switch w/ smallest identifier (MAC addr)
• Each switch determines if each interface 

is on the shortest path from the root
– Excludes it from the tree if not

• Messages (Y, d, X)
– From node X
– Proposing Y as the root
– And the distance is d

root

One hop

Three hops117

Steps in Spanning Tree Algorithm
• Initially, each switch proposes itself as the root

– Switch sends a message out every interface
– … proposing itself as the root with distance 0
– Example: switch X announces (X, 0, X)

• Switches update their view of the root
– Upon receiving message (Y, d, Z) from Z, check Y’s id
– If new id smaller, start viewing that switch as root

• Switches compute their distance from the root
– Add 1 to the distance received from a neighbor
– Identify interfaces not on shortest path to the root
– … and exclude them from the spanning tree

• If root or shortest distance to it changed, “flood” 
updated message (Y, d+1, X)
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Example From Switch #4’s Viewpoint
• Switch #4 thinks it is the root

– Sends (4, 0, 4) message to 2 and 7

• Then, switch #4 hears from #2
– Receives (2, 0, 2) message from 2

– … and thinks that #2 is the root

– And realizes it is just one hop away

• Then, switch #4 hears from #7
– Receives (2, 1, 7) from 7

– And realizes this is a longer path

– So, prefers its own one-hop path

– And removes 4-7 link from the tree

1

5

#root
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7

2
4

3

6

Example From Switch #4’s Viewpoint
• Switch #2 hears about switch #1

– Switch 2 hears (1, 1, 3) from 3

– Switch 2 starts treating 1 as root

– And sends (1, 2, 2) to neighbors

• Switch #4 hears from switch #2
– Switch 4 starts treating 1 as root

– And sends (1, 3, 4) to neighbors

• Switch #4 hears from switch #7
– Switch 4 receives (1, 3, 7) from 7

– And realizes this is a longer path

– So, prefers its own three-hop path

– And removes 4-7 Iink from the tree

1

2

3

4

5
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#root

6
7

Robust Spanning Tree Algorithm
• Algorithm must react to failures

– Failure of the root node
• Need to elect a new root, with the next lowest identifier

– Failure of other switches and links
• Need to recompute the spanning tree

• Root switch continues sending messages
– Periodically reannouncing itself as the root (1, 0, 1)
– Other switches continue forwarding messages

• Detecting failures through timeout (soft state)
– If no word from root, times out and claims to be the root
– Delay in reestablishing spanning tree is major problem
– Work on rapid spanning tree algorithms…

Given a switch-tree of a given size, link length, speed of 
computation, …

How long does a failure take to rectify?
121



1

Topic 4: Network Layer
Our goals:
• understand principles behind network layer 

services:
– network layer service models
– forwarding versus routing (versus switching)
– how a router works
– routing (path selection)
– IPv6

For the most part, the Internet is our example – again.

Name: a something

Address: Where is a something

Routing: How do I get to the something

Forwarding: What path do I take next
to get to the something

2

Recall: Network layer is responsible 
for GLOBAL delivery

Addressing (at a conceptual level)

• Assume all hosts have unique IDs

• No particular structure to those IDs

• Later in topic I will talk about real IP addressing

• Do I route on location or identifier? 

• If a host moves, should its address change?
– If not, how can you build scalable Internet?
– If so, then what good is an address for identification?

3 3

Packets (at a conceptual level)

• Assume packet headers contain:
– Source ID, Destination ID, and perhaps other 

information

4

Destination
Identifier

Source
Identifier

Payload

Why include
this?

Switches/Routers

• Multiple ports (attached to other switches or hosts)

• Ports are typically duplex (incoming and outgoing)

5

incoming links outgoing linksSwitch

A Variety of (Internet Protocol-based) Networks

• ISPs: carriers
– Backbone
– Edge
– Border (to other ISPs)

• Enterprises: companies, universities
– Core
– Edge
– Border (to outside)

• Datacenters: massive collections of machines
– Top-of-Rack
– Aggregation and Core
– Border (to outside)

6



A Variety of (Internet Protocol-based) Routers

• ISPs: carriers
– Backbone
– Edge
– Border (to other ISPs)

• Enterprises: companies, universities
– Core
– Edge
– Border (to outside)

• Datacenters: massive collections of machines
– Top-of-Rack
– Aggregation and Core
– Border (to outside)
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Switches forward packets

EDINBURGH

OXFORD

GLASGOW

UCL

Destination Next Hop

GLASGOW 4

OXFORD 5

EDIN 2

UCL 3

Forwarding Table
111010010 EDIN

switch#2

switch#5

switch#3

switch#4

8

Forwarding Decisions

• When packet arrives..
– Must decide which outgoing port to use
– In single transmission time 
– Forwarding decisions must be simple

• Routing state dictates where to forward packets
– Assume decisions are deterministic

• Global routing state is the collection of routing state in 
each of the routers
– Will focus on where this routing state comes from
– But first, a few preliminaries….

9

Forwarding vs Routing

• Forwarding: “data plane”
– Directing a data packet to an outgoing link
– Individual router using routing state

• Routing: “control plane”
– Computing paths the packets will follow
– Routers talking amongst themselves
– Jointly creating the routing state

• Two very different timescales….

10

Router definitions

1

2

3

45
…

N-1

N

• N = number of external router “ports”
• R = speed (“line rate”) of a port
• Router capacity = N x R

R bits/sec

Networks and routers

AT&T INTEL

MIT

JANET

core

core

edge (ISP)

edge (enterprise)

home,
small business

BT



Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
R3E
R3D
Next HopDestination

D

Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
R4E
R4D
Next HopDestination

D

Basic Operation of Router
R3

A

B

C

R1

R2

R4 D

E

FR5

R5F
Port EE
Port DD
Next HopDestination

D

What does a router do?

A

B

C

R1

R2

R3

R4 D

E

FR5

1. Every router performs a per-packet lookup for every packet
2. Each router performs a lookup in it’s local lookup table
3. Each router performs lookups (ENTIRELY) independently of every other router

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control 
Processor

Linecards (output)

Processes packets
on their way in

Processes packets
before they leave

Transfers packets 
from input to 
output ports

Input and Output for
the same port are on one 

physical linecard

What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
(Switching)

Fabric

Route/Control 
Processor

Linecards (output)

(1) Implement IGP
and BGP protocols;

compute routing tables
(2) Push forwarding 

tables to the line cards



What’s inside a router?

1

2

N

1

2

N

Linecards (input)

Interconnect
Fabric

Route/Control 
Processor

Linecards (output)

Constitutes the 
data plane

Constitutes the 
control plane

A decision for 
each packet.

Makes decisions 
over long time 
horizons : network 
change

Context and Terminology
“End hosts”

“Clients”, “Users”
“End points”

“Interior Routers”

“Border Routers”

“Autonomous System (AS)” or “Domain”

Region of a network under a single administrative entity

“Route” or “Path”

21

Context and Terminology

111010010

M
I
T

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

Destination 

MIT
Internet routing protocols are responsible for constructing 

and updating the forwarding tables at routers

Routing Protocols

• Routing protocols implement the core function of a network
– Establish paths between nodes
– Part of the network’s “control plane” 

• Network modeled as a graph
– Routers are graph vertices 
– Links are edges
– Edges have an associated “cost”

• e.g., distance, loss  

• Goal: compute a “good” path from source to destination
– “good” usually means the shortest (least cost) path

A

ED

CB

F

2
2

1
3

1

1

2

5
3

5
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Internet Routing

• Internet Routing works at two levels

• Each AS runs an intra-domain routing protocol that 
establishes routes within its domain 
– (AS -- region of network under a single administrative entity)

– Link State, e.g., Open Shortest Path First (OSPF)

– Distance Vector, e.g., Routing Information Protocol (RIP)

• ASes participate in an inter-domain routing protocol that 
establishes routes between domains
– Path Vector, e.g., Border Gateway Protocol (BGP)

24

Addressing (to date)
- a reminder -

• Recall each host has a unique ID (address)

• No particular structure to those IDs
(e.g. Ethernet)

• IP addressing – in contrast – has implicit 
structure

25



Outline
• Popular Routing Algorithms:

– Link State Routing
– Distance Vector Algorithm 

• Routing: goals and metrics

26

Link-State Routing

27

Examples:

Open Shortest Path First (OSPF) or 
Intermediate System to Intermediate System

(written as IS-IS/ISIS and pronounced eye-esss-eye-esss)

The two common Intradomain routing or
interior gateway protocols (IGP)

Link State Routing
• Each node maintains its local “link state” (LS)

– i.e., a list of its directly attached links and their costs

(N1,N2)
(N1,N4)
(N1,N5)

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6
28

Link State Routing
• Each node maintains its local “link state” (LS)
• Each node floods its local link state 

– on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message from

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)
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Link State Routing
• Each node maintains its local “link state” (LS)
• Each node floods its local link state 
• Hence, each node learns the entire network topology

– Can use Dijkstra’s to compute the shortest paths between nodes

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7N6

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C
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Dijkstra’s Shortest Path Algorithm
• INPUT:

– Network topology (graph), with link costs

• OUTPUT:
– Least cost paths from one node to all other nodes

• Iterative: after k iterations, a node knows the 
least cost path to its k closest neighbors

• This is covered in Algorithms

31



• Running Dijkstra at node A gives the shortest 
path from A to all destinations

• We then construct the forwarding table

The Forwarding Table

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5 Destination Link
B (A,B)

C (A,D)

D (A,D)

E (A,D)

F (A,D)
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Issue #1: Scalability

• How many messages needed to flood link state messages? 
– O(N x E), where N is #nodes; E is #edges in graph

• Processing complexity for Dijkstra’s algorithm?
– O(N2), because we check all nodes w not in S at each 

iteration and we have O(N) iterations
– more efficient implementations: O(N log(N))

• How many entries in the LS topology database? O(E)

• How many entries in the forwarding table? O(N)

33

• Inconsistent link-state database
– Some routers know about failure before 

others
– The shortest paths are no longer consistent
– Can cause transient forwarding loops

Issue#2: Transient Disruptions

A

ED

CB

F

A and D think that this
is the path to C

E thinks that this
is the path to C

A

ED

CB

F

Loop!
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Distance Vector Routing

35

Learn-By-Doing

Let’s try to collectively develop
distance-vector routing from first principles
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Experiment
• Your job: find the (route to) the youngest person in the room

• Ground Rules
– You may not leave your seat, nor shout loudly

across the class 
– You may talk with your immediate neighbors

(N-S-E-W only) 
(hint: “exchange updates” with them)

• At the end of 5 minutes, I will pick a victim and ask: 
– who is the youngest person in the room? (date&name)
– which one of your neighbors first told you this info.? 

37
EQUIPMENT REQUIRED: PIECE OF PAPER and a PEN (or your emotional equivalent)



Go!
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Distance-Vector Routing
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Example:

Routing Information Protocol (RIP)

Example of Distributed Computation

I am one hop away

I am one hop away

I am one hop away

I am two hops away

I am two hops away

I am two hops away

I am two hops away

I am three hops away

I am three hops away

Destination
I am three hops away
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Distance Vector Routing

Each router sends its knowledge about the “whole” network
to its neighbors. Information sharing at regular intervals.

• Each router knows the links to its neighbors
– Does not flood this information to the whole network

• Each router has provisional “shortest path” to 
every other router
– E.g.:  Router A: “I can get to router B with cost 11”

• Routers exchange this distance vector information with 
their neighboring routers
– Vector because one entry per destination

• Routers look over the set of options offered by their 
neighbors and select the best one

• Iterative process converges to set of shortest paths
41

A few other inconvenient truths

• What if we use a non-additive metric?
– E.g., maximal capacity

• What if routers don’t use the same metric?
– I want low delay, you want low loss rate?

• What happens if nodes lie?

42

Can You Use Any Metric?

• I said that we can pick any metric.  Really?
• What about maximizing capacity?

43



What Happens Here?
All nodes want to maximize capacityA high capacity link gets reduced to low capacityProblem:“cost” does not change around loop

Additive measures avoid this problem! 44

No agreement on metrics?

• If the nodes choose their paths according to 
different criteria, then bad things might happen

• Example
– Node A is minimizing latency

– Node B is minimizing loss rate

– Node C is minimizing price

• Any of those goals are fine, if globally adopted
– Only a problem when nodes use different criteria

• Consider a routing algorithm where paths are 
described by delay, cost, loss

45

What Happens Here?

Low price link

Low loss link

Low delay linkLow loss link

Low delay link

Low price link

Cares about price, 
then loss

Cares about delay,
then price

Cares about loss,
then delay

46

Must agree on loop-avoiding metric

• When all nodes minimize same metric

• And that metric increases around loops

• Then process is guaranteed to converge

47

What happens when routers lie?

• What if a router claims a 1-hop path to 
everywhere?

• All traffic from nearby routers gets sent there

• How can you tell if they are lying?

• Can this happen in real life?
– It has, several times….

48

Link State vs. Distance Vector

• Core idea
– LS: tell all nodes about your immediate neighbors
– DV: tell your immediate neighbors about (your least 

cost distance to) all nodes

49



Link State vs. Distance Vector

• LS: each node learns the complete network map; each node 
computes shortest paths independently and in parallel

• DV: no node has the complete picture; nodes cooperate to 
compute shortest paths in a distributed manner

!LS has higher messaging overhead
!LS has higher processing complexity
!LS is less vulnerable to looping

50

Link State vs. Distance Vector

Message complexity

• LS: O(NxE) messages; 

– N is #nodes; E is #edges

• DV: O(#Iterations x E)

– where #Iterations is ideally 
O(network diameter) but varies due 
to routing loops or the 
count-to-infinity problem

Processing complexity

• LS: O(N2)

• DV: O(#Iterations x N)

Robustness: what happens if router 

malfunctions?

• LS: 

– node can advertise incorrect link
cost

– each node computes only its own
table

• DV:

– node can advertise incorrect path
cost

– each node’s table used by others; 
error propagates through network

51

Routing: Just the Beginning

• Link state and distance-vector are the 
deployed routing paradigms for intra-domain 
routing 

• Inter-domain routing (BGP)
– more Part II (Principles of Communications)
– A version of DV

52

What are desirable goals for a routing 
solution?

• “Good” paths (least cost)
• Fast convergence after change/failures

– no/rare loops

• Scalable 
– #messages

– table size 

– processing complexity

• Secure
• Policy
• Rich metrics (more later)
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Delivery models

• What if a node wants to send to more than 
one destination?
– broadcast: send to all
– multicast: send to all members of a group
– anycast: send to any member of a group

• What if a node wants to send along more 
than one path?

54

Metrics

• Propagation delay
• Congestion
• Load balance
• Bandwidth (available, capacity, maximal, bbw)
• Price
• Reliability 
• Loss rate 
• Combinations of the above

In practice, operators set abstract “weights” (much 
like our costs); how exactly is a bit of a black art

55



From Routing back to Forwarding

• Routing: “control plane”
– Computing paths the packets will follow
– Routers talking amongst themselves
– Jointly creating the routing state

• Forwarding: “data plane”
– Directing a data packet to an outgoing link
– Individual router using routing state

• Two very different timescales….

56
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Basic Architectural Components
of an IP Router

Control Plane
network-change

processing

Datapath
per-packet 
processing

Switching
Forwarding

Table

Routing
Table

Routing 
Protocols

Management
& CLI

S
oftw

are
H

ardw
are
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Independent operation!

Control Plane
network-change

processing

Datapath
per-packet 
processing

Switching
Forwarding

Table

Routing
Table

Routing 
Protocols

Management
& CLI

S
oftw

are
H

ardw
are

If the control-plane fails…..

The data-path is not affected…
like a loyal pet it will keep going using the current (last) 

table update

This is a feature not a bug
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Per-packet processing in an IP 
Router

1. Accept packet arriving on an incoming link.
2. Lookup packet destination address in the 

forwarding table, to identify outgoing port(s).
3. Manipulate packet header: e.g., decrement 

TTL, update header checksum.
4. Send packet to the outgoing port(s).
5. Buffer packet in the queue.
6. Transmit packet onto outgoing link.

60

Generic Router Architecture

Lookup
IP Address

Update
Header

Header Processing
Data Hdr Data Hdr

~1M prefixes
Off-chip DRAM

Address
Table

IP Address Next Hop

Queue
Packet

Buffer
Memory

~1M packets
Off-chip DRAM

Forwarding tables

Entry Destination Port
1
2
⋮

232

0.0.0.0
0.0.0.1
⋮

255.255.255.255

1
2
⋮

12
~ 4 billion entries

Naïve approach:
One entry per address

Improved approach:
Group entries to reduce table size
Entry Destination Port

1
2
⋮

50

0.0.0.0 – 127.255.255.255
128.0.0.1 – 128.255.255.255

⋮
248.0.0.0 – 255.255.255.255

1
2
⋮

12

IP address 32 bits wide → ~ 4 billion unique address

61
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Generic Router Architecture
Lookup

IP Address
Update
Header

Header Processing

Address
Table

Lookup
IP Address

Update
Header

Header Processing

Address
Table

Lookup
IP Address

Update
Header

Header Processing

Address
Table

Data Hdr

Data Hdr

Data Hdr

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Buffer
Manager

Buffer
Memory

Data Hdr

Data Hdr

Data Hdr

IP addresses as a line

0 232-1

Entry Destination Port
1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

All IP addresses

EuropeUSA

OxfordCambridge

Your computer My computer
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Longest Prefix Match (LPM)

Entry Destination Port
1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Universities

Continents

Planet

DataTo: 

Cambridge

Matching entries:
• Cambridge
• Europe
• Everywhere

Most specific
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Longest Prefix Match (LPM)

Entry Destination Port
1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Universities

Continents

Planet

DataTo: France

Matching entries:
• Europe
• Everywhere

Most specific
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Implementing Longest Prefix Match

Entry Destination Port
1
2
3
4
5

Cambridge
Oxford
Europe

USA
Everywhere (default)

1
2
3
4
5

Most specific

Least specific

Searching

FOUND
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Forwarding table realities

67

• High Speed: Must be “packet-rate” lookup
• about 200M lookups / second for 100Gbps

• Large (messy) tables – (BGP Jan 2021 stats)
• 866,000+ routing prefix entries for IPv4
• 104,000+ routing prefix entries for IPv6

• Changing and Growing
the harsh side of “up and to the right”

Hudson 2020 report https://blog.apnic.net/2021/01/05/bgp-in-2020-the-bgp-table/

Open problems : continual growth is continual demand for innovation 
opportunities in control, algorithms, & network hardware
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The Internet version of a Network layer

forwarding
table

Host, router network layer functions:

Routing protocols
•path selection
•RIP, OSPF, BGP

IP protocol
•addressing conventions
•datagram format
•packet handling conventions

ICMP protocol
•error reporting
•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer

IPv4 Packet Structure
20 Bytes of Standard Header, then Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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(Packet) Network Tasks One-by-One

• Read packet correctly
• Get packet to the destination
• Get responses to the packet back to source
• Carry data
• Tell host what to do with packet once arrived
• Specify any special network handling of the 

packet
• Deal with problems that arise along the path

70 71

Reading Packet 
Correctly

• Version number (4 bits)
– Indicates the version of the IP protocol
– Necessary to know what other fields to expect
– Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
– Number of 32-bit words in the header
– Typically “5” (for a 20-byte IPv4 header)
– Can be more when IP options are used

• Total length (16 bits)
– Number of bytes in the packet
– Maximum size is 65,535 bytes (216 -1)
– … though underlying links may impose smaller limits

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Getting Packet to 
Destination and Back

• Two IP addresses
– Source IP address (32 bits)

– Destination IP address (32 bits)

• Destination address
– Unique identifier/locator for the receiving host

– Allows each node to make forwarding decisions

• Source address
– Unique identifier/locator for the sending host

– Recipient can decide whether to accept packet

– Enables recipient to send a reply back to source

72

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Telling Host How to 
Handle Packet

• Protocol (8 bits)
– Identifies the higher-level protocol

– Important for demultiplexing at receiving host

• Most common examples
– E.g., “6” for the Transmission Control Protocol (TCP)

– E.g., “17” for the User Datagram Protocol (UDP)

IP header IP header

TCP header UDP header

protocol=6 protocol=17

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Special Handling

• Type-of-Service (8 bits)
– Allow packets to be treated differently based on 

needs
– E.g., low delay for audio, high bandwidth for bulk 

transfer
– Has been redefined several times

• Options

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Potential Problems

• Header Corrupted: Checksum

• Loop: TTL

• Packet too large: Fragmentation
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Header Corruption

• Checksum (16 bits)
– Particular form of checksum over packet header

• If not correct, router discards packets
– So it doesn’t act on bogus information

• Checksum recalculated at every router
– Why?

– Why include TTL?

– Why only header?
76

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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Preventing Loops
(aka Internet Zombie plan)

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

• Forwarding loops cause packets to cycle forever
– As these accumulate, eventually consume all capacity

• Time-to-Live (TTL) Field  (8 bits)
– Decremented at each hop, packet discarded if reaches 0

– …and “time exceeded” message is sent to the source

• Using “ICMP” control message; basis for traceroute
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Fragmentation
(some assembly required)

• Fragmentation: when forwarding a packet, an 
Internet router can split it into multiple pieces 
(“fragments”) if too big for next hop link

• Must reassemble to recover original packet
– Need fragmentation information (32 bits)
– Packet identifier, flags, and fragment offset

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

IP Fragmentation & Reassembly
• network links have MTU 

(max.transfer size) - largest 
possible link-level frame.
– different link types, different 

MTUs 
• large IP datagram divided 

(“fragmented”) within net
– one datagram becomes 

several datagrams
– “reassembled” only at final 

destination
– IP header bits used to identify, 

order related fragments

• IPv6 does things differently…

fragmentation: 
in: one large datagram
out: 3 smaller datagrams

reassembly

79



IP Fragmentation and Reassembly

ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=185

fragflag
=1

length
=1500

ID
=x

offset
=370

fragflag
=0

length
=1040

One large datagram becomes
several smaller datagrams

Example

r 4000 byte datagram

r MTU = 1500 bytes

1480 bytes in 
data field

offset =
1480/8 

Question: What happens when a fragment is lost?
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4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

Fragmentation 
Details

• Identifier (16 bits): used to tell which fragments 
belong together

• Flags (3 bits):
– Reserved (RF): unused bit

– Don’t Fragment (DF): instruct routers to not fragment 

the packet even if it won’t fit

• Instead, they drop the packet and send back a “Too Large”
ICMP control message

• Forms the basis for “Path MTU Discovery”
– More (MF): this fragment is not the last one

• Offset (13 bits): what part of datagram this 
fragment covers in 8-byte units 
Pop quiz question: Why do frags use offset and not a frag number? 81

Options

• End of Options List
• No Operation (padding between options)
• Record Route
• Strict Source Route
• Loose Source Route
• Timestamp
• Traceroute
• Router Alert
• …..
82

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload
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IP Addressing: introduction
• IP address: 32-bit 

identifier for host, router 
interface

• interface: connection 
between host/router and 
physical link
– routers typically have 

multiple interfaces

– host typically has one 

interface

– IP addresses associated 

with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11
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Subnets
• IP address:

– subnet part (high order bits)

– host part (low order bits) 

• What’s a subnet ?
– device interfaces with same 

subnet part of IP address

– can physically reach each 

other without intervening 

router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 subnets

subnet

223.1.1.0/24 223.1.2.0/24

223.1.3.0/24

Subnet mask: /24

11011111  00000001 00000011 00000000

subnet
part

host
part

223.1.3.0/24
CIDR: Classless InterDomain Routing

– subnet portion of address of arbitrary length
– address format: a.b.c.d/x, where x is # bits in 

subnet portion of address 85

IP addresses: how to get one?

Q: How does a host get IP address?

• hard-coded by system admin in a file

– Windows: control-panel->network->configuration-
>tcp/ip->properties

– UNIX: /etc/rc.config (circa 1980’s your mileage will vary)
• DHCP: Dynamic Host Configuration Protocol: dynamically get address 

from as server

– “plug-and-play”
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DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

DHCP 
server

DHCP server: 223.1.2.5 arriving
client

time

DHCP discover

src : 0.0.0.0, 68     
dest.: 255.255.255.255,67
yiaddr:    0.0.0.0
transaction ID: 654

DHCP offer

src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src:  0.0.0.0, 68     
dest::  255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

arriving DHCP 
client needs
address in this
network

Goal: allow host to dynamically 
obtain its IP address from network 
server when it joins network

Can renew its lease on address in use

Allows reuse of addresses (only hold 

address while connected an “on”)
Support for mobile users who want to 

join network (more shortly)
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IP addresses: how to get one?

Q: How does network get subnet part of IP addr?
A: gets allocated portion of its provider ISP’s 

address space

ISP's block          11001000  00010111  00010000  00000000    200.23.16.0/20 

Organization 0    11001000  00010111  00010000  00000000    200.23.16.0/23 
Organization 1    11001000  00010111  00010010  00000000    200.23.18.0/23 
Organization 2    11001000  00010111  00010100  00000000    200.23.20.0/23 

...                                          …..                                   ….                ….
Organization 7    11001000  00010111  00011110  00000000    200.23.30.0/23
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Hierarchical addressing: route aggregation

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

Hierarchical addressing allows efficient advertisement of routing 
information:
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Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...
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IP addressing: the last word...

Q: How does an ISP get a block of addresses?
A: ICANN: Internet Corporation for Assigned 

Names and Numbers

– allocates addresses
– manages DNS
– assigns domain names, resolves disputes
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or 

destination in this network

have 10.0.0/24 address for 

source, destination (as usual)

All datagrams leaving local

network have same single source NAT IP 

address: 138.76.29.7,

different source port numbers

Cant get more IP addresses?  well there is always…..
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NAT: Network Address Translation

• Motivation: local network uses just one IP address as far as 
outside world is concerned:

– range of addresses not needed from ISP:  just one IP 
address for all devices

– can change addresses of devices in local network 
without notifying outside world

– can change ISP without changing addresses of 
devices in local network

– devices inside local net not explicitly addressable, 
visible by outside world (a security plus).
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NAT: Network Address Translation
Implementation: NAT router must:

– outgoing datagrams: replace (source IP address, port #) 

of every outgoing datagram to (NAT IP address, new port 

#)

. . . remote clients/servers will respond using (NAT IP address, 
new port #) as destination addr.

– remember (in NAT translation table) every (source IP 

address, port #)  to (NAT IP address, new port #) 

translation pair

– incoming datagrams: replace (NAT IP address, new port 

#) in dest fields of every incoming datagram with 

corresponding (source IP address, port #) stored in NAT 

table
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NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40.186, 80

NAT translation table
WAN side addr        LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345

……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: Reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345
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NAT: Network Address Translation

• 16-bit port-number field: 
– 60,000+ simultaneous connections with a single 

WAN-side address!
• NAT is controversial:

– routers should only process up to layer 3
– violates end-to-end argument (?)

• NAT possibility must be taken into account by app 
designers, eg, P2P applications

– address shortage should instead be solved by IPv6
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NAT traversal problem
• client wants to connect to 

server with address 10.0.0.1
– server address 10.0.0.1 local to 

LAN (client can’t use it as 

destination addr)

– only one externally visible NATted

address: 138.76.29.7

• solution 1: statically configure 
NAT to forward incoming 
connection requests at given 
port to server
– e.g., (138.76.29.7, port 2500) 

always forwarded to 10.0.0.1 port 

25000

10.0.0.1

10.0.0.4

NAT 
router

138.76.29.7

Client ?
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NAT traversal problem
• solution 2: Universal Plug and Play 

(UPnP) Internet Gateway Device 
(IGD) Protocol.  Allows NATted host 
to:
"learn public IP address 

(138.76.29.7)
"add/remove port mappings 

(with lease times)

i.e., automate static NAT port 
map configuration

10.0.0.1

10.0.0.4

NAT 
router

138.76.29.7

IGD
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NAT traversal problem
• solution 3: relaying (was used in (really old) Skype)

– NATed client establishes connection to relay
– External client connects to relay
– relay bridges packets between to connections

138.76.29.7

Client

10.0.0.1

NAT 
router

1. connection to
relay initiated
by NATted host

2. connection to
relay initiated
by client

3. relaying 
established

Remember this?  Traceroute at work…

traceroute munnari.oz.au
traceroute to munnari.oz.au (202.29.151.3), 30 hops max, 60 byte packets
1  gatwick.net.cl.cam.ac.uk (128.232.32.2)  0.416 ms 0.384 ms 0.427 ms
2  cl-sby.route-nwest.net.cam.ac.uk (193.60.89.9)  0.393 ms 0.440 ms 0.494 ms
3  route-nwest.route-mill.net.cam.ac.uk (192.84.5.137)  0.407 ms 0.448 ms 0.501 ms
4  route-mill.route-enet.net.cam.ac.uk (192.84.5.94)  1.006 ms  1.091 ms  1.163 ms
5  xe-11-3-0.camb-rbr1.eastern.ja.net (146.97.130.1)  0.300 ms  0.313 ms  0.350 ms
6  ae24.lowdss-sbr1.ja.net (146.97.37.185)  2.679 ms  2.664 ms  2.712 ms
7  ae28.londhx-sbr1.ja.net (146.97.33.17)  5.955 ms  5.953 ms  5.901 ms
8  janet.mx1.lon.uk.geant.net (62.40.124.197)  6.059 ms  6.066 ms  6.052 ms
9  ae0.mx1.par.fr.geant.net (62.40.98.77)  11.742 ms  11.779 ms  11.724 ms
10  ae1.mx1.mad.es.geant.net (62.40.98.64)  27.751 ms  27.734 ms  27.704 ms
11  mb-so-02-v4.bb.tein3.net (202.179.249.117)  138.296 ms 138.314 ms 138.282 ms
12  sg-so-04-v4.bb.tein3.net (202.179.249.53)  196.303 ms 196.293 ms 196.264 ms
13  th-pr-v4.bb.tein3.net (202.179.249.66)  225.153 ms 225.178 ms 225.196 ms
14  pyt-thairen-to-02-bdr-pyt.uni.net.th (202.29.12.10)  225.163 ms 223.343 ms 223.363 ms
15  202.28.227.126 (202.28.227.126)  241.038 ms 240.941 ms 240.834 ms
16  202.28.221.46 (202.28.221.46)  287.252 ms 287.306 ms 287.282 ms
17  * * *
18  * * *
19  * * *
20  coe-gw.psu.ac.th (202.29.149.70)  241.681 ms 241.715 ms 241.680 ms
21  munnari.OZ.AU (202.29.151.3)  241.610 ms  241.636 ms  241.537 ms

traceroute: rio.cl.cam.ac.uk to munnari.oz.au
(tracepath on windows is similar)

Three delay measurements from 
rio.cl.cam.ac.uk to gatwick.net.cl.cam.ac.uk

* means no response (probe lost, router not replying)

trans-continent

link
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Traceroute and ICMP

• Source sends series of UDP 

segments to dest

– First has TTL =1
– Second has TTL=2, etc.
– Unlikely port number

• When nth datagram arrives to nth 

router:

– Router discards datagram
– And sends to source an ICMP 

message (type 11, code 0)
– Message includes name of 

router& IP address

• When ICMP message arrives, 

source calculates RTT

• Traceroute does this 3 times

Stopping criterion

• UDP segment eventually arrives 

at destination host

• Destination returns ICMP “host 

unreachable” packet (type 3, 

code 3)

• When source gets this ICMP, 

stops.

101

ICMP: Internet Control Message Protocol

• used by hosts & routers to 
communicate network-level 
information
– error reporting: unreachable 

host, network, port, protocol
– echo request/reply (used by 

ping)
• network-layer “above” IP:

– ICMP msgs carried in IP 
datagrams

• ICMP message: type, code plus first 8 
bytes of IP datagram causing error

Type Code description
0        0         echo reply (ping)
3        0         dest. network unreachable
3        1         dest host unreachable
3        2         dest protocol unreachable
3        3         dest port unreachable
3        6         dest network unknown
3        7         dest host unknown
4        0         source quench (congestion

control - not used)
8        0         echo request (ping)
9        0         route advertisement
10      0         router discovery
11      0         TTL expired
12      0         bad IP header
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Gluing it together:
How does my Network (address) interact

with my Data-Link (address) ?
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Switches vs. Routers Summary
• both store-and-forward devices

– routers: network layer devices (examine network layer headers eg IP)
– switches are link layer devices (examine Data-Link-Layer headers eg Ethernet)

• Routers: implement routing algorithms, maintain routing tables of the 
network – create network forwarding tables from routing tables

• Switches: implement learning algorithms, learn switch/DLL forwarding 
tables

Switch
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MAC Addresses (and IPv4 ARP)
or How do I glue my network to my data-link?

• 32-bit IP address: 
– network-layer address
– used to get datagram to destination IP subnet 

• MAC (or LAN or physical or Ethernet) address:
– function: get frame from one interface to another 

physically-connected interface (same network)
– 48 bit MAC address (for most LANs)

• burned in NIC ROM, firmware, etc.
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LAN Addresses and ARP
Each adapter on LAN has unique LAN address

Ethernet
Broadcast address =
FF-FF-FF-FF-FF-FF

= adapter

1A-2F-BB-709-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-6F7-2B-08-53

LAN
(wired or
wireless)
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Address Resolution Protocol
• Every node maintains an ARP table

– <IP address, MAC address> pair

• Consult the table when sending a packet
– Map destination IP address to destination MAC address

– Encapsulate and transmit the data packet

• But: what if IP address not in the table?
– Sender broadcasts: “Who has IP address 1.2.3.156?”

– Receiver responds: “MAC address 58-23-D7-FA-20-B0”

– Sender caches result in its ARP table
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Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B
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Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B

1. A sends packet to R.
2. R sends packet to B.

B A A R B A R B
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Host A Decides to Send Through R

A

R
B

• Host A constructs an IP packet to send to B
– Source 111.111.111.111, destination 222.222.222.222

• Host A has a gateway router R
– Used to reach destinations outside of 111.111.111.0/24

– Address 111.111.111.110 for R learned via DHCP/config

B A



B A
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Host A Sends Packet Through R
• Host A learns the MAC address of R’s interface

– ARP request: broadcast request for 111.111.111.110

– ARP response: R responds with E6-E9-00-17-BB-4B

• Host A encapsulates the packet and sends to R

A

R
B

B A A R

I’m 111.111.111.110 on e6-e9-00-17-bb-4b

MAC address for 111.111.111.110 pleaseMAC address for 111.111.111.110 please
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R Decides how to Forward Packet
• Router R’s adaptor receives the packet

– R extracts the IP packet from the Ethernet frame
– R sees the IP packet is destined to 222.222.222.222

• Router R consults its forwarding table
– Packet matches 222.222.222.0/24 via other adaptor

A

R
B

B A A R
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R Sends Packet to B
• Router R’s learns the MAC address of host B

– ARP request: broadcast request for 222.222.222.222

– ARP response: B responds with 49-BD-D2-C7-52A

• Router R encapsulates the packet and sends to B

A

R
B

B A R B

R broadcasts: Who is 
222.222.22.222.222?

B replies to R 
Me! I’m 222.22.222.222 on 
49-BD-D2-C7-56-2A
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Security Analysis of ARP
• Impersonation

– Any node that hears request can answer …
– … and can say whatever they want

• Actual legit receiver never sees a problem
– Because even though later packets carry its IP 

address, its NIC doesn't capture them since the 
(naughty) packets are not its MAC address
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Key Ideas in Both ARP and DHCP
• Broadcasting: Can use broadcast to make contact

– Scalable because of limited size

• Caching: remember the past for a while
– Store the information you learn to reduce overhead
– Remember your own address & other host’s addresses

• Soft state: eventually forget the past
– Associate a time-to-live field with the information
– … and either refresh or discard the information
– Key for robustness in the face of unpredictable change

Why Not Use DNS-Like Tables?

• When host arrives:
– Assign it an IP address that will last as long it is 

present

– Add an entry into a table in DNS-server that maps 

MAC to IP addresses

• Answer: 
– Names: explicit creation, and are plentiful

– Hosts: come and go without informing network

• Must do mapping on demand
– Addresses: not plentiful, need to reuse and remap

• Soft-state enables dynamic reuse
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IPv6

• Motivated by address exhaustion
– addresses are larger
– packet headers are laid out differently
– address management and configuration are completely different
– some DNS behavior changes
– some sockets code changes
– everybody now has a hard time parsing IP addresses

• Steve Deering focused on simplifying IP
– Got rid of all fields that were not absolutely necessary
– “Spring Cleaning” for IP

• Result is an elegant, if unambitious, protocol
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prematurely
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IPv4 IPv6 
Addresses are 32 bits (4 bytes) in length. Addresses are 128 bits (16 bytes) in length 

Address (A) resource records in DNS to map 
host names to IPv4 addresses. 

Address (AAAA) resource records in DNS to map 
host names to IPv6 addresses. 

Pointer (PTR) resource records in the IN-
ADDR.ARPA DNS domain to map IPv4 addresses 
to host names. 

Pointer (PTR) resource records in the IP6.ARPA 
DNS domain to map IPv6 addresses to host 
names. 

IPSec is optional and should be supported 
externally 

IPSec support is not optional 

Header does not identify packet flow for QoS
handling by routers 

Header contains Flow Label field, which 
Identifies packet flow for QoS handling by 
router. 

Both routers and the sending host fragment 
packets. 

Routers do not support packet fragmentation. 
Sending host fragments packets 

Header includes a checksum. Header does not include a checksum. 

Header includes options. Optional data is supported as extension headers. 

ARP uses broadcast ARP request to resolve IP to 
MAC/Hardware address. 

Multicast Neighbor Solicitation messages resolve 
IP addresses to MAC addresses. 

Internet Group Management Protocol (IGMP) 
manages membership in local subnet groups. 

Multicast Listener Discovery (MLD) messages 
manage membership in local subnet groups. 

Broadcast addresses are used to send traffic to 
all nodes on a subnet. 

IPv6 uses a link-local scope all-nodes multicast 
address. 

Configured either manually or through DHCP. Does not require manual configuration or DHCP. 

Must support a 576-byte packet size (possibly 
fragmented). 

Must support a 1280-byte packet size (without 
fragmentation). 

Larger Address Space

• IPv4 = 4,294,967,295 addresses

• IPv6 = 340,282,366,920,938,463,374,607,432,768,211,456 addresses

• 4x in number of bits translates to huge increase in address space!
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Other Significant Protocol Changes - 1
• Increased minimum MTU from 576 to 1280

• No enroute fragmentation… fragmentation only at source

• Header changes (20bytes to 40bytes)

• Replace broadcast with multicast
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Fragment 
Offset

Flags

Total Length
Type of 
Service

IHL

PaddingOptions

Destination Address

Source Address

Header ChecksumProtocolTime to Live

Identification

Version

Next 
Header

Hop Limit

Flow Label
Traffic 
Class

Destination Address

Source Address

Payload Length

Version

Field’s Name Kept from IPv4 to IPv6

Fields Not Kept in IPv6

Name and Position Changed in IPv6

New Field in IPv6Le
ge

nd

IPv4 IPv6

Other Significant Protocol Changes - 2
operation is intended to be simpler within the network:
• no in-network fragmentation

• no checksums in IPv6 header

• UDP checksum required (wasn’t in IPv4) rfc6936: No more zero

• optional state carried in extension headers

– Extension headers notionally replace IP options

– Each extension header indicates the type of the following 
header,  so they can be chained

– The final ‘next header’ either indicates there is no ‘next’, or  
escapes into an transport-layer header (e.g., TCP)
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IPv6 Basic Address Structure
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IPv6 addresses are split into two primary parts:

► 64 bits is dedicated to an addressable interface (equivalent to the  

host, if it only has one interface)

► The network prefix allocated to a network by a registry can be up to 

64-bits long

► An allocation of a /64 (i.e. a 64-bit network prefix) allows one
subnet (it cannot be subdivided)

► A /63 allows two subnets; a /62 offers four, etc. /48s are common for 

older allocations (RFC 3177, obsoleted by RFC 6177).

► Longest-prefix matching operates as in IPv4.



IPv6 Address Representation (quick)
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IPv6 addresses represented as eight 16-bit blocks (4 hex 
chars)  separated by colons:
• 2001:4998:000c:0a06:0000:0000:0002:4011

But we can condense the representation by removing leading 
zeros in  each block:
• 2001:4998:c:a06:0:0:2:4011

And by reducing the consecutive block of zeros to a “::”
(this double colon rule can only be applied once)

• 2001:4998:c:a06::2:4011

IPv6 Address Families
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The address space is carved, like v4, into certain categories 1:
host-local : localhost; ::1 is equivalent to 127.0.0.1
link-local : not routed: fe80::/10 is equivalent to

169.254.0.0/16
site-local : not routed globally: fc00::/7 is equivalent to

192.168.0.0/16 or 10.0.0.0/8
global unicast : 2000::/3 is basically any v4 address not 

reserved in  some other way
multicast : ff00::/8 is equivalent to 224.0.0.0/4

1http://www.ripe.net/lir-services/new-lir/ipv6_reference_card.pdf

Problem with /64 Subnets

• Scanning a subnet becomes a DoS attack!

– Creates IPv6 version of 264 ARP entries in routers
– Exhaust address-translation table space

• So now we have:
ping6 ff02::1 All nodes in broadcast domain

ping6 ff02::2 All routers in broadcast domain

• Solutions

– RFC 6164 recommends use of /127 to protect router-router links
– RFC 3756 suggest “clever cache management” to address more generally
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Neighbour Discovery
• The Neighbour Discovery Protocol2 specifies a set of ICMPv6  

message types that allow hosts to discover other hosts or routing  
hardware on the network
– neighbour solicitation
– neighbour advertisement
– router solicitation
– router advertisement
– redirect

• In short, a host can solicit neighbour (host) state to determine the  
layer-2 address of a host or to check whether an address is in use

• or it can solicit router state to learn more about the network  
configuration

• In both cases, the solicit message is sent to a well-known  
multicast address

2
http://tools.ietf.org/html/rfc4861
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IPv6 Dynamic Address Assignment

We have the two halves of the IPv6 address: the 
network component  and the host component. 
Those are derived in different ways.

Network (top 64 bits):
– Router Advertisements (RAs)  

Interface

Identifier (bottom 64 bits):
– Stateless, automatic: SLAAC
– Stateful, automatic: DHCPv6
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SLAAC: overview

SLAAC is:
• ... intended to make network configuration 

easy without manual  configuration or 
even a DHCP server

• ... an algorithm for hosts to automatically 
configure their network  interfaces (set up 
addresses, learn routes) without
intervention
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SLAAC: overview

• When a host goes live or an interface comes up, 
the system  wants to know more about its
environment

• It can configure link-local addresses for its 
interfaces: it uses the  interface identifier, the EUI-64

• It uses this to ask (solicit) router advertisements 
sooner than the  next periodic announcements; ask 
the network for information
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SLAAC: overview

The algorithm (assuming one interface):

1. Generate potential link-local address
2. Ask the network (multicast4) if that 

address is in use: neighbour  solicitation

3. Assuming no responses, assign to
interface

130
4https://tools.ietf.org/html/rfc2373

The EUI-64 Interface Identifier
• IEEE 64-bit Extended Unique Identifier (EUI-64)3

• There are various techniques to derive a 64-bit value, 
but  often times we derive from the 48-bit MAC address

1313http://tools.ietf.org/html/rfc2373

the seventh bit from the left, or the 
universal/local (U/L) bit, needs to be inverted, 
0 = local admin 1 = universal admin

SLAAC: overview; Router Solicitation

Then,
• Once the host has a unique link-local address, it can send  packets 

to anything else sharing that link substrate
... but the host doesn’t yet know any routers, or public routes
... bootstrap: routers listen to a well-known multicast address

4.host asks the network (multicast) for router information: router  
solicitation

5.responses from the routers are sent directly (unicast) to the host  
that sent the router solicitation

6.the responses may indicate that the host should do more (e.g.,  use 
DHCP to get DNS information)
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Router Advertisement

Without solicitation, router advertisements are generated intermittently  
by routing hardware.

Router Advertisements:
• nodes that forward traffic periodically advertise themselves to the  

network
• periodicity and expiry of the advertisement are configurable

Router Advertisement (RA), among other things, tells a host where to  
derive its network state with two flags: M(anaged) and O(ther info):

• M: “Managed Address Configuration”, which means: use  DHCPv6 
to find your host address (and ignore option O)

• O: Other information is available via DHCPv6, such as DNS  
configuration
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Uh-oh

What problem(s) arises from totally decentralised address  
configuration?

Concerns that arise from using an EUI-64:
• Privacy: SLAAC interface identifiers don’t change over 

time, so a host can be identified across networks

• Security: embedding a MAC address into an IPv6 
address will carry that vendor’s ID(s)5, a possible threat
vector
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5http://standards.ieee.org/develop/regauth/oui/public.html



Address Configuration: SLAAC Privacy 
Addresses

Privacy extensions for SLAAC6

– temporary addresses for initiating outgoing
sessions

– generate one temporary address per prefix
– when they expire, they are not used for new 

sessions, but can  continue to be used for 
existing sessions

– the addresses should appear random, such that 
they are difficult  to predict

– lifetime is configurable; this OSX machine sets an 
86,400s timer  (1 day)

1356https://tools.ietf.org/html/rfc4941

Address Configuration: SLAAC Privacy 
Addresses

The algorithm:
• Assume: a stored 64-bit input value from previous iterations, or a  pseudo-

randomly generated value

1.take that input value and append it to the EUI-64
2.compute the MD5 message digest of that value
3.set bit 6 to zero

4.compare the leftmost 64-bits against a list of reserved interface  identifiers 
and those already assigned to an address on the local  device. If the value 
is unacceptable, re-run using the rightmost 64  bits of the result instead of 
the historic input value in step 1

5.use the leftmost 64-bits as the randomised interface identifier

6.store the rightmost 64-bits as the history value to be used in the  next 
iteration of the algorithm
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IPv6: why has the transition taken so long?

IPv4 and IPv6 are not compatible:
– different packet formats
– different addressing schemes

as the Internet has grown bigger and 

accumulated many  IPv4-only services, 

transition has proven ... Tricky

Incentive issues 
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Virgin Media policy in 2010

….When IPV6 is rolled out across the whole of the Internet 
then a lot of the ISP's will roll out IPV6, ….

IPv6: why has the transition taken so long?

• IPv4 has/had the momentum
... which led to CIDR

... and encouraged RFC1918 space and NAT

• IPv4 NAT was covered earlier in this topic (reminder)
– your ISP hands you only one IPv4 address
– you  share that across multiple devices in your household
– The NAT  handles all the translation between internal 

(“private”) and external  (“public”) space
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Transition tech: outline

• Tunnelling
• dual-stacked services, and happy eyeballs
• DNS64 and NAT648

• 464XLAT
• DNS behaviour

1398https://tools.ietf.org/html/rfc6146

Transition tech: outline

• Tunnelling
• dual-stacked services, and happy eyeballs
• DNS64 and NAT648

• 464XLAT
• DNS behaviour

1408https://tools.ietf.org/html/rfc6146

Think of it as an IPv6 VPN service; which is 
essentially what it is



Dual-Stack Services: Common Deployment
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It’s common for web services to play conservatively: dual-stack your edge services (e.g., 
load balancers), leaving some legacy infrastructure for later: 

Dual-Stack Services: Common 
Deployment

Aim is to reduce the pain:
– You can dual-stack the edge hosts, and carry 

state in, say, HTTP  headers indicating the 
user’s IP address (common over v4 anyway)

– You can dual-stack the backend 
opportunistically, over a longer  period of time

– You use DNS to enable/disable the v6 side 
last (if there is no  AAAA record in DNS, no 
real users will connect to the IPv6  
infrastructure
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Happy Eyeballs and DNS

• The introduction of IPv6 carried with it an 
obligation that applications attempt to use 
IPv6 before falling back to IPv4.

• What happens though if you try to 
connect to a host which doesn’t exist?9

• But the presence of IPv6 modifies the 
behaviour of DNS responses and 
response preference10
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9https://tools.ietf.org/html/rfc5461
10https://tools.ietf.org/html/rfc3484

Happy Eyeballs

• Happy Eyeballs11 was the proposed
solution
– the eyeballs in question are yours, or mine, or 

whoever is sitting in  front of their browser 
getting mad that things are unresponsive

• Modifies application behaviour

14411https://tools.ietf.org/html/rfc8305

DNS64 & NAT64
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464XLAT

• Problem: IPv6-only to the host, but an 
IPv4-only app trying to access an IPv4-only
service
– Some applications do not understand IPv6, so 

having an IPv6  address doesn’t help
– 464XLAT12 solves this problem
– In essence, DNS64 + NAT64 + a shim layer on 

the host itself to offer IPv4 addresses to apps
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12https://tools.ietf.org/html/rfc6877



Improving on IPv4 and IPv6?

• Why include unverifiable source address? 
– Would like accountability and anonymity (now neither)
– Return address can be communicated at higher layer

• Why packet header used at edge same as core?
– Edge: host tells network what service it wants
– Core: packet tells switch how to handle it

• One is local to host, one is global to network

• Some kind of payment/responsibility field?
– Who is responsible for paying for packet delivery?
– Source, destination, other?

• Other ideas?
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Summary Network Layer
• understand principles behind network layer services:

– network layer service models
– forwarding versus routing (versus switching)
– how a switch & router works
– routing (path selection)
– IPv6

• Algorithms
– Two routing approaches (LS vs DV)
– One of these in detail (LS)
– ARP

• Other Core ideas
– Caching, soft-state, broadcast
– Fate-sharing in practice….



Topic 5 – Transport
Our goals:
• understand principles 

behind transport layer 
services:
– multiplexing/demultiplexing
– reliable data transfer
– flow control
– congestion control
– buffers

• learn about transport layer 
protocols in the Internet:
– UDP: connectionless transport
– TCP: connection-oriented 

transport
– TCP congestion control
– TCP flow control

2

Transport Layer
• Commonly a layer at end-hosts, between the 

application and network layer 

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B
Router
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Why a transport layer? 

• IP packets are addressed to a host but end-to-
end communication is between application/ 

processes/tasks at hosts

– Need a way to decide which packets go to which 
applications (more multiplexing)
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Why a transport layer? 

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host B 5

Why a transport layer? 

Transport
Network
Datalink
Physical

Application

Host A Host B

Datalink

Physical

brow
ser

telnet

m
m

edia

ftp

brow
ser

IP

many application
processes

Drivers
+NIC

Operating 
System
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Why a transport layer? 

Host A Host B

Datalink

Physical

brow
ser

telnet

m
m

edia

ftp

brow
ser

IP

many application
processes

Datalink

Physical

telnet

ftp

IP

H
TTP 

server

Transport Transport

Communication 
between hosts

(128.4.5.6 !"162.99.7.56)

Communication
between processes

at hosts
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Why a transport layer? 

• IP packets are addressed to a host but end-to-end 

communication is between application processes 

at  hosts

– Need a way to decide which packets go to which 
applications (mux/demux)

• IP provides a weak service model (best-effort)
– Packets can be corrupted, delayed, dropped, 

reordered, duplicated 
– No guidance on how much traffic to send and when
– Dealing with this is tedious for application developers
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Role of the Transport Layer

• Communication between application processes

– Multiplexing between application processes
– Implemented using ports
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Role of the Transport Layer

• Communication between application processes

• Provide common end-to-end services for app 

layer [optional]

– Reliable, in-order data delivery
– Paced data delivery: flow and congestion-control

• too fast may overwhelm the network
• too slow is not efficient

(Just Like Computer Networking Lectures….)
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Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app 

layer [optional]

• TCP and UDP are the common transport 

protocols

– also SCTP, MTCP, SST, RDP, DCCP, … 
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Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app 

layer [optional]

• TCP and UDP are the common transport 

protocols

• UDP is a minimalist, no-frills transport protocol

– only provides mux/demux capabilities
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Role of the Transport Layer

• Communication between processes

• Provide common end-to-end services for app layer 

[optional]

• TCP and UDP are the common transport protocols

• UDP is a minimalist, no-frills transport protocol

• TCP is the totus porcus protocol

– offers apps a reliable, in-order, byte-stream abstraction
– with congestion control 
– but no performance (delay, bandwidth, ...) guarantees

13



Role of the Transport Layer

• Communication between processes

– mux/demux from and to application processes
– implemented using ports

14

Context: Applications and Sockets

• Socket: software abstraction by which an application process 
exchanges network messages with the (transport layer in the) 
operating system 
– socketID = socket(…, socket.TYPE)
– socketID.sendto(message, …)  
– socketID.recvfrom(…)

• Two important types of sockets
– UDP socket: TYPE is SOCK_DGRAM 
– TCP socket: TYPE is SOCK_STREAM

15

Ports

• Problem: deciding which app (socket) gets which packets

– Solution: port as a transport layer identifier
• 16 bit identifier 
– OS stores mapping between sockets and ports
– a packet carries a source and destination port number in its

transport layer header 

• For UDP ports (SOCK_DGRAM)
– OS stores (local port, local IP address) !" socket

• For TCP ports (SOCK_STREAM)
– OS stores (local port, local IP, remote port, remote IP) !" socket

16

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

IP Payload

17

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Payload
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4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL)

6 = TCP

17 = UDP
16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

header and PayloadTCP or
UDP

19



4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to 
Live (TTL)

6 = TCP

17 = UDP
16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

16-bit Source Port 16-bit Destination Port

More transport header fields ….

header and PayloadTCP or
UDP
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Recap: Multiplexing and Demultiplexing

• Host receives IP packets
– Each IP header has source and destination IP 

address
– Each Transport Layer header has source and 

destination port number 

• Host uses IP addresses and port numbers to direct the 
message to appropriate socket

21

More on Ports

• Separate 16-bit port address space for UDP and TCP

• “Well known” ports (0-1023): everyone agrees which
services run on these ports
– e.g., ssh:22, http:80, https:443
– helps client know server’s port

• Ephemeral ports (most 1024-65535):  dynamically selected: as the 
source port for a client process

22

UDP: User Datagram Protocol 

• Lightweight communication between processes
– Avoid overhead and delays of ordered, reliable delivery

• UDP described in RFC 768 – (1980!)
– Destination IP address and port to support demultiplexing
– Optional error checking on the packet contents

• (checksum field of 0 means “don’t verify checksum”) not in IPv6!
• ((this idea of optional checksum is removed in IPv6))

SRC port DST port

checksum length

DATA 23

Why a transport layer? 

• IP packets are addressed to a host but end-to-
end communication is between application 

processes at  hosts

– Need a way to decide which packets go to which 
applications (mux/demux)

• IP provides a weak service model (best-effort)
– Packets can be corrupted, delayed, dropped, 

reordered, duplicated 

24 25

Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

# In a perfect world, reliable 
transport is easy

But the Internet default is best-effort

# All the bad things best-effort can 
do
# a packet is corrupted (bit errors)

# a packet is lost 

# a packet is delayed (why?)

# packets are reordered (why?)

# a packet is duplicated (why?)
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Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable data transfer protocol 
(rdt)

27

Principles of Reliable data transfer
• important in app., transport, link layers
• top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable data transfer protocol 
(rdt)

rdt_rcv(
)

udt_rcv()

28

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above, 
(e.g., by app.). Passed data to 
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over 

unreliable channel to receiver

rdt_rcv(): called by rdt to 
deliver data to upper

rdt_rcv()

udt_rcv()

udt_rcv(): called when packet 
arrives on rcv-side of channel

29

Reliable data transfer: getting started

We’ll:
• incrementally develop sender, receiver sides of 

reliable data transfer protocol (rdt)
• consider only unidirectional data transfer

– but control info will flow on both directions!

• use finite state machines (FSM)  to specify sender, 
receiver

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely 

determined by next 
event

event

actions

30

KR state machines – a note.

Beware
Kurose and Ross has a confusing/confused attitude to 

state-machines.
I’ve attempted to normalise the representation.
UPSHOT: these slides have differing information to the 

KR book (from which the RDT example is taken.)
in KR “actions taken” appear wide-ranging, my 

interpretation is more specific/relevant.

State
name

State
name

Relevant event causing state transition
Relevant action taken on state transitionstate: when in this “state”

next state uniquely 
determined by next 

event event

actions
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Rdt1.0: reliable transfer over a reliable channel

• underlying channel perfectly reliable
– no bit errors
– no loss of packets

• separate FSMs for sender, receiver:
– sender sends data into underlying channel
– receiver read data from underlying channel

IDLE udt_send(packet)

rdt_send(data)

rdt_rcv(data)IDLE
udt_rcv(packet)

sender receiver

Event

Action
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Rdt2.0: channel with bit errors

• underlying channel may flip bits in packet
– checksum to detect bit errors

• the question: how to recover from errors:
– acknowledgements (ACKs): receiver explicitly tells sender that 

packet received is OK
– negative acknowledgements (NAKs): receiver explicitly tells sender 

that packet had errors
– sender retransmits packet on receipt of NAK

• new mechanisms in rdt2.0 (beyond rdt1.0):
– error detection
– receiver feedback: control msgs (ACK,NAK) receiver->sender

Dealing with Packet Corruption 

Time
Sender Receiver

1

2

.

.

.
2

$

%

ack

nack
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rdt2.0: FSM specification

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&    
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 
corrupt(packet)

Waiting
for reply

IDLE

sender

receiver
rdt_send(data)

L

Note: the sender holds a copy 
of the packet being sent until 
the delivery is acknowledged.
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rdt2.0: operation with no errors

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&    
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 
corrupt(packet)

rdt_send(data)
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rdt2.0: error scenario

L

IDLE Waiting
for reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet) &&    
notcorrupt(packet)

udt_rcv(reply) && isACK(reply)

udt_send(packet)

udt_rcv(reply) &&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet) && 
corrupt(packet)

rdt_send(data)
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rdt2.0 has a fatal flaw!

What happens if ACK/NAK 
corrupted?

• sender doesn’t know what 
happened at receiver!

• can’t just retransmit: possible 
duplicate

Handling duplicates: 
• sender retransmits current 

packet if ACK/NAK garbled
• sender adds sequence number

to each packet
• receiver discards (doesn’t  

deliver) duplicate packet

Sender sends one packet, 
then waits for receiver 
response

stop and wait



Dealing with Packet Corruption 

Time
Sender Receiver

1

1

$

%
ack(1)

ack(1)

What if the ACK/NACK is corrupted?

Packet 
#1 or #2?

2 P(2)

P(1)

P(1)

Data and ACK packets carry sequence numbers
38

This is 
packet #1
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rdt2.1: sender, handles garbled ACK/NAKs

IDLE

sequence=0
udt_send(packet)

rdt_send(data)

Waiting
For reply udt_send(packet)

udt_rcv(reply) &&  
( corrupt(reply) ||
isNAK(reply) )

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply) 

udt_send(packet)

udt_rcv(reply) &&  
( corrupt(reply) ||
isNAK(reply) )

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply)

IDLE
Waiting
for reply

L
L

udt_rcv(packet) && corrupt(packet)
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rdt2.1: receiver, handles garbled ACK/NAKs

Wait for 
0 from 
below

udt_send(NAK)

receive(packet) && 
not corrupt(packet) &&
has_seq0(packet)

udt_rcv(packet) && not corrupt(packet) 
&& has_seq1(packet)

udt_send(ACK)
rdt_rcv(data)

Wait for 
1 from 
below

udt_rcv(packet) && not corrupt(packet) 
&& has_seq0(packet) 

udt_send(ACK)
rdt_rcv(data)

udt_send(ACK)

receive(packet) && 
not corrupt(packet) &&
has_seq1(packet)

receive(packet) && corrupt(packet)

udt_send(ACK)

udt_send(NAK)
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rdt2.1: discussion

Sender:
• seq # added to pkt
• two seq. #’s (0,1) will 

suffice.  Why?
• must check if received 

ACK/NAK corrupted 
• twice as many states

– state must “remember”
whether “current” pkt has a

0 or 1 sequence number

Receiver:
• must check if received 

packet is duplicate
– state indicates whether 0 or 1 

is expected pkt seq #

• note: receiver can not know 
if its last ACK/NAK received 
OK at sender

42

rdt2.2: a NAK-free protocol

• same functionality as rdt2.1, using ACKs only
• instead of NAK, receiver sends ACK for last pkt received OK

– receiver must explicitly include seq # of pkt being ACKed

• duplicate ACK at sender results in same action as NAK: 
retransmit current pkt

43

rdt2.2: sender, receiver fragments

Wait for call 
0 from 
above

sequence=0
udt_send(packet)

rdt_send(data)

udt_send(packet)

rdt_rcv(reply) &&  
( corrupt(reply) ||

isACK1(reply) )

udt_rcv(reply)   
&& not corrupt(reply) 
&& isACK0(reply)

Wait for 
ACK

0

sender FSM
fragment

Wait for 
0 from 
below

receive(packet) && not corrupt(packet) 
&& has_seq1(packet) 

send(ACK1)
rdt_rcv(data)

udt_rcv(packet) && 
(corrupt(packet) ||

has_seq1(packet))

udt_send(ACK1)
receiver FSM

fragment

L
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rdt3.0: channels with errors and loss

New assumption: underlying 
channel can also lose 
packets (data or ACKs)
– checksum, seq. #, ACKs, 

retransmissions will be of 
help, but not enough

Approach: sender waits 
“reasonable” amount of 
time for ACK 

• retransmits if no ACK received in 
this time

• if pkt (or ACK) just delayed (not 
lost):
– retransmission will be  

duplicate, but use of seq. #’s 
already handles this

– receiver must specify seq # of 
pkt being ACKed

• requires countdown timer

udt_rcv(reply) &&  
( corrupt(reply) ||
isACK(reply,1) )

45

rdt3.0 sender

sequence=0
udt_send(packet)

rdt_send(data)

Wait 
for 

ACK0

IDLE
state 1

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply,0)

udt_rcv(packet) &&  
( corrupt(packet) ||
isACK(reply,0) )

udt_rcv(reply)   
&& notcorrupt(reply) 
&& isACK(reply,1)

L
L

udt_send(packet)
timeout

udt_send(packet)
timeout

udt_rcv(reply)

IDLE
state 0

Wait 
for 

ACK1

L
udt_rcv(reply)

L
L

L

Dealing with Packet Loss

Time
Sender Receiver

1

1

%

ack(1)

P(1)

P(1)

Timer-driven loss detection
Set timer when packet is sent; retransmit on timeout

Timeout

P(2)

Dealing with Packet Loss

Time
Sender Receiver

1

1

%

ack(1)

P(1)

P(1)
Timeout

P(2)

duplicate!
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Dealing with Packet Loss

Time
Sender Receiver

1

.

.

.

1

ack(1)

P(1)

P(1)

Timer-driven retx. can lead to duplicates

Timeout

P(2)

duplicate!

ack(1)
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Performance of rdt3.0

• rdt3.0 works, but performance stinks
• ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

m U sender: utilization – fraction of time sender busy sending

m 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
m network protocol limits use of physical resources!

 

U 
sender = .008 

30.008 
= 0.00027 

microsec
onds 

L / R 
RTT + L / R 

= 

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans
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rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next 
packet, t = RTT + L / R

 

U 
sender = .008 

30.008 
= 0.00027 

microsec
onds 

L / R 
RTT + L / R 

= 

Inefficient if
t << RTT
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Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver

A Sliding Packet Window

• window = set of adjacent sequence numbers
– The size of the set is the window size; assume window size is n

• General idea: send up to n packets at a time 
– Sender can send packets in its window
– Receiver can accept packets in its window
– Window of acceptable packets “slides” on successful 

reception/acknowledgement

52

A Sliding Packet Window

• Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, …, A+n}

• Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,…, B+n}

n
B

Received and ACK’d

Acceptable but not
yet received

Cannot be received

n
A

Already ACK’d

Sent but not ACK’d

Cannot be sent
sequence number "
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Acknowledgements w/ Sliding Window

• Two common options

– cumulative ACKs: ACK carries next in-order 
sequence number that the receiver expects

54

Cumulative Acknowledgements (1)

• At receiver
n

B
Received and ACK’d

Acceptable but not
yet received

Cannot be received

# After receiving B+1, B+2
nBnew= B+2

# Receiver sends ACK(Bnew+1)
55



Cumulative Acknowledgements (2)

• At receiver
n

B
Received and ACK’d

Acceptable but not
yet received

Cannot be received

# After receiving B+4, B+5
nB

# Receiver sends ACK(B+1)
56

How do we 
recover?

Go-Back-N (GBN)

• Sender transmits up to n unacknowledged packets

• Receiver only accepts packets in order
– discards out-of-order packets (i.e., packets other than B+1)

• Receiver uses cumulative acknowledgements
– i.e., sequence# in ACK = next expected in-order sequence# 

• Sender sets timer for 1st outstanding ack (A+1)
• If timeout, retransmit A+1, … , A+n

57

Sliding Window with GBN

• Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, …, A+n}

• Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,…, B+n}

n
A

Already ACK’d

Sent but not ACK’d

Cannot be sent

n
B

Received and ACK’d

Acceptable but not
yet received

Cannot be received

sequence number "
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GBN Example w/o Errors

Time

Window size = 3 packets

Sender Receiver

1{1}
2{1, 2}
3{1, 2, 3}

4{2, 3, 4}
5{3, 4, 5}

Sender Window Receiver Window

6{4, 5, 6}
.
.
.

.

.

.
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GBN Example with Errors
Window size = 3 packets

Sender Receiver

1
2
3
4
5
6Timeout

Packet 4

4
5
6
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GBN Example with Errors -
ALTERNATIVE

Window size = 3 packets

Sender Receiver

1
2
3
4

Timeout
Packet 2

2
3
4

61
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GBN: sender extended FSM

Wait udt_send(packet[base])
udt_send(packet[base+1])
…
udt_send(packet[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
udt_send(packet[nextseqnum])
nextseqnum++
}

else
refuse_data(data)   Block?

base = getacknum(reply)+1

udt_rcv(reply) && 
notcorrupt(reply) 

base=1
nextseqnum=1

udt_rcv(reply) 
&& corrupt(reply)

L

L
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GBN: receiver extended FSM

ACK-only: always send an ACK for correctly-received packet with 
the highest in-order seq #
– may generate duplicate ACKs
– need only remember expectedseqnum

• out-of-order packet: 
– discard (don’t buffer) -> no receiver buffering!
– Re-ACK packet with highest in-order seq #

Wait

udt_send(reply)
L

udt_rcv(packet)
&& notcurrupt(packet)
&& hasseqnum(rcvpkt,expectedseqnum) 

rdt_rcv(data)
udt_send(ACK)
expectedseqnum++

expectedseqnum=1

L

Acknowledgements w/ Sliding Window

• Two common options

– cumulative ACKs: ACK carries next in-order sequence 
number the receiver expects

– selective ACKs: ACK individually acknowledges 
correctly received packets

• Selective ACKs offer more precise information but 

require more complicated book-keeping

• Many variants that differ in implementation 

details
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Selective Repeat (SR)

• Sender: transmit up to n unacknowledged packets

• Assume packet k is lost, k+1 is not

• Receiver: indicates packet k+1 correctly received

• Sender: retransmit only packet k on timeout

• Efficient in retransmissions but complex book-keeping
– need a timer per packet
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SR Example with Errors

Time

Sender Receiver

1
2
3

4
5
6

4

7

ACK=5

Window size = 3 packets{1}
{1, 2}

{1, 2, 3}
{2, 3, 4}
{3, 4, 5}
{4, 5, 6}

{4,5,6}

{7, 8, 9}

ACK=6

{4,5,6}

Timeout
Packet 4

ACK=4
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Observations

• With sliding windows, it is possible to fully utilize a 
link, provided the window size (n) is large enough.  
Throughput is ~ (n/RTT)
– Stop & Wait is like n = 1.

• Sender has to buffer all unacknowledged packets, 
because they may require retransmission

• Receiver may be able to accept out-of-order 
packets, but only up to its buffer limits

• Implementation complexity depends on protocol 
details (GBN vs. SR)

67



Recap: components of a solution

• Checksums (for error detection) 

• Timers (for loss detection) 

• Acknowledgments 

– cumulative 
– selective

• Sequence numbers (duplicates, windows)

• Sliding Windows (for efficiency) 

• Reliability protocols use the above to decide 

when and what to retransmit or acknowledge

68

What does TCP do?

Most of our previous tricks + a few differences
• Sequence numbers are byte offsets 
• Sender and receiver maintain a sliding window
• Receiver sends cumulative acknowledgements (like GBN)
• Sender maintains a single retx. timer 
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit : optimization that uses duplicate

ACKs to trigger early retx
• Introduces timeout estimation algorithms
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux 
and demux

What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 

73
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed 
over header 
and data

What does TCP do?

Many of our previous ideas, but some key 
differences
• Checksum 
• Sequence numbers are byte offsets 



TCP: Segments and 
Sequence Numbers
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TCP “Stream of Bytes” Service…

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Application @ Host A

Application @ Host B

Byte 80

Byte 80
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… Provided Using TCP “Segments”

Byte 0
Byte 1
Byte 2
Byte 3

Byte 0
Byte 1
Byte 2
Byte 3

Host A

Host B

Byte 80

TCP Data

TCP Data
Byte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out
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TCP Segment

• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes with Ethernet

• TCP packet
– IP packet with a TCP header and data inside
– TCP header ³ 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream
– MSS = MTU – (IP header) – (TCP header)

IP Hdr

IP Data

TCP HdrTCP Data (segment)
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Sequence Numbers

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k bytes

80

Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A

ISN (initial sequence number)

Sequence number  
= 1st byte in segment = 

ISN + k

k

81



TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte 
offset of data
carried in this
segment
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Sequence Numbers

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

Host A
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Sequence number
Acknowledgment

Data
Sequence number

Acknowledgment

Sequence number  
= 1st byte in segment = 

ISN + k

ACK sequence number 
= next expected byte

= seqno + length(data)

Host A- > B
DATA

Host B - > A
ACK

TCP Sequences and ACKS
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TCP is full duplex by default
• two independently flows of sequence numbers

Sequence acknowledgement is given in terms of BYTES 
(not packets); the window is in terms of bytes.

number of packets = window size (bytes) / Segment Size

Servers and Clients are not Source and Destination

Piggybacking increases efficiency but many flows may 
only have data moving in one direction

What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)

ACKing and Sequence Numbers

• Sender sends packet 
– Data starts with sequence number X
– Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK
– If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)

– If highest in-order byte received is Y s.t. (Y+1) < X
• ACK acknowledges Y+1
• Even if this has been ACKed before
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Normal Pattern

• Sender: seqno=X, length=B
• Receiver: ACK=X+B
• Sender: seqno=X+B, length=B
• Receiver: ACK=X+2B
• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field

87
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment 
gives seqno just 
beyond highest 
seqno received in 
order
(“What Byte 

is Next”)

What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers can buffer out-of-sequence packets (like SR)
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Loss with cumulative ACKs

• Sender sends packets with 100B and seqnos.:
– 100, 200, 300, 400, 500, 600, 700, 800, 900, …

• Assume the fifth packet (seqno 500) is lost, 
but no others

• Stream of ACKs will be:

– 200, 300, 400, 500, 500, 500, 500,…
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What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers may not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
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Loss with cumulative ACKs

• “Duplicate ACKs” are a sign of an isolated loss

– The lack of ACK progress means 500 hasn’t been delivered
– Stream of ACKs means some packets are being delivered

• Therefore, could trigger resend upon receiving k 

duplicate ACKs

• TCP uses k=3

• But response to loss is trickier….
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Loss with cumulative ACKs

• Two choices:

– Send missing packet and increase W by the 
number of dup ACKs

– Send missing packet, and wait for ACK to increase 
W

• Which should TCP do?
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What does TCP do?

Most of our previous tricks, but a few differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and 

retransmits on timeout
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Retransmission Timeout

• If the sender hasn’t received an ACK by 
timeout, retransmit the first packet in the 

window

• How do we pick a timeout value?
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Timing Illustration

1

1

Timeout too long " inefficient

1

1

Timeout too short "
duplicate packets 

RTT

Timeout

Timeout

RTT
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Retransmission Timeout

• If haven’t received ack by timeout, retransmit 
the first packet in the window

• How to set timeout?

– Too long: connection has low throughput
– Too short: retransmit packet that was just delayed

• Solution: make timeout proportional to RTT

• But how do we measure RTT?
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RTT Estimation

• Use exponential averaging of RTT samples

SampleRTT= AckRcvdTime− SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)× SampleRTT
0 <α ≤1

Es
tim
at
ed
RT
T

Time

SampleRTT
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Exponential Averaging Example

RTT

time

EstimatedRTT = α*EstimatedRTT + (1 – α)*SampleRTT

Assume RTT is constant " SampleRTT = RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)
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Problem: Ambiguous Measurements

• How do we differentiate between the real ACK, and ACK of 
the retransmitted packet?

ACK

Retransmission

Original Transmission

Sa
m

pl
eR

TT

Sender Receiver

ACK
Retransmission

Original Transmission
Sa

m
pl

eR
TT

Sender Receiver
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Karn/Partridge Algorithm

• Measure SampleRTT only for original transmissions
– Once a segment has been retransmitted, do not use it for any 

further measurements
• Computes EstimatedRTT using α = 0.875

• Timeout value (RTO)  = 2 × EstimatedRTT
• Employs exponential backoff

– Every time RTO timer expires, set RTO ¬ 2·RTO
– (Up  to maximum ³ 60 sec)
– Every time new measurement comes in (= successful original 

transmission), collapse RTO back to 2 × EstimatedRTT
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Karn/Partridge in action

from Jacobson and Karels, SIGCOMM 1988 102

Jacobson/Karels Algorithm

• Problem: need to better capture variability in 
RTT
–Directly measure deviation

• Deviation = | SampleRTT – EstimatedRTT |
• EstimatedDeviation: exponential average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation
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With Jacobson/Karels
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What does TCP do?

Most of our previous ideas, but some key 
differences
• Checksum 
• Sequence numbers are byte offsets 
• Receiver sends cumulative acknowledgements (like GBN)
• Receivers do not drop out-of-sequence packets (like SR)
• Introduces fast retransmit: optimization that uses duplicate

ACKs to trigger early retransmission
• Sender maintains a single retransmission timer (like GBN) and 

retransmits on timeout
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TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte 
words in TCP 
header;
5 = no options
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TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG
flag to indicate 
urgent data (not 
discussed further)
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TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
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TCP Connection Establishment and 
Initial Sequence Numbers

109

Initial Sequence Number (ISN)
• Sequence number for the very first byte
• Why not just use ISN = 0?
• Practical issue

– IP addresses and port #s uniquely identify a connection
– Eventually, though, these port #s do get used again
– … small chance an old packet is still in flight

• TCP therefore requires changing ISN
• Hosts exchange ISNs when they establish a connection

110

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open; “synchronize sequence numbers”) to 

host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK

A B

Data
Data

Each host tells 
its ISN to the 
other host.
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG
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Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…
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Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags
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Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data 115

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Active
Open

Passive
Open

connect()
listen()
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What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
– Packet is lost inside the network, or:
– Server discards the packet (e.g., it’s too busy)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and waits for the SYN-ACK
– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is
– Hard to guess a reasonable length of time to wait
– SHOULD (RFCs 1122 & 2988) use default of 3 seconds

• Some implementations instead use 6 seconds
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Tearing Down the Connection
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Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one byte in the sequence space

• Other host acks the byte to confirm
• Closes A’s side of the connection, but not B’s

– Until B likewise sends a FIN
– Which A then acks

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

A
CK

A
CK

time
A

B
FIN

A
CK

TIME_WAIT:

Avoid reincarnation

B will retransmit FIN 

if ACK is lost

Connection

now half-closed

Connection

now closed
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Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 + A

CK

A
CK

time
A

B

A
CK

Connection

now closed

TIME_WAIT:

Avoid reincarnation

Can retransmit

FIN ACK if ACK lost
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Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because application process on A crashed

• That’s it
– B does not ack the RST
– Thus, RST is not delivered reliably
– And: any data in flight is lost
– But: if B sends anything more, will elicit another RST

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B

D
ata RS

T
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TCP State Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data, ACK 
exchanges 
are in here
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An Simpler View of the Client Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

SYN (Send)

Rcv. SYN+ACK,
Send ACK

Send FINRcv. ACK,
Send Nothing

Rcv. FIN, 
Send ACK
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TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data
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• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

125

Recap: Sliding Window (so far)

• Both sender & receiver maintain a window

• Left edge of window:
– Sender: beginning of unacknowledged data
– Receiver: beginning of undelivered data

• Right edge: Left edge + constant
– constant only limited by buffer size in the 

transport layer
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Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte 
can send

TCP
Last byte writtenPreviously

ACKed bytes

Buffer size (B)
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Sliding Window at Receiver (so far)

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Received and 
ACKed

Buffer size (B)

Sender might overrun 
the receiver’s buffer
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Solution: Advertised Window (Flow 
Control)

• Receiver uses an “Advertised Window” (W) 
to prevent sender from overflowing its 
window
– Receiver indicates value of W in ACKs
– Sender limits number of bytes it can have in 

flight <= W
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Sliding Window at Receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Buffer size (B)

W= B - (LastByteReceived - LastByteRead)
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Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte 
can send

TCP

Last byte written
W
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Sliding Window w/ Flow Control

• Sender: window advances when new data 
ack’d

• Receiver: window advances as receiving 
process consumes data

• Receiver advertises to the sender where 
the receiver window currently ends 
(“righthand edge”)
– Sender agrees not to exceed this amount
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Advertised Window Limits Rate
• Sender can send no faster than W/RTT 

bytes/sec

• Receiver only advertises more space when it 
has consumed old arriving data

• In original TCP design, that was the sole
protocol mechanism controlling sender’s rate

• What’s missing?
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TCP 

• The concepts underlying TCP are simple 

– acknowledgments (feedback)
– timers
– sliding windows 
– buffer management
– sequence numbers

134

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

136



We have seen:
– Flow control: adjusting the sending rate to 

keep from overwhelming a slow receiver

Now lets attend…
– Congestion control: adjusting the sending rate 

to keep from overloading the network

137

• If two packets arrive at the same time
– A router can only transmit one
– … and either buffers or drops the other

• If many packets arrive in a short period of time
– The router cannot keep up with the arriving traffic
– … delays traffic, and the buffer may eventually overflow

• Internet traffic is bursty

Statistical Multiplexing " Congestion

138

Congestion is undesirable

Average
Packet delay

Load

Typical queuing system with bursty arrivals

Must balance utilization versus delay and loss

Average
Packet loss

Load
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Who Takes Care of Congestion?

• Network?  End hosts? Both?

• TCP’s approach:

– End hosts adjust sending rate
– Based on implicit feedback from network

• Not the only approach

– A consequence of history rather than planning
140

Some History: TCP in the 1980s

• Sending rate only limited by flow control
– Packet drops " senders (repeatedly!) retransmit a full 

window’s worth of packets 

• Led to “congestion collapse” starting Oct. 1986
– Throughput on the NSF network dropped from 

32Kbits/s to 40bits/sec

• “Fixed” by Van Jacobson’s development of TCP’s 
congestion control (CC) algorithms
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Jacobson’s Approach

• Extend TCP’s existing window-based protocol but adapt the 
window size in response to congestion
– required no upgrades to routers or applications!
– patch of a few lines of code to TCP implementations

• A pragmatic and effective solution 
– but many other approaches exist

• Extensively improved on since 
– topic now sees less activity in ISP contexts 
– but is making a comeback in datacenter environments
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Three Issues to Consider

• Discovering the available (bottleneck) 

bandwidth

• Adjusting to variations in bandwidth

• Sharing bandwidth between flows

143

Abstract View

• Ignore internal structure of router and model it as 
having a single queue for a particular input-
output pair

Sending Host Buffer in Router Receiving Host

A B
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Discovering available bandwidth

• Pick sending rate to match bottleneck bandwidth
– Without any a priori knowledge

– Could be gigabit link, could be a modem

A B100 Mbps
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Adjusting to variations in bandwidth

• Adjust rate to match instantaneous bandwidth
– Assuming you have rough idea of bandwidth

A B
BW(t)
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Multiple flows and sharing bandwidth

Two Issues:

• Adjust total sending rate to match bandwidth

• Allocation of bandwidth between flows

A2 B2BW(t)

A1

A3 B3

B1
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Reality

Congestion control is a resource allocation problem involving many flows, 
many links, and complicated global dynamics
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View from a single flow 

• Knee – point after which 
– Throughput increases slowly
– Delay increases fast

• Cliff – point after which
– Throughput starts to drop to zero 

(congestion collapse)
– Delay approaches infinity

Load

Load

Th
ro

ug
hp

ut
De

la
y

knee cliff

congestion
collapse

packet
loss
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General Approaches

(0) Send without care

– Many packet drops

150

General Approaches

(0) Send without care

(1) Reservations

– Pre-arrange bandwidth allocations
– Requires negotiation before sending packets
– Low utilization
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General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

– Don’t drop packets for the high-bidders
– Requires payment model
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General Approaches

(0) Send without care
(1) Reservations
(2) Pricing
(3) Dynamic Adjustment

– Hosts probe network; infer level of congestion; adjust 

– Network reports congestion level to hosts; hosts adjust

– Combinations of the above

– Simple to implement but suboptimal, messy dynamics
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General Approaches

(0) Send without care

(1) Reservations

(2) Pricing

(3) Dynamic Adjustment

All three techniques have their place
• Generality of dynamic adjustment has proven powerful
• Doesn’t presume business model, traffic characteristics, 

application requirements; does assume good citizenship
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TCP’s Approach in a Nutshell

• TCP connection has window

– Controls number of packets in flight 

• Sending rate: ~Window/RTT

• Vary window size to control sending rate

155

Windows, Buffers, and TCP

156

Windows, Buffers, and TCP

• TCP connection has a window

– Controls number of packets in flight; 
filling a channel to improve throughput, and
vary window size to control sending rate

• Buffers adapt mis-matched channels 

– Buffers smooth bursts
– Adapt (re-time) arrivals  for multiplexing
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Windows, Buffers, and TCP

Buffers & TCP can make link utilization 100%

but

Buffers add delay, variable delay
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Sizing Buffers in Routers

159

– Packet loss
• Queue overload, and subsequent packet loss

– End-to-end delay
• Transmission, propagation, and queueing delay
• The only variable part is queueing delay

– Router architecture
• Board space, power consumption, and cost
• On chip buffers: higher density, higher capacity

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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161 162

Rule-of-thumb – Intuition 
Rule for adjusting !
& If an ACK is received: W ← W+1/W
& If a packet is lost: W ← W/2

Only ! packets 
may be outstanding

Source Dest

t

Window size
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Buffers in Routers
So how large should the buffers be? 

164

Buffer size matters

•

– End-to-end delay
• Transmission, propagation, and queueing delay
• The only variable part is queueing delay

Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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Buffers in Routers
So how large should the buffers be? 

166

Buffer size matters

•

•
•

– Router architecture
• Board space, power consumption, and cost
• On chip buffers: higher density, higher capacity



Synchronized Flows Many TCP Flows
• Aggregate window has same 

dynamics
• Therefore buffer occupancy has 

same dynamics
• Rule-of-thumb still holds.

• Independent, desynchronized
• Central limit theorem says the 

aggregate becomes Gaussian
• Variance (buffer size) 

decreases as N increases

Small Buffers – Intuition 

Probability
Distribution

t

Buffer Size

t
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Buffer Sizing Story

2T ×C 2T ×C
n

O(logW )
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What size do we make the buffer?

Well it depends…

One TCP connection?

Many Synchronized TCP connections?

Just TCP – what about other applications?

Small BDP link?

Large BDP link?

How many devices?

W of flows?

How many flows?

How much do you know about your traffic?

What is best for your traffic?

TCP’s Approach in a Nutshell

• TCP connection has window

– Controls number of packets in flight 

• Sending rate: ~Window/RTT

• Vary window size to control sending rate
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All These Windows…

• Congestion Window: CWND
– How many bytes can be sent without overflowing routers
– Computed by the sender using congestion control algorithm

• Flow control window: AdvertisedWindow (RWND)
– How many bytes can be sent without overflowing receiver’s buffers
– Determined by the receiver and reported to the sender

• Sender-side window = minimum{CWND,RWND}
• Assume for this material that RWND >> CWND
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Note

• This lecture will talk about CWND in units of 
MSS 

– (Recall MSS: Maximum Segment Size, the amount of 
payload data in a TCP packet)

– This is only for pedagogical purposes

• In reality this is a LIE: Real implementations 

maintain CWND in bytes
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Two Basic Questions

• How does the sender detect congestion?

• How does the sender adjust its sending rate?

– To address three issues
• Finding available bottleneck bandwidth
• Adjusting to bandwidth variations
• Sharing bandwidth
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Detecting Congestion
• Packet delays 

– Tricky: noisy signal (delay often varies considerably)

• Router tell end-hosts they’re congested

• Packet loss
– Fail-safe signal that TCP already has to detect
– Complication: non-congestive loss (checksum errors)

• Two indicators of packet loss
– No ACK after certain time interval: timeout
– Multiple duplicate ACKs
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Not All Losses the Same

• Duplicate ACKs: isolated loss
– Still getting ACKs

• Timeout: much more serious
– Not enough packets in progress to trigger 

duplicate-acks, OR
– Suffered several losses

• We will adjust rate differently for each case
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Rate Adjustment

• Basic structure:

– Upon receipt of ACK (of new data): increase rate
– Upon detection of loss: decrease rate

• How we increase/decrease the rate depends on 
the phase of congestion control we’re in: 

– Discovering available bottleneck bandwidth vs.
– Adjusting to bandwidth variations

175

Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth 
– start slow (for safety) 
– but ramp up quickly (for efficiency) 

• Consider
– RTT = 100ms, MSS=1000bytes
– Window size to fill 1Mbps of BW = 12.5 packets
– Window size to fill 1Gbps = 12,500 packets
– Either is possible! 
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“Slow Start” Phase
• Sender starts at a slow rate but increases 

exponentially until first loss

• Start with a small congestion window
– Initially, CWND = 1
– So, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss 
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Slow Start in Action

• For each RTT: double CWND

• Simpler implementation: for each ACK, CWND += 1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8
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Adjusting to Varying Bandwidth

• Slow start gave an estimate of available bandwidth 

• Now, want to track variations in this available 
bandwidth, oscillating around its current value
– Repeated probing (rate increase) and backoff (rate 

decrease)

• TCP uses: “Additive Increase Multiplicative 
Decrease” (AIMD)

– We’ll see why shortly…
179

AIMD

• Additive increase
– Window grows by one MSS for every RTT with no 

loss
– For each successful RTT, CWND = CWND + 1
– Simple implementation: 

• for each ACK, CWND = CWND+ 1/CWND

• Multiplicative decrease
– On loss of packet, divide congestion window in half
– On loss, CWND = CWND/2
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Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Window
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Slow-Start vs. AIMD

• When does a sender stop Slow-Start and start 
Additive Increase?

• Introduce a “slow start threshold” (ssthresh)
– Initialized to a large value
– On timeout, ssthresh = CWND/2

• When CWND = ssthresh, sender switches from 
slow-start to AIMD-style increase

182
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• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD
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• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD, Fast-Recovery

184



One Final Phase: Fast Recovery

• The problem: congestion avoidance too slow 
in recovering from an isolated loss 
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Example (in units of MSS, not bytes)

• Consider a TCP connection with:
– CWND=10 packets
– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight
– Packet 101 is dropped
– What ACKs do they generate?
– And how does the sender respond?
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The problem – A timeline

• ACK 101 (due to 102)  cwnd=10  dupACK#1 (no xmit)
• ACK 101 (due to 103)  cwnd=10  dupACK#2 (no xmit)
• ACK 101 (due to 104)  cwnd=10  dupACK#3 (no xmit)
• RETRANSMIT 101 ssthresh=5  cwnd= 5
• ACK 101 (due to 105)  cwnd=5 + 1/5 (no xmit)
• ACK 101 (due to 106)  cwnd=5 + 2/5 (no xmit)
• ACK 101 (due to 107)  cwnd=5 + 3/5 (no xmit)
• ACK 101 (due to 108)  cwnd=5 + 4/5 (no xmit)
• ACK 101 (due to 109)  cwnd=5 + 5/5 (no xmit)
• ACK 101 (due to 110)  cwnd=6 + 1/5 (no xmit)
• ACK 111 (due to 101)  ' only now can we transmit new packets
• Plus no packets in flight so ACK “clocking” (to increase CWND) stalls for 

another RTT
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Solution: Fast Recovery

Idea: Grant the sender temporary “credit” for each dupACK so as 
to keep packets in flight

• If dupACKcount = 3 
– ssthresh = cwnd/2
– cwnd = ssthresh + 3

• While in fast recovery
– cwnd = cwnd + 1 for each additional duplicate ACK

• Exit fast recovery after receiving new ACK
– set cwnd = ssthresh
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Example

• Consider a TCP connection with:

– CWND=10 packets
– Last ACK was for packet # 101

• i.e., receiver expecting next packet to have seq. no. 101

• 10 packets [101, 102, 103,…, 110] are in flight

– Packet 101 is dropped
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Timeline

• ACK 101 (due to 102)  cwnd=10  dup#1
• ACK 101 (due to 103)  cwnd=10  dup#2
• ACK 101 (due to 104)  cwnd=10  dup#3
• REXMIT 101 ssthresh=5  cwnd= 8 (5+3)
• ACK 101 (due to 105)  cwnd= 9 (no xmit)
• ACK 101 (due to 106)  cwnd=10 (no xmit)
• ACK 101 (due to 107)  cwnd=11 (xmit 111)
• ACK 101 (due to 108)  cwnd=12 (xmit 112)
• ACK 101 (due to 109)  cwnd=13 (xmit 113)
• ACK 101 (due to 110)  cwnd=14 (xmit 114)
• ACK 111 (due to 101) cwnd = 5 (xmit 115)  ' exiting fast recovery
• Packets 111-114 already in flight
• ACK 112 (due to 111) cwnd = 5 + 1/5  ! back in congestion avoidance



Putting it all together: 
The TCP State Machine (partial)

• How are ssthresh, CWND and dupACKcount updated for each 
event that causes a state transition? 

slow 
start

congstn. 
avoid.

fast 
recovery

cwnd > ssthresh

timeout

dupACK=3

timeout
dupACK=3

new ACK

dupACK

new ACK

timeout new 
ACK

TCP Flavors 

• TCP-Tahoe
– cwnd =1 on triple dupACK

• TCP-Reno
– cwnd =1 on timeout

– cwnd = cwnd/2 on triple dupack

• TCP-newReno
– TCP-Reno + improved fast recovery

• TCP-SACK
– incorporates selective acknowledgements 

• What does TCP do?

– ARQ windowing, set-up, tear-down
• Flow Control in TCP

• Congestion Control in TCP

– AIMD, Fast-Recovery, Throughput

193

TCP Flavors 

• TCP-Tahoe
– CWND =1 on triple dupACK

• TCP-Reno
– CWND =1 on timeout

– CWND = CWND/2 on triple dupack

• TCP-newReno
– TCP-Reno + improved fast recovery

• TCP-SACK
– incorporates selective acknowledgements 

Our default 
assumption
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Interoperability

• How can all these algorithms coexist? Don’t 
we need a single, uniform standard?

• What happens if I’m using Reno and you are 
using Tahoe, and we try to communicate?
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TCP Throughput Equation

196



A

A Simple Model for TCP Throughput

Loss

t

cwnd

1

RTT

maxW

2
maxW

½ Wmax RTTs between drops

Avg. ¾ Wmax packets per RTTs
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A

A Simple Model for TCP Throughput

Loss

t

cwnd

maxW

2
maxW

Packet drop rate, p =1/ A,  where A = 3
8
Wmax

2

Throughput, B = A
Wmax

2
!

"
#

$

%
&RTT

=
3
2

1
RTT p
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Implications (1): Different RTTs

• Flows get throughput inversely proportional to RTT
• TCP unfair in the face of heterogeneous RTTs!

Throughput = 3
2

1
RTT p

A1

A2 B2

B1

bottleneck
link

100ms

200ms

199

Implications (2): High Speed TCP

• Assume RTT = 100ms, MSS=1500bytes

• What value of p is required to reach 100Gbps throughput
– ~ 2 x 10-12

• How long between drops?
– ~ 16.6 hours

• How much data has been sent in this time?
– ~ 6 petabits

• These are not practical numbers!

Throughput = 3
2

1
RTT p
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Adapting TCP to High Speed

– Once past a threshold speed, increase CWND faster 

– A proposed standard [Floyd’03]: once speed is past some threshold, 
change equation to p-.8 rather than p-.5 

– Let the additive constant in AIMD depend on CWND

• Other approaches?

– Multiple simultaneous connections (hacky but works 
today)

– Router-assisted approaches (will see shortly)
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Implications (3): Rate-based CC

• TCP throughput is “choppy” 
– repeated swings between W/2 to W

• Some apps would prefer sending at a steady rate 
– e.g., streaming apps

• A solution: “Equation-Based Congestion Control” 
– ditch TCP’s increase/decrease rules and just follow the equation
– measure drop percentage p, and set rate accordingly

• Following the TCP equation ensures we’re “TCP friendly”
– i.e., use no more than TCP does in similar setting

Throughput = 3
2

1
RTT p

202



203

New world of fairness….

204

205

Recap: TCP problems

• Misled by non-congestion losses
• Fills up queues leading to high delays
• Short flows complete before discovering available capacity
• AIMD impractical for high speed links 
• Sawtooth discovery too choppy for some apps
• Unfair under heterogeneous RTTs
• Tight coupling with reliability mechanisms
• Endhosts can cheat

Could fix many of these with some help from routers!

Routers tell endpoints 
if they’re congested

Routers tell
endpoints what 
rate to send at

Routers enforce
fair sharing
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Router-Assisted Congestion Control

• Three tasks for CC:

– Isolation/fairness
– Adjustment*
– Detecting congestion

* This may be automatic eg loss-response of TCP
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How can routers ensure each flow gets its “fair 
share”?

208



Fairness: General Approach

• Routers classify packets into “flows”
– (For now) flows are packets between same source/destination

• Each flow has its own FIFO queue in router

• Router services flows in a fair fashion
– When line becomes free, take packet from next flow in a fair order

• What does “fair” mean exactly?

209

Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth 

C, max-min bandwidth allocations are:
ai = min(f, ri) 

where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s
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Example
• C = 10;    r1 = 8, r2 = 6, r3 = 2;    N = 3
• C/3 = 3.33 ®

– Can service all of r3
– Remove r3 from the accounting: C = C – r3 = 8; N = 2

• C/2 = 4 ®
– Can’t service all of r1 or r2
– So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:  
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10
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Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth 

C, max-min bandwidth allocations are:
ai = min(f, ri) 

• where f is the unique value such that Sum(ai) = C

• Property:
– If you don’t get full demand, no one gets more than you

• This is what round-robin service gives if all packets are 
the same size
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How do we deal with packets of 
different sizes?

• Mental model: Bit-by-bit round robin (“fluid 
flow”) 

• Can you do this in practice?

• No, packets cannot be preempted

• But we can approximate it 
– This is what “fair queuing” routers do
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Fair Queuing (FQ) 

• For each packet, compute the time at which 
the last bit of a packet would have left the 

router if flows are served bit-by-bit

• Then serve packets in the increasing order of 

their deadlines

214



Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow 1
(arrival traffic)

Flow 2
(arrival traffic)

Service
in fluid flow 

system

FQ
Packet
system

time

time

time

time
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Fair Queuing (FQ)

• Think of it as an implementation of round-robin generalized 
to the case where not all packets are equal sized

• Weighted fair queuing (WFQ): assign different flows 
different shares

• Today, some form of WFQ implemented in almost all routers
– Not the case in the 1980-90s, when CC was being developed
– Mostly used to isolate traffic at larger granularities (e.g., per-prefix) 
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FQ vs. FIFO

• FQ advantages: 
– Isolation: cheating flows don’t benefit
– Bandwidth share does not depend on RTT
– Flows can pick any rate adjustment scheme they 

want

• Disadvantages:
– More complex than FIFO: per flow queue/state, 

additional per-packet book-keeping 

FQ in the big picture

• FQ does not eliminate congestion " it just 
manages the congestion

1Gbps
100Mbps

1Gbps

5Gbps

1Gbps

Blue and Green get
0.5Gbps; any excess 

will be dropped

Will drop an additional
400Mbps from 
the green flow 

If the green flow doesn’t drop its sending rate to 
100Mbps, we’re wasting 400Mbps that could be 

usefully given to the blue flow

FQ in the big picture

• FQ does not eliminate congestion " it just 
manages the congestion
– robust to cheating, variations in RTT, details of delay, 

reordering, retransmission, etc.

• But congestion (and packet drops) still occurs

• And we still want end-hosts to discover/adapt to 
their fair share!

• What would the end-to-end argument say w.r.t. 
congestion control?

Fairness is a controversial goal

• What if you have 8 flows, and I have 4?
– Why should you get twice the bandwidth

• What if your flow goes over 4 congested hops, and mine only 
goes over 1?
– Why shouldn’t you be penalized for using more scarce bandwidth?

• And what is a flow anyway?
– TCP connection
– Source-Destination pair?
– Source?



Explicit Congestion Notification (ECN)

• Single bit in packet header; set by congested routers
– If data packet has bit set, then ACK has ECN bit set

• Many options for when routers set the bit
– tradeoff between (link) utilization and (packet) delay

• Congestion semantics can be exactly like that of drop
– I.e., endhost reacts as though it saw a drop

• Advantages:
– Don’t confuse corruption with congestion; recovery w/ rate adjustment
– Can serve as an early indicator of congestion to avoid delays
– Easy (easier) to incrementally deploy 

• defined as extension to TCP/IP in RFC 3168 (uses diffserv bits in the IP header)
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• What does TCP do?

– ARQ windowing, set-up, tear-down

• Flow Control in TCP

• Congestion Control in TCP

– AIMD, Fast-Recovery, Throughput

• Limitations of TCP Congestion Control

• Router-assisted Congestion Control  (eg ECN)
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TCP in detail

Transport Recap

A “big bag”:
Multiplexing, reliability, error-detection, error-recovery,

flow and congestion control, ….

• UDP:
– Minimalist - multiplexing and error detection

• TCP: 
– somewhat hacky
– but practical/deployable
– good enough to have raised the bar for the deployment of new, more optimal, 

approaches 
– though the needs of datacenters might change the status quos

• Beyond TCP (discussed in Topic 6):
– QUIC / application-aware transport layers
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Topic 6 – Applications

• Infrastructure Services (DNS)
– Now with added security…

• Traditional Applications (web)
– Now with added QUIC

• Multimedia Applications (SIP)
– One day (more…)…

• P2P Networks
– Every device serves

1 2

Client-server paradigm reminder
server:

– always-on host

– permanent IP address

– server farms for scaling

clients:
– communicate with server
– may be intermittently connected
– may have dynamic IP addresses
– do not communicate directly 

with each other

client/server

3

Relationship Between 
Names&Addresses

• Addresses can change underneath
– Move www.bbc.co.uk to 212.58.246.92
– Humans/Apps should be unaffected

• Name could map to multiple IP addresses
– www.bbc.co.uk to multiple replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers

• Multiple names for the same address
– E.g., aliases like www.bbc.co.uk and bbc.co.uk
– Mnemonic stable name, and dynamic canonical name

• Canonical name = actual name of host

Mapping from Names to Addresses
• Originally: per-host file /etc/hosts*

– SRI (Menlo Park) kept master copy
– Downloaded regularly
– Flat namespace

• Single server not resilient, doesn’t scale
– Adopted a distributed hierarchical system

• Two intertwined hierarchies:
– Infrastructure: hierarchy of DNS servers
– Naming structure: www.bbc.co.uk

*C:\Windows\System32\drivers\etc\hosts for recent windows

4

5

Domain Name System (DNS)
• Top of hierarchy: Root

– Location hardwired into other servers

• Next Level: Top-level domain (TLD) servers
– .com, .edu, etc.

– .uk, .au, .to, etc.

– Managed professionally

• Bottom Level: Authoritative DNS servers
– Actually do the mapping

– Can be maintained locally or by a service provider

6

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

cl

in-
addr

generic domains country domains

my.east.bar.edu cl.cam.ac.uk

Top-Level Domains (TLDs)
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DNS Root
• Located in Virginia, USA

• How do we make the root scale?

Verisign, Dulles, VA

8

DNS Root Servers
• 13 root servers (see http://www.root-servers.org/)

– Labeled A through M
• Does this scale?

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F  Internet Software

Consortium 
Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA
C Cogent, Herndon, VA
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign
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DNS Root Servers
• 13 root servers (see http://www.root-servers.org/)

– Labeled A through M
• Replication via any-casting (localized routing for addresses)

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

E NASA Mt View, CA
F  Internet Software

Consortium,
Palo Alto, CA
(and 37 other locations)

I Autonomica, Stockholm (plus 
29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo
plus Seoul, Paris,
San Francisco

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD
G US DoD Vienna, VA
H ARL Aberdeen, MD
J Verisign (21 locations)
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Using DNS
• Two components

– Local DNS servers

– Resolver software on hosts

• Local DNS server (“default name server”)
– Usually near the endhosts that use it

– Local hosts configured with local server (e.g., 
/etc/resolv.conf) or learn server via DHCP

• Client application
– Extract server name (e.g., from the URL)

– Do gethostbyname() to trigger resolver code

local DNS server
dns.cam.ac.uk
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requesting host
cl.cam.ac.uk www.stanford.edu

root DNS server

1

2
3

4

5

6

authoritative DNS server
dns.stanford.edu

7
8

TLD DNS server

How Does Resolution Happen?
(Iterative example)

Host at cl.cam.ac.uk
wants IP address for 

www.stanford.edu

iterated query:
• Host enquiry is delegated 

to local DNS server
• Consider

transactions 2 – 7 only
• contacted server replies 

with name of next server 
to contact

• “I don’t know this name, 
but ask this server”

12

requesting host
cl.cam.ac.uk

www.stanford.edu

root DNS server

local DNS server
dns.cam.ac.uk

1

2

45

6

authoritative DNS server
dns.stanford.edu

7

8

TLD DNS server

3recursive query:
• puts burden of name 

resolution on contacted 
name server

• heavy load? 

DNS name resolution recursive example
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Recursive and Iterative Queries - Hybrid case
• Recursive query
– Ask server to get 

answer for you

– E.g., requests 1,2 

and responses 

9,10

• Iterative query

– Ask server who 
to ask next

– E.g., all other 
request-
response pairs

requesting host
my-host.cl.cam.ac.uk

root DNS server

3
4

5

6

7

authoritative DNS server
dns.stanford.edu

8

TLD DNS server

Site DNS server
dns.cam.ac.uk

2 9

1 10

Site DNS server
dns.cl.cam.ac.uk
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DNS Caching
• Performing all these queries takes time

– And all this before actual communication takes place

– E.g., 1-second latency before starting Web download

• Caching can greatly reduce overhead
– The top-level servers very rarely change

– Popular sites (e.g., www.bbc.co.uk) visited often

– Local DNS server often has the information cached

• How DNS caching works
– DNS servers cache responses to queries

– Responses include a “time to live” (TTL) field

– Server deletes cached entry after TTL expires
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Negative Caching

• Remember things that don’t work
– Misspellings like bbcc.co.uk and www.bbc.com.uk
– These can take a long time to fail the first time

– Good to remember that they don’t work

– … so the failure takes less time the next time around

• But: negative caching is optional
– And not widely implemented
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Reliability
• DNS servers are replicated (primary/secondary)
– Name service available if at least one replica is up

– Queries can be load-balanced between replicas

• Usually, UDP used for queries
– Need reliability: must implement this on top of UDP

– Spec supports TCP too, but not always implemented

• Try alternate servers on timeout
– Exponential backoff when retrying same server

• Same identifier for all queries
– Don’t care which server responds
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From https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

11

Invalid queries categories

• Unused query class:
• Any class not in IN, CHAOS, HESIOD, NONE or ANY

• A-for-A: A-type query for a name is already a IPv4 Address
• <IN, A, 192.16.3.0>

• Invalid TLD: a query for a name with an invalid TLD
• <IN, MX, localhost.lan>

• Non-printable characters:
• <IN, A, www.ra^B.us.>

• Queries with ‘_’:
• <IN, SRV, _ldap._tcp.dc._msdcs.SK0530-K32-1.>

• RFC 1918 PTR: 
• <IN, PTR, 171.144.144.10.in-addr.arpa.>

• Identical queries:
• a query with the same class, type, name and id (during the whole period)

• Repeated queries:
• a query with the same class, type and name

• Referral-not-cached:
• a query seen with a referral previously given.
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Invalid TLD

• Queries for invalid TLD 
represent 22% of the total traffic 
at the roots
– 20.6% during DITL 2007

• Top 10 invalid TLD represent 
10.5% of the total traffic

• RFC 2606 reserves some TLD 
to avoid future conflicts

• We propose:
– Include some of these TLD 

(local, lan, home, localdomain) 
to RFC 2606

– Encourage cache 
implementations to answer 
queries for RFC 2606 TLDs
locally (with data or error)

Percentage of total 
queriesTLD

2007 2008
local 5.018 5.098
belkin 0.436 0.781
localhost 2.205 0.710
lan 0.509 0.679
home 0.321 0.651
invalid 0.602 0.623
domain 0.778 0.550
localdomain 0.318 0.332
wpad 0.183 0.232
corp 0.150 0.231
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From https://www.caida.org/publications/presentations/2008/wide_castro_root_servers/wide_castro_root_servers.pdf

awm22: at least WORKGROUP is no 
longer here!
It was the top in valid TLD for years…



Secondary
DNS

primary
DNS

Registrars
& Registrants

Registry

Secondary
DNS

Data flow through the DNS
Where are the vulnerable
points?

Server vulnerability

Man in the Middle

spoofing
&

Man in the Middle

DNS and Security
• No way to verify answers

– Opens up DNS to many potential attacks

– DNSSEC fixes this

• Most obvious vulnerability: recursive resolution
– Using recursive resolution, host must trust DNS server

– When at Starbucks, server is under their control

– And can return whatever values it wants

• More subtle attack: Cache poisoning
– Those “additional” records can be anything!
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DNSSEC protects all these end-to-end

• provides message authentication and integrity verification through 
cryptographic signatures
– You know who provided the signature
– No modifications between signing and validation

• It does not provide authorization
• It does not provide confidentiality
• It does not provide protection against DDOS

DNSSEC in practice

• Scaling the key signing and key distribution

Solution: Using the DNS to Distribute Keys

• Distributing keys through DNS hierarchy:

– Use one trusted key to establish authenticity of other keys
– Building chains of trust from the root down
– Parents need to sign the keys of their children

• Only the root key needed in ideal world

– Parents always delegate security to child
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Why is the web so 
successful?

• What do the web, youtube, facebook, twitter, instagram, …..  
have in common?
– The ability to self-publish

• Self-publishing that is easy, independent, free

• No interest in collaborative and idealistic endeavor
– People aren’t looking for Nirvana (or even Xanadu)
– People also aren’t looking for technical perfection

• Want to make their mark, and find something neat
– Two sides of the same coin, creates synergy
– “Performance” more important than dialogue….
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Web Components
• Infrastructure:

– Clients
– Servers
– Proxies

• Content:
– Individual objects (files, etc.)
– Web sites (coherent collection of objects)

• Implementation
– HTML: formatting content
– URL: naming content
– HTTP: protocol for exchanging content

Any content not just HTML!
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HTML: HyperText Markup Language 

• A Web page has:

– Base HTML file

– Referenced objects (e.g., images)

• HTML has several functions:

– Format text

– Reference images

– Embed hyperlinks (HREF)
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URL Syntax
protocol://hostname[:port]/directorypath/resource

protocol http, ftp, https, smtp, rtsp, etc.

hostname DNS name, IP address

port Defaults to protocol’s standard port
e.g. http: 80  https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%4
0B%40Bulk&MsgId=2604_1744106_29699_1123_1261_0_289
17_3552_1289957100&Search=&Nhead=f&YY=31454&order=
down&sort=date&pos=0&view=a&head=b
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HyperText Transfer Protocol (HTTP)

• Request-response protocol

• Reliance on a global namespace

• Resource metadata
• Stateless
• ASCII format (ok this changed….)

$ telnet www.cl.cam.ac.uk 80
GET /win HTTP/1.0
<blank line, i.e., CRLF>

Steps in HTTP Request
• HTTP Client initiates TCP connection to server

– SYN

– SYNACK

– ACK

• Client sends HTTP request to server
– Can be piggybacked on TCP’s ACK

• HTTP Server responds to request
• Client receives the request, terminates connection
• TCP connection termination exchange

How many RTTs for a single request?

28
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Client-Server Communication

• two types of HTTP messages: request, response
• HTTP request message: (GET POST HEAD ….)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close 
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST, 

HEAD commands)

header
lines

Carriage return, 
line feed 

indicates end 
of message

HTTP/1.1 200 OK 
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT 
Server: Apache/1.3.0 (Unix) 
Last-Modified: Mon, 22 Jun 1998 …... 
Content-Length: 6821 
Content-Type: text/html

data data data data data ... 

status line
(protocol

status code
status phrase)

header
lines

data, e.g., 
requested
HTML file

HTTP response message
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Different Forms of Server 
Response

• Return a file

– URL matches a file (e.g., /www/index.html)

– Server returns file as the response

– Server generates appropriate response header

• Generate response dynamically

– URL triggers a program on the server

– Server runs program and sends output to client

• Return meta-data with no body
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HTTP Resource Meta-Data
• Meta-data
– Info about a resource, stored as a separate entity

• Examples:
– Size of resource, last modification time, type of 

content

• Usage example:  Conditional GET Request
– Client requests object “If-modified-since”

– If unchanged, “HTTP/1.1 304 Not Modified”

– No body in the server’s response, only a header
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HTTP is Stateless

• Each request-response treated independently
– Servers not required to retain state

• Good: Improves scalability on the server-side
– Failure handling is easier

– Can handle higher rate of requests

– Order of requests doesn‘t matter

• Bad: Some applications need persistent state
– Need to uniquely identify user or store temporary info

– e.g., Shopping cart, user profiles, usage tracking, …
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State in a Stateless Protocol:
Cookies

• Client-side state maintenance

– Client stores small(?) state on behalf of server
– Client sends state in future requests to the server

• Can provide authentication

Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ
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HTTP Performance
• Most Web pages have multiple objects

– e.g., HTML file and a bunch of embedded images

• How do you retrieve those objects (naively)?

– One item at a time

• Put stuff in the optimal place?

–Where is that precisely? 
• Enter the Web cache and the CDN 
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Fetch HTTP Items:  Stop & Wait
Client Server

Request item 1

Transfer item 1

Request item 2

Transfer item 2

Request item 3

Transfer item 3

Finish; display
page 

Start fetching
page Tim

e

≥2 RTTs
per
object
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Improving HTTP Performance:
Concurrent Requests & Responses

• Use multiple connections in 
parallel

• Does not necessarily maintain 

order of responses

• Client = !

• Server = !

• Network = " Why?

R1
R2 R3

T1

T2 T3
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Improving HTTP Performance:
Pipelined Requests & Responses

• Batch requests and responses

– Reduce connection overhead

– Multiple requests sent in a single 

batch

– Maintains order of responses

– Item 1 always arrives before item 2

• How is this different from 

concurrent requests/responses?

– Single TCP connection

Client Server

Request 1
Request 2
Request 3

Transfer 1

Transfer 2

Transfer 3

Improving HTTP Performance:
Persistent Connections

• Enables multiple transfers per connection
– Maintain TCP connection across multiple requests

– Including transfers subsequent to current page

– Client or server can tear down connection

• Performance advantages:
– Avoid overhead of connection set-up and tear-down

– Allow TCP to learn more accurate RTT estimate

– Allow TCP congestion window to increase

– i.e., leverage previously discovered bandwidth

• Default in HTTP/1.1
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HTTP evolution

• 1.0 – one object per TCP: simple but slow

• Parallel connections - multiple TCP, one object 

each:  wastes b/w, may be svr limited, out of order 

• 1.1 pipelining – aggregate retrieval time: ordered, 

multiple objects sharing single TCP

• 1.1 persistent – aggregate TCP overhead: lower 

overhead in time, increase overhead at ends (e.g., 

when should/do you close the connection?) 
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Scorecard: Getting n Small Objects

Time dominated by latency

• One-at-a-time:  ~2n RTT

• Persistent: ~ (n+1)RTT

• M concurrent: ~2[n/m] RTT

• Pipelined: ~2 RTT

• Pipelined/Persistent: ~2 RTT first time, RTT 

later
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Scorecard: Getting n Large Objects

Time dominated by bandwidth

• One-at-a-time:  ~ nF/B

• M concurrent: ~ [n/m] F/B

– assuming shared with large population of users

• Pipelined and/or persistent: ~ nF/B

– The only thing that helps is getting more 
bandwidth..
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Improving HTTP Performance:
Caching

• Many clients transfer the same information
– Generates redundant server and network load

– Clients experience unnecessary latency

Server

Clients

Backbone ISP

ISP-1 ISP-2
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Improving HTTP Performance:
Caching: How

•Modifier to GET requests:

– If-modified-since – returns “not modified” if 
resource not modified since specified time 

• Response header:

– Expires – how long it’s safe to cache the resource
– No-cache – ignore all caches; always get resource 

directly from server
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Improving HTTP Performance:
Caching: Why

• Motive for placing content closer to client:
– User gets better response time
– Content providers get happier users
• Time is money, really!

– Network gets reduced load

• Why does caching work?
– Exploits locality of reference

• How well does caching work?
– Very well, up to a limit
– Large overlap in content
– But many unique requests
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Improving HTTP Performance:
Caching on the Client

Example: Conditional GET Request

• Return resource only if it has changed at the server

– Save server resources!

• How?
– Client specifies “if-modified-since” time in request
– Server compares this against “last modified” time of desired resource
– Server returns “304 Not Modified” if resource has not changed
– …. or a “200 OK” with the latest version otherwise

GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT
<CRLF>

Request from client to server:
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Improving HTTP Performance:
Caching with Reverse Proxies

Cache documents close to server
# decrease server load

• Typically done by content providers

• Only works for static(*) content
(*) static can also be snapshots
of dynamic content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies
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Improving HTTP Performance:
Caching with Forward Proxies

Cache documents close to clients
# reduce network traffic and decrease latency

• Typically done by ISPs or corporate LANs

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies
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Improving HTTP Performance:
Caching w/ Content Distribution Networks

• Integrate forward and reverse caching functionality
– One overlay network (usually) administered by one entity

– e.g., Akamai

• Provide document caching
– Pull: Direct result of clients’ requests 

– Push:  Expectation of high access rate

• Also do some processing
– Handle dynamic web pages

– Transcoding
– Maybe do some security function – watermark IP
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Improving HTTP Performance:
Caching with CDNs (cont.)

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN
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Improving HTTP Performance:
CDN Example – Akamai

• Akamai creates new domain names for each client 
content provider.
– e.g., a128.g.akamai.net

• The CDN’s DNS servers are authoritative for the new 
domains

• The client content provider modifies its content so 
that embedded URLs reference the new domains.
– “Akamaize” content

– e.g.: http://www.bbc.co.uk/popular-image.jpg becomes 
http://a128.g.akamai.net/popular-image.jpg

• Requests now sent to CDN’s infrastructure…
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Hosting:  Multiple Sites Per 
Machine

• Multiple Web sites on a single machine
– Hosting company runs the Web server on behalf of 

multiple sites (e.g., www.foo.com and www.bar.com)

• Problem: GET /index.html
– www.foo.com/index.html or www.bar.com/index.html?

• Solutions:
– Multiple server processes on the same machine

• Have a separate IP address (or port) for each server
– Include site name in HTTP request

• Single Web server process with a single IP address
• Client includes “Host” header (e.g., Host: www.foo.com)
• Required header with HTTP/1.1
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Hosting: Multiple Machines Per Site

• Replicate popular Web site across many machines
– Helps to handle the load

– Places content closer to clients

• Helps when content isn’t cacheable

• Problem:  Want to direct client to particular replica
– Balance load across server replicas

– Pair clients with nearby servers
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Multi-Hosting at Single Location
• Single IP address, multiple machines

– Run multiple machines behind a single IP address

– Ensure all packets from a single 
TCP connection go to the same replica

Load Balancer
64.236.16.20
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Multi-Hosting at Several Locations

• Multiple addresses, multiple machines

– Same name but different addresses for all of the replicas
– Configure DNS server to return closest address

Internet
64.236.16.20

173.72.54.131

12.1.1.1



CDN examples round-up

• CDN using DNS

DNS has information on loading/distribution/location 

• CDN using anycast

same address from DNS name but local routes

• CDN based on rewriting HTML URLs

(akami example just covered – akami uses DNS too)
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

–More efficient to parse 

–More compact on the wire 

–Much less error prone as compared 

– to textual protocols 
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

– Interleaved
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2

• Binary protocol

• Multiplexing

• Priority control over Frames

• Header Compression

• Server Push

– Proactively push stuff to client that it will need
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After HTTP/1.1

SPDY (speedy) and its moral successor HTTP/2
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• Header Compression

• Server Push
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SPDY

• SPDY + HTTP/2: One single TCP connection 

instead of multiple

• Downside: Head of line blocking

• In TCP, packets need to be processed in 

correct order

Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with 
TCP’s reliability
• Very hard to make changes to TCP
• Faster  to implement new protocol on top of UDP
• Roll out features in TCP if they prove theory
QUIC:
• Reliable transport over UDP (seriously)
• Uses FEC
• Default crypto
• Restartable connections
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Add QUIC and stir…
Quick UDP Internet Connections

Objective: Combine speed of UDP protocol with 
TCP’s reliability
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• Faster  to implement new protocol on top of UDP
• Roll out features in TCP if they prove theory
QUIC:
• Reliable transport over UDP (seriously)
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• Default crypto
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3-Way Handshake

Without TLS With TLS

UDP

• Fire and forget

– Less time spent to 

validate packets

– Downside - no reliability, 

this has to be built on top 

of UDP

QUIC

• UDP does NOT depend on order of arriving packets
• Lost packets will only impact an individual resource, 

e.g., CSS or JS file.
• QUIC is combining best parts of HTTP/2 over UDP:

– Multiplexing on top of non-blocking transport protocol

QUIC – more than just UDP

• QUIC outshines TCP under poor network 

conditions, shaving a full second off the 

Google Search page load time for the slowest 

1% of connections.

• These benefits are even more apparent for 

video services like YouTube. Users report 30% 

fewer rebuffers when watching videos over 

QUIC.
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Why QUIC over UDP and not a new 
proto

• IP proto value for new transport layer

• Change the protocol – risk the wraith of 

– Legacy code

– Firewalls

– Load-balancer

– NATs (the high-priest of middlebox)

• Same problem faces any significant TCP change

67Honda  M. et al. “Is it still possible to extend TCP?”, IMC’11
https://dl.acm.org/doi/abs/10.1145/2068816.2068834

SIP – Session Initiation Protocol
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Session?

Anyone smell an OSI / ISO standards document burning?

SIP - VoIP

Establishing communication 

through SIP proxies.
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SIP?
• SIP – bringing the fun/complexity of 

telephony to the Internet
–User location

–User availability

–User capabilities

– Session setup

– Session management

• (e.g. “call forwarding”)
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H.323 – ITU

• Why have one standard when there are at least two….

• The full H.323 is hundreds of pages

– The protocol is known for its complexity – an ITU hallmark

• SIP is not much better

– IETF grew up and became the ITU….
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Multimedia Applications

Message flow for a basic SIP session

72



The (still?) missing piece:
Resource Allocation for Multimedia Applications

I can ‘differentiate’ VoIP from data but…
I can only control data going into the Internet

73

Multimedia Applications
• Resource Allocation for Multimedia Applications

Admission control using session control protocol.
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Resource Allocation for Multimedia Applications

So where does it happen?
Inside single institutions or domains of control….. 

(Universities, Hospitals, big corp…)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line 

and throughout their own network too……  everywhere else is best-effort

Co-ordination of SIP signaling and 
resource reservation.

Coming soon… 1995
2000

2010
2020
who are we kidding??
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Every host is a server:
Peer-2-Peer

76
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Pure P2P architecture

• no always-on server

• arbitrary end systems 

directly communicate

• peers are intermittently 

connected and change IP 

addresses

• Three topics:

– File distribution
– Searching for information
– Case Study: Skype

peer-peer
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File Distribution: Server-Client vs P2P
Question : How much time to distribute file from 

one server to N  peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

File, size F

us: server upload 
bandwidth

ui: peer i upload 
bandwidth

di: peer i download 
bandwidth
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File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

F• server sequentially 

sends N copies:

– NF/us time 

• client i takes F/di 

time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to  distribute F
to N clients using 

client/server approach 
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File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with 
abundant bandwidth)

F• server must send one copy: 

F/us time 

• client i takes F/di time to 

download

• NF bits must be 

downloaded (aggregate)

r fastest possible upload rate: us + Sui

dP2P = max { F/us, F/min(di) , NF/(us + Sui) }
i
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Server-client vs. P2P: example

Client upload rate = u,  F/u = 1 hour,  us = 10u,  dmin ≥ us
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File distribution: BitTorrent*
*rather old BitTorrent

tracker: tracks peers 

participating in torrent

torrent: group of 
peers exchanging  
chunks of a file

obtain list
of peers

trading 
chunks

peer

r P2P file distribution
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BitTorrent (1)
• file divided into 256KB chunks.

• peer joining torrent: 

– has no chunks, but will accumulate them over time

– registers with tracker to get list of peers, connects to 

subset of peers (“neighbors”)

• while downloading,  peer uploads chunks to other peers. 

• peers may come and go

• once peer has entire file, it may (selfishly) leave or 

(altruistically) remain
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BitTorrent (2)
Pulling Chunks

• at any given time, different 

peers have different 

subsets of file chunks

• periodically, a peer (Alice) 

asks each neighbor for list 

of chunks that they have.

• Alice sends requests for her 

missing chunks

– rarest first

Sending Chunks: tit-for-tat
r Alice sends chunks to four neighbors 

currently sending her chunks at the 
highest rate
$ re-evaluate top 4 every 10 secs

r every 30 secs: randomly select another 
peer, starts sending chunks
$ newly chosen peer may join top 4
$ “optimistically unchoke”
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BitTorrent:  Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate, 
can find better trading 
partners & get file faster!

Distributed Hash Table (DHT)

• DHT = distributed P2P database

• Database has (key, value) pairs; 

– key: ss number; value: human name

– key: content type; value: IP address

• Peers query DB with key

– DB returns values that match the key

• Peers can also insert (key, value) peers
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DHT Identifiers

• Assign integer identifier to each peer in range 

[0,2n-1].

– Each identifier can be represented by n bits.

• Require each key to be an integer in same range.

• To get integer keys, hash original key.

– eg, key = h(“Game of Thrones season 29”)

– This is why they call it a distributed “hash” table

How to assign keys to peers?

• Central issue:

– Assigning (key, value) pairs to peers.

• Rule: assign key to the peer that has the 

closest ID.

• Convention in lecture: closest is the 

immediate successor of the key.

• Ex: n=4; peers: 1,3,4,5,8,10,12,14; 

– key = 13, then successor  peer = 14
– key = 15, then successor peer = 1

1

3

4

5

8
10

12

15

Circular DHT (1)

• Each peer only aware of immediate successor 

and predecessor.

• “Overlay network” – logical structure



Circle DHT  (2)

0001

0011

0100

0101

1000
1010

1100

1111

Who’s resp 
for key 1110 ?

I am

O(N) messages
on avg to resolve
query, when there
are N peers

1110

1110

1110

1110

1110

1110

Define closest
as closest
successor

Circular DHT with Shortcuts

• Each peer keeps track of IP addresses of predecessor, successor, 

short cuts.

• Reduced from 6 to 2 messages.

• Possible to design shortcuts so O(log N) neighbors, O(log N) 

messages in query

1

3

4

5

8
10

12

15

Who’s resp 
for key 1110? 

Peer Churn

• Peer 5 abruptly leaves

• Peer 4 detects; makes 8 its immediate successor; asks 8 

who its immediate successor is; makes 8’s immediate 

successor its second successor.

• What if peer 13 wants to join?

1

3

4

5

8
10

12

15

•To handle peer churn, require 
each peer to know the IP address 
of its two successors. 
• Each peer periodically pings its 
two successors to see if they 
are still alive. 
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P2P Case study: Skype (pre-Microsoft)

• inherently P2P: pairs of 

users communicate.

• proprietary application-

layer protocol (inferred 

via reverse engineering) 

• hierarchical overlay with 

SNs

• Index maps usernames to 

IP addresses; distributed 

over SNs

Skype clients (SC)

Supernode
(SN)

Skype 
login server
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Peers as relays
• Problem when both Alice 

and Bob are behind  
“NATs”. 
– NAT prevents an outside peer 

from initiating a call to 
insider peer

• Solution:

– Using Alice’s and Bob’s SNs, 
Relay is chosen

– Each peer initiates session 
with relay. 

– Peers can now communicate 
through NATs via relay

Summary.
• Applications have protocols too

• We covered examples from
– Traditional Applications (web)
– Scaling and Speeding the web (CDN/Cache tricks)

• Infrastructure Services (DNS)
– Cache and Hierarchy

• Multimedia Applications (SIP)
– Extremely hard to do better than worst-effort

• P2P Network examples
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