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int main( int argc, char *argv[] )

{

printf("hello world\n");

return 0;

}

.LC0:

.string "hello world"

.text

.globl main

.type main, @function

main:

.LFB0:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $16, %rsp

movl %edi, -4(%rbp)

movq %rsi, -16(%rbp)

movl $.LC0, %edi

call puts

movl $0, %eax

leave

.cfi_def_cfa 7, 8

ret

.cfi_endproc
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Why Study Compilers?

• Although many of the basic ideas were 

developed over 60 years ago, compiler 

construction is still an evolving and active 

area of research and development.

• Compilers are intimately related to 

programming language design and evolution. 

• Compilers are a Computer Science success 

story illustrating  the hallmarks of our field ---

higher-level abstractions implemented with 

lower-level abstractions. 

• Every Computer Scientist should have a basic 

understanding of how compilers work. 



Compilation is a special kind of translation

Source 

Program

Text

The compiler 
program for 

target 

“machine”

Just text – no way to 

run program! 

We have a “machine”

to run this! 

• be correct in the sense that meaning is preserved

• produce usable error messages

• generate efficient code

• itself be efficient

• be well-structured and maintainable 

A good compiler should …

This course!

OptComp, 

Part II
Pick any 2?

Just 1?
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Mind The Gap

• Machine independent

• Complex syntax

• Complex type system

• Variables

• Nested scope

• Procedures, functions

• Objects 

• Modules

• …

• Machine specific

• Simple syntax

• Simple types 

• memory, registers, words

• Single flat scope 

High Level Language Typical Target Language

Help!!! Where do we begin???
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The Gap, illustrated

public class Fibonacci {

public Fibonacci();

Code:

0: aload_0       

1: invokespecial #1                  

4: return        

public static long fib(int);

Code:

0: iload_0       

1: ifne          6

4: lconst_1      

5: lreturn       

6: iload_0       

7: iconst_1      

8: if_icmpne     13

11: lconst_1      

12: lreturn       

13: iload_0       

14: iconst_1      

15: isub          

16: invokestatic  #2                  

19: iload_0       

20: iconst_2      

21: isub          

22: invokestatic  #2                  

25: ladd          

26: lreturn     

public static void 

main(java.lang.String[]);

Code:

0: aload_0       

1: iconst_0      

2: aaload

3: invokestatic #3            

6: istore_1      

7: getstatic #4                  

10: new           #5 

13: dup           

14: invokespecial #6

17: iload_1       

18: invokestatic #2 

21: invokevirtual #7                  

24: ldc #8                  

26: invokevirtual #9                  

29: invokevirtual #10                 

32: invokevirtual #11                 

35: return        

}

public class Fibonacci {

public static long fib(int m) {

if (m == 0) return 1; 

else if (m == 1) return 1; 

else return 

fib(m - 1) + fib(m - 2);

}

public static void 

main(String[] args) {

int m = 

Integer.parseInt(args[0]);

System.out.println(

fib(m) + "\n");

}

}

javac Fibonacci.java

javap –c Fibonacci.class

JVM bytecodes 
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The Gap, illustrated

(* fib : int -> int *) 

let rec fib m =

if m = 0 

then 1 

else if m = 1 

then 1 

else fib(m - 1) + fib (m - 2) 

ocamlc –dinstr fib.ml 

branch L2

L1: acc 0

push

const 0

eqint

branchifnot L4

const 1

return 1

L4: acc 0

push

const 1

eqint

branchifnot L3

const 1

return 1

L3: acc 0

offsetint -2

push

offsetclosure 0

apply 1

push

acc 1

offsetint -1

push

offsetclosure 0

apply 1

addint

return 1

L2: closurerec 1, 0

acc 0

makeblock 1, 0

pop 1

setglobal Fib!

OCaml VM bytecodes 

fib.ml
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The Gap, illustrated

#include<stdio.h>

int Fibonacci(int);

int main()

{

int n;

scanf("%d",&n);

printf("%d\n", Fibonacci(n));

return 0;

}

int Fibonacci(int n)

{

if ( n == 0 ) return 0;

else if ( n == 1 ) return 1;

else return ( Fibonacci(n-1) + Fibonacci(n-2) );

} 

gcc –S fib.c

fib.c
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The Gap, illustrated

.section __TEXT,__text,regular,pure_instructions

.globl _main

.align 4, 0x90

_main:                                  ## @main

.cfi_startproc

## BB#0:

pushq %rbp

Ltmp2:

.cfi_def_cfa_offset 16

Ltmp3:

.cfi_offset %rbp, -16

movq %rsp, %rbp

Ltmp4:

.cfi_def_cfa_register %rbp

subq $16, %rsp

leaq L_.str(%rip), %rdi

leaq -8(%rbp), %rsi

movl $0, -4(%rbp)

movb $0, %al

callq _scanf

movl -8(%rbp), %edi

movl %eax, -12(%rbp)         ## 4-byte Spill

callq _Fibonacci

leaq L_.str1(%rip), %rdi

movl %eax, %esi

movb $0, %al

callq _printf

movl $0, %esi

movl %eax, -16(%rbp)         ## 4-byte Spill

movl %esi, %eax

addq $16, %rsp

popq %rbp

ret

.cfi_endproc

.globl _Fibonacci

.align 4, 0x90

_Fibonacci:                             ## @Fibonacci

.cfi_startproc

## BB#0:

pushq %rbp

Ltmp7:

.cfi_def_cfa_offset 16

Ltmp8:

.cfi_offset %rbp, -16

movq %rsp, %rbp

Ltmp9:
x86/Mac OS 

.cfi_def_cfa_register %rbp

subq $16, %rsp

movl %edi, -8(%rbp)

cmpl $0, -8(%rbp)

jne LBB1_2

## BB#1:

movl $0, -4(%rbp)

jmp LBB1_5

LBB1_2:

cmpl $1, -8(%rbp)

jne LBB1_4

## BB#3:

movl $1, -4(%rbp)

jmp LBB1_5

LBB1_4:

movl -8(%rbp), %eax

subl $1, %eax

movl %eax, %edi

callq _Fibonacci

movl -8(%rbp), %edi

subl $2, %edi

movl %eax, -12(%rbp)         ## 4-byte Spill

callq _Fibonacci

movl -12(%rbp), %edi ## 4-byte Reload

addl %eax, %edi

movl %edi, -4(%rbp)

LBB1_5:

movl -4(%rbp), %eax

addq $16, %rsp

popq %rbp

ret

.cfi_endproc

.section __TEXT,__cstring,cstring_literals

L_.str:                                 ## @.str

.asciz "%d"

L_.str1:                                ## @.str1

.asciz "%d\n"

.subsections_via_symbols
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Conceptual view of a typical compiler

Front End Back End

ISA/OS

targeted code

(x86/unix, …) 

Source 

Program

Text

The compiler 

Operating System (OS)

Virtual Machine (VM)  

examples: JVM, Dalvik, .NET CLR

ISA/OS 

independent 

“byte code” 
errors, 

warnings 

ISA = Instruction Set Architecture 

Middle

Key to bridging The Gap : divide and conquer.  

The gap is broken into small steps. 

Each step broken into yet smaller steps … 
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The shape of a typical “front end”

Source

Program

Text

Lexical 

analysis
lexical 

tokens

Parsing

Lexical theory 

based on finite 

automaton

and regular

expressions

Parsing Theory 

based on 

push-down 

automaton and 

context-free 

grammars

AST + 

other

info  

AST

= Abstract 

Syntax Tree

Semantic 

analysis

Enforce 

“static sematics”

of language:

type checking,

def/use rules,

and so on (SPL!) 

report 

errors
report 

errors

report 

errors

The AST output from the front-end should represent a legal program in the source language.

(“Legal” of course does not mean “bug-free”!) 

SPL = Semantics of Programming Languages, Part 1B



The middle

AST + 

other

info  

Low-level 

retargetable

representation

--High-level to 

low-level

--Optimisations 

Trade-off: with more optimisations the generated code

is (normally) faster, but the compiler is slower 



The back-end

Low-level 

retargetable

representation
Back-end 

 Requires intimate knowledge of instruction set and 

details of target machine

 When generating assembler, need to understand 

details of OS interface

 Target-dependent optimisations happen here!

 JVM bytecodes 

 x86/Linux

 x86/MacOS

 x86/FreeBSD

 x86/Windows

 ARM/Android 

 ….

 …. 



Compilers must be compiled

Source 

Program

Text

The compiler 

A program in 

language A

A program in 

language B

Something to ponder:

A compiler is just a program.

But how did it get compiled?

The OCaml compiler is written in

OCaml. 

How was the compiler compiled? 

A program in 

language C



The Shape of this Course 

• Part I (Lectures 2 – 6) :Lexical analysis 

and parsing 

• Part II (Lectures 7 – 16) : Development of 

the SLANG (Simple LANGuage) compiler.  

SLANG is based on L3 from 1B 

Semantics. 

• A compiler for SLANG, written in Ocaml, 

with link posted on the course web page.  
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Compiler Construction

Lent Term 2022

Lecture 2 : Lexical analysis

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge  

• Recall regular expressions

• Recall Finite Automata 

• Recall NFA to DFA transformation

• What is the “lexing problem”?

• How DFAs are used to solve the lexing

problem?

1



What problem are we solving?

if m = 0 then 1 else if m = 1 then 1 else fib (m - 1) +  fib (m -2) 

Translate a sequence of characters 

into a sequence of tokens

type token = 

| INT of int| IDENT of string | LPAREN | RPAREN 

| ADD | SUB | EQUAL | IF | THEN | ELSE 

| … 

IF, IDENT “m”, EQUAL, INT 0, THEN, INT 1, ELSE, IF, 

IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 1, 

RPAREN, ADD, 

IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN

implemented with some data type 

2
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Regular Expression (RE) Examples

},,,
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))(( *
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Review of Finite Automata (FA)

),,,,( 0 FqQM 

states :Q alphabet :

statestart  : Q0 q states final :QF

(DFA)FA  ticdeterminisfor     

 Qa)(q,,,  aQq

(NFA)FA  nisticnondetermifor    

 Qa)(q,}),{(,  aQq

5



NFA Example

)cbbcaabM(a ** **

 acceptingNFA An 



c

c

a

b

a

b




start

6



A bit of notation 

},|{)(

 and ),( if

0

322131

qqFqwML

qqqaqqq

qq

w

waw

ε









For deterministic FA.

For nondeterministic FA.
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 and),(q if

 and),(  if
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321231
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qqFqwML
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qq

w

waw
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ε
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


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Review of RE -> NFA 

e startq
finalq

A regular 

expression.

A nondeterministic

FA accepting M(e) with 

a single final state.

The construction is done by induction on 

the structure of e.

)(eN



8



Review of RE -> NFA 

0q 1q)(N

0q 1q)(N


0q 1q)(aN
a
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Review of RE -> NFA 

 )( 21 eeN
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
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Review of RE -> NFA 

)( 21eeN

)( 2eN)( 1eN
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Review of RE -> NFA 
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
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Review of NFA -> DFA

),,,,( 0 FqQM 

),,,,( ''

0
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?)( compute  wedo How Sclosure

resultreturn 

stackon u push 

result   :result then 

result  if

each for 

stack  theoff  pop

empty not stack  while

 :result 

stack a onto  of elements allpush 

:)(











{u}

u

)(q,u

q

S

S

Sclosure





Look familiar? 

It’s just a version of 

transitive closure!

15
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,4,3,2,1

9,7,6
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b

a

ba

start
b

b

b

a
a

a

7,6

5,4,2,1

16
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Traditional Regular Language Problem

?)( is , and Given eLwwe 

Solution : construct NFA from e, then DFA, then run 

the DFA on w.

But is this a solution to the “lexing problem? 

No! 

17



Something closer to the “lexing problem”

. 

The expressions are ordered by priority. Why?  

Is “if” a variable or a keyword? Need priority to 

resolve ambiguity (so “if” matched keyword RE 

before identifier RE. 

We need to do a longest match.  Why?

Is “ifif” a variable or two “if” keywords? 

w

)w(i),w,(i),w,(i nn,21 ...21

keee ,, 21  and 

find 

Given 

so that 

n1 www=w ...2 )L(ewji
jii 

and what else? 

and 

18
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Define Tokens with Regular Expressions (Finite 

Automata)

Keyword: if

1
i

2
f

3

1
i

2
f

3

0

-{f}

-{i} 

This FA is really shorthand for: 

“dead state” 19
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Define Tokens with Regular Expressions (Finite 

Automata)

Keyword: 

if
1

i
2

f
3 KEY(IF) 

Keyword: 

then
1

t
2

h
3

KEY(then) 

5

e

n
4

Regular Expression Finite Automata Token

Identifier:  

[a-zA-Z][a-zA-Z0-9]*
1 2

[a-zA-Z]

[a-zA-Z0-9]

ID(s) 

20
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Define Tokens with Regular Expressions (Finite 

Automata)

Regular Expression Finite Automata Token

number:  

[0-9][0-9]*
1 2

[0-9]

[0-9]

NUM(n) 

real:  

([0-9]+ ‘.’ [0-9]*)

| ([0-9]* ‘.’ [0-9]+)

1

3

[0-9] NUM(n) 
2

[0-9]

[0-9]

.

4

.

[0-9]
5

[0-9]
21
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No Tokens for “White-Space”

White-space with one line 

comments starting with % 

1

3

%
2

[A-za-z0-9’ ‘]

4

\n

\t

\n‘ ‘

22



Constructing a Lexer

an ordered list of regular expressions

Highest priority first, lowest last

INPUT: keee ,, 21 

keeee  21for NFA 

23

priority.highest 

of   with theassociated

 state finaleach DFA with 

ie



Constructing a Lexer

(1) Keyword : then

(2) Ident : [a-z][a-z]*

(2) White-space: ‘ ‘

24

1
t

2:ID
h

3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID

State 5 could accept

either an ID or 

the keyword “then”.

The priority rules 

eliminates this 

ambiguity and 

associates state 5 

with the keyword.
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What about longest match?

1
t

2:ID
h

3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID

|then thenx$   1   0 

t|hen thenx$   2   2

th|en thenx$   3   3 

the|n thenx$   4   4

then| thenx$   5   5

then |thenx$   0   5 EMIT KEY(THEN)

then| thenx$   1   0 RESET

then |thenx$   7   7

then t|henx$   0   7 EMIT WHITE(‘ ‘)

then |thenx$   1   0 RESET 

then t|henx$   2   2 

then th|enx$   3   3 

then the|nx$   4   4 

then then|x$   5   5 

then thenx|$   6   6 

then thenx$|   0   6 EMIT ID(thenx)

Start in initial state, 

Repeat:

(1) read input until dead state is 

reached.  Emit token associated

with last accepting state. 

(2) reset state to start state

| = current position,      $ = EOF

Input        

current state

last accepting state
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Compiler Construction

Lent Term 2022

Lecture 3: Context-Free Grammars

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge  

• Context-Free Grammars (CFGs)

• Each CFG generates a Context-Free 

Language (CFL)

• Push-down automata (PDAs) 

• PDAs recognize CFLs

• Ambiguity is the central problem

1



Programming Language Syntax

A small fragment of the C standard.  How can we turn this 

specification into a parser that reads a text file and produces a 

syntax tree?



Context-Free Grammars (CFGs)

),,,( SPTNG 

lsnontermina ofset :N

 terminalsofset  :T

  AP)(A  as written is ,Each 

symbolstart  :NS

 sproduction ofset  a : )( *TNNP 

3



Example CFG

),,,( 1111 EPTNG 

{E}1 N id}),(,,*,{1 T

 id |(E) |E*E|EEE

:1



P

 id)}(E,(E)),(E,E),*E(E,E),E{(E,

for  shorthand is This

1 P

4
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Derivations

NCBA

TN









,,,

)(,,,

 :sconventionNotation 

*

 steps derivation moreor  zero means

 and steps derivation moreor  one means

 as written is step derivation a

 production a and  :Given

*













A

AA

5
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Example derivations

)(*)(

)(*)(

)(*)(

)(*)(

*)(

*)(

*)(

*)(

E*EE

xzyx

Ezyx

EEyx

Eyx

Eyx

EEx

EEE

EE



















)(*)(

)(*)(

)(*)(

)(*)(

)(*

)(*

)(*

)(*

E*EE

xzyx

xzyE

xzEE

xzE

xzE

xEE

EEE

EE



















A leftmost derivation A rightmost derivation 
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Derivation Trees

E

E E

E

*

( )

x y z x

E( )

E E E E
+ +

The derivation tree for (x + y) * (z + x).

All derivations of this expression will 

produce the same derivation tree.

7



47

Concrete vs. Abstract Syntax Trees

E

E E

E

*

( )

x y z x

E( )

E E E E
+ +

parse tree = 

derivation tree = 

concrete syntax tree

Times

Plus

x y z x

Plus

id id id id

An AST contains only the 

information needed to 

generate an intermediate 

representation

8
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L(G) = The Language Generated by Grammar G

 wS|Tw=L(G)  *

 

languages!regular 

  thanmore capturecan  CFGs So

.0

then

|aSbS

 sproduction has  if example,For 





n|ba=L(G)

G

nn



9



Pushdown Automata (PDAs)

Regular languages are accepted by Finite Automata.

Context-free languages are accepted by Pushdown Automata,

a finite automata augmented with a stack. 

Illustration from https://en.wikipedea.org/wiki/Pushdown_automaton

10



Pushdown Automata (PDAs)

),,,,,( 0 ZqQM 

states :Q alphabet :

statestart  : Q0 q

symbolstack  initial :Z 

* QX)a,(q,

,}),{(,:







 XaQq

symbolsstack  :

11



Pushdown Automata (PDAs)

stack). of  topis symbol(leftmost   pushes""

 and  pops""it  is,That  .with  replace

 and state  tomovecan it  stack,  theof top

on   with  reading  statein  is machine

 the that whenmeans X)a,(q,),'(







XX 

q' 

Xaq

q 

12



Pushdown Automata (PDAs)

  left).at  (topstack  on the  with , of

 symbolfirst  at the looking  statein 

PDA   thedenotesIt  (ID).n descriptio

 ousinstantanean  called is

 ),,(

,,For **







w

q

wq

wQq 

13



Language accepted by a PDA

),,'(),,(

as ),,(),(for  and

),,'(),,(

 as IDson  relation  the

define ),,,(),(For 









wqXwq

Xqq

wqXawq

aXaqq











)},,(),,(,|{

)(

0

* qZwqQqw

ML





14

,

,



Exercise : work out the details of this PDA

),,(

),,(

),,(

),,(

),,(

),,(

),( ,0

b

b

b

a

a

a

q

Abq

AAbbq

AAAbbbq

AAabbbq

Aaabbbq

Zaaabbbq













 0



n|ba

L(M)

nn

15



PDAs and CFGs Facts
(we will not prove them)

tic!determinis be  toM

 want  welanguages gprogramminFor 

fast! soNot  ?PDA  theconstruct just 

CFG  aGiven  solved? problem Parsing

.such that     

 CFG  a is  therePDA every For  2)

.such that     

 PDA a is  thereCFG every For  1)

M

G

L(M)L(G)

GM

L(M)L(G)

 MG





16
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Origins of nondeterminism? 

Ambiguity!

E

EE
*

x y

E E
+ z

E

E
+

x

E

y z

E E
*

Both derivation trees correspond “x + y * z”.

But (x+y) * z is not the same as x + (y * z). 

This type of ambiguity will cause problems 

when we try to go from program texts to 

derivation trees!  Semantic ambiguity! 



We can often modify the grammar in order to eliminate ambiguity

),,,( 2122 EPTNG 

F}T,{E,2 N id}),(,,*,{1 T

? that proveyou Can 

(factors) id|(E)F

(terms)F|F*TT

ns)(expressioT|TEE

:

21

2

)L(G)L(G

P









18
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The modified grammar eliminates 

ambiguity

E

E +

1

T

2

3

T F
*

F

This is now 

the unique

derivation 

tree for  

x + y * z

S

19
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Fun Fun Facts

 
 11,

11,





nm|dcba

nm|dcba=L

nmmn

mmnn

See Hopcroft and Ullman, “Introduction to Automata 

Theory, Languages, and Computation”

(1) Some context-free languages are 

inherently ambiguous --- every context-free 

grammar for them will be ambiguous. For example: 

(2) Checking for ambiguity in an arbitrary context-free

grammar is not decidable!  Ouch! 

(3) Given two grammars G1 and G2, checking 

L(G1) = L(G2) is not decidable!  Ouch! 

20



Two approaches to building stack-

based parsing machines: top-down and 

bottom-up  

• Top Down : attempts a left-most derivation. We will 
look at two techniques: 

• Recursive decent (hand coded) 

• Predictive parsing (table driven)

• Bottom-up : attempts a right-most derivation 
backwards. We will look at two techniques: 

• SLR(1) : Simple LR(1)

• LR(1) 

Bottom-up techniques are strictly more powerful. 

That is, they can parse more grammars. 21



Recursive Descent Parsing

(G5) 

S :: = if E then S else S

| begin S L

| print E

E ::= NUM = NUM 

L ::= end

|  ; S L 

int tok = getToken();

void advance() {tok = getToken();} 
void eat (int t) {if (tok == t) advance(); else 
error();}

void S() {switch(tok) {
case IF:    eat(IF); E(); eat(THEN); 

S(); eat(ELSE); S(); break; 
case BEGIN: eat(BEGIN); S(); L(); break; 
case PRINT: eat(PRINT); E(); break; 
default: error();

}}

void L() {switch(tok) {
case END:  eat(END); break;
case SEMI: eat(SEMI); S(); L(); break; 
default: error(); 

}}

void E() {eat(NUM) ; eat(EQ); eat(NUM); }

Example From Andrew Appel, “Modern Compiler 

Implementation in Java” page 46

Parse corresponds to 

a left-most derivation

constructed in 

a “top-down” manner

22
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A -> A1 | A2 | . . . | Ak |

1 | 2 | . . . | n 

Eliminate left recursion!  

A -> 1 A’ | 2 A’ | . . . | n A’  

A’ -> 1 A’ | 2 A’| . . . | k A’ | 

For eliminating left-recursion in general, see Aho and Ullman.

A

A

A







A

A’







A’

A’



loop! infinitean   tolead

 willin   recursion"left "But 2GTEE 



Eliminate left recursion

),,,( 3133 EPTNG 

F},T'T,,E'{E,2 N id}),(,,*,{1 T

? that proveyou Can 

 id|(E)F

|'*'

T'FT

E'TE

:

32

2

)L(G)L(G

TFT

ε|E'TE'

P















24



Recursive descent pseudocode 

))"eat(" ();get );("eat(" else

)eat(then 

   token()ifgetF()

()get();get );*"eat(" then "*"  token()if()get

()getT'();getF)getT(

()get();get );"eat(" then ""  token()if()get

()getE'getT();getE()

E

id

id

T'FT'

E'TE'











25



Where’s the stack machine? 

It’s implicit in the call stack!

Parsing (x+y)*(z+x) using a call to getE()

getE() getE()

getT()

getE()

getT()

getF()

getE()

getT()

getF()

eat(“(“)

getE()

getT()

getF()

getE()

…

call stack over time … 
26
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Compiler Construction

Lent Term 2022

Lecture 4: Table-driven top-down (LL) parsing  

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge  

1. LL(k) vs LR(k) parsing

2. Automating left-most derivations?

3. FIRST, FOLLOW, and the LL(1) 
parsing table. 

4. LL(1) table-based parsing

5. Computing FIRST and FOLLOW

1
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LL(k) and LR(k) 

• LL(k) : (L)eft-to-right parse, (L)eft-most 
derivation, k-symbol lookahead.  Based on 
looking at the next k tokens, an LL(k) parser 
must predict the next production. We have been 
looking at LL(1). 

• LR(k) : (L)eft-to-right parse, (R)ight-most 
derivation, k-symbol lookahead. Postpone 
production selection until the entire right-hand-
side has been seen (and as many as k symbols 
beyond).  LR parsers perform a rightmost 
derivation backwards!

2



68

LL(k) vs. LR(k) reductions (SLR(1) as well) 

** TwN)(TβwβA  

LL(k ) LR( k)

k token look ahead

Stack

A β (left-most 

symbol at

top)

k token look 

ahead

Stack

DFAβ(right-most 

symbol at

top)

A

w w

3



For LL(1), augment Grammar with end-of-input

),,,( '

33

'

3

'

3 SPTNG 

S}F,,T'T,,E'{E,'

3 N id,$}),(,,*,{3 T

 id|(E)F

|'*'

T'FT

E'TE

)markerinput  of end is ($$

:'

3













TFT

ε|E'TE'

ES

P

4



Leftmost derivations 







wwA

AwA

TNTw

lm





 as written is step derivationleftmost  a

 production a and  :Given

)(, **

5



A left-most derivation of (x+y)

)$(

'$)(

'$')(

'$')'(

'$')''(

'$')''(

'$')'(

'$')'(

'$')''(

'$')''(

'$')'(

'$')(

'$'

'$

$

yx

Eyx

ETyx

ETyEx

ETEyTx

ETEFTx

ETTEx

ETxE

ETExT

ETEFT

ETTE

ETE

EFT

TE

ES

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm































 stack. on theon  is  andinput 

  thefrom  readbeen  has 

 then $ If : workwill

  thisPerhaps PDA)? (a machine

stack  a into sderivation

most-left turn Can we :Idea





w

wS lm



6



This looks promising. But can we make 

it work? 





















''$')'')$

match'$')'')$

'$')'')$

''$')')$

''$'))$

match'$')()$(

)('$')$(

''$)$(

'$)$(

$)$(

TETETy

ETEidTyx

idFETEFTyx

FTTETTEyx

TEEETEyx

ETEyx

EFEFTyx

FTTTEyx

TEEEyx

ESSyx

production viastackinput

7



But how do we automate selection of 

the  production to use at each step?

accept!$$

''$$

''$'$

match'$'))$

''$')')$

''$')'')$

match'$')'')$

'$')'')$

''$')')$

match'$')')$

'''$')')$

























EE

TET

ET

EETE

TETET

ETEidTy

idFETEFTy

FTTETTEy

ETTEy

TEEETEy

production viastackinput

8



FIRST (we will see how to compute later)

  aTN|Ta= **,)()FIRST( 

}(,{)(FIRST id|(E)F

}*,{)'(FIRST|'*'

}(,{)(FIRSTT'FT

},{)'(FIRST

}(,{)(FIRSTE'TE

}(,{)(FIRST$

idT

TTFT

idT

Eε|E'TE'

idE

idSES

















9



  AaS|a=A  ,)FOLLOW(

FOLLOW (we will see how to compute later)

$}),*,,{)(FOLLOW id|(E)F

}$),,{)'(FOLLOW|'*'

}$),,{)(FOLLOWT'FT

}$),{)'(FOLLOW

}$),{)(FOLLOWE'TE

$













F

TTFT

T

Eε|E'TE'

E

ES



'$')('$''$$

?)FOLLOW()""

ETEEFTTEES

E





10



 

  ],[],M[

FOLLOWeach for then 

 FIRST if else

],[],M[then 

 a and FIRST if 

 productioneach for 

each for 

 allfor 



























AbAM=bA

(A) b

)( 

AaAM=aA

)(a

A

N A

 {} T, M[A, a]N, aA

The LL(1) Parsing table M

11



'

3grammar for   Table GM

F

'T
T

'E

E

$)(*id

'TEE 

'FTT 

idF 

'' TEE 

'T '*' FTT 

'TEE 

'FTT 

)(EF 

'E 'E

'T 'T

12



The LL(1) Parsing Algorithm

()TopOfStack:

on top) symbol(leftmost  push  pop;then 

 if else

 pop;then 

*)match  a (*   if

)( while

 

 















X

α}{XM[X,a]

ken() LexNextToa :

aX

$X

()TopOfStackX:

en()LexNextToka:



13



Now use M to parse (x+y) …

}'{],'['$')'')$

'$')'')$

}{],['$')'')$

}'{],['$')')$

}'{],['$'))$

'$')()$(

)}({](,['$')$(

}'{](,['$)$(

}'{](,[$)$(

$}{](,[)$(





















TTMETETy

matchETEidTyx

idFidFMETEFTyx

FTTidTMETTEyx

TEEidEMETEyx

matchETEyx

EFFMEFTyx

FTTTMTEyx

TEEEMEyx

ESSMSyx

actionstackinput

14



… kachunk, kachunk, kachunk … 

accept

EEME

TTMET

matchET

EEMETE

TTMETET

matchETEidTy

idFidFMETEFTy

FTTidTMETTEy

matchETTEy

TEEEMETEy

$$

}'{,$]'['$$

}'{,$]'['$'$

'$'))$

}'{)],'['$')')$

}'{)],'['$')'')$

'$')'')$

}{],['$')'')$

}'{],['$')')$

'$')')$

}''{],'['$')')$

























actionstackinput

15



NULLABLE 

)(NULLABLE)(NULLABLE

)()(NULLABLE

)(NULLABLE

)()(NULLABLE

)()(BLENULLA

)(BLENULLA

























X

NTXX

NAA

Tcfalsec

true

A

16

. ifonly  and if

 true)NULLABLE(

* 





=



Computing FIRST

}{FIRST(A):FIRST(A) then 1k  j if

:done else

1j:jthen 

)NULLABLE(X if

}){-)FIRST(X(FIRST(A):FIRST(A)

k j and donenot  while

 false : done 1;  jthen 

production a is XXX if

}{FIRST(A):FIRST(A)then 

 production a is  if

changes FIRST while

{}: FIRST(A) , allfor 

}{: FIRST(a) , allfor 

j

j

k21































true

A

A

NA

aTa



17



)FOLLOW(FOLLOW(B):FOLLOW(B)then 

)( production a is  if

)FOLLOW(FOLLOW(B):FOLLOW(B)then 

)FIRST( and production a is  if

}){-)FIRST((FOLLOW(B):FOLLOW(B)then 

),( production a is  if

changesFOLLOW  while

symbol)start   theis (S    {$}: FOLLOW(S)

{}:FOLLOW , allfor 

A

NBBA

A

BA

NBBA

(A)NA

























Computing FOLLOW 

18



Many grammars cannot be parsed LL(1)

aYX

cY

XYSdS

|

|

|








Y
S

X

FIRST FOLLOW

},,{ dca {}

},,{ dca
},,{ dca},{ ca

}{c

 LL(1)!not  isGrammar 

ambiguity! is This

},{],[ XYSSdSdSM 

19



Bottom-up (LR) parsing to the rescue! 

grammar!

  thefromrecursion left 

eliminate  tohavelonger 

 no  weparsing LRWith 

),,,( 2122 EPTNG 

F}T,{E,2 N id}),(,,*,{1 T

id|(E)FF|F*TTT|TEE 

20
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Compiler Construction

Lent Term 2022

Lecture 5 : Theoretical foundations of 

Bottom-up (LR) parsing 

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge  

1. This lecture develops a general theory for 
non-deterministic bottom-up parsing 

2. Next lecture will present two techniques for 
imposing determinism --- SLR(1) parsing and 
LR(1) parsing. 



This grammar will be our running example

)',,,( 2122 EPTNG 

F}T,E,,{E'2 N id}),(,,*,{1 T

(factors) id|(E)F

(terms)F|F*TT

ns)(expressioT|TEE

EE' :2







P

2
Note: E’ was added for convenience to ensure 

that there is a single starting production. 



Rightmost derivations 

wAw

AAw

TNTw

rm 











 as written is step derivationrightmost  a

 production a and  :Given

)(, **

3



A rightmost derivation of (x+y)

)(

)(

)(

)(

)(

)(

)(

'

yx

yF

yT

yE

FE

TE

E

F

T

EE

rm

rm

rm

rm

rm

rm

rm

rm

rm

rm





















4

Top-down (LL) parsing is 

based on 

left-most derivations.

Bottom-up (LR) parsing is 

based on

right-most derivations. 



But Bottom-up parsers perform the 

derivation in reverse!

'

)(

)(

)(

)(

)(

)(

)(

EE

T

F

E

TE

FE

yE

yT

yF

yx





















FLIP!

5)(

)(

)(

)(

)(

)(

)(

yx

yF

yT

yE

FE

TE

E

F

T

ES

rm

rm

rm

rm

rm

rm

rm

rm

rm

rm



















 Start parse

Finish



Can we transform a backwards 

derivation into 

an execution of a stack machine? 

$'$

$$

$$

$$

$)$(

)$$(

)$$(

)$$(

)$$(

)$$(

)$($

E

E

T

F

E

TE

FE

yE

yT

yF

yx













 work?this

 make Can we

 input).-of-end and

   bottomstack  as $

(use machinestack 

 a as derivation

reversed  theView

inputstack

'

)(

)(

)(

)(

)(

)(

)(

EE

T

F

E

TE

FE

yE

yT

yF

yx























Let’s try to formalize such a parser

7

input) remaining  the stack,  theis (

$,$

x

x





An LR parser configuration has the form 

The configuration is valid when there exists

a right-most derivation of the form 

xS rm 
*



Let’s try to formalize our (non-

deterministic) parser

8
BzA

xAxBz

BzxAx

reduce

rm









 



 production using

reduction  a called isaction  This

$,$$,$

 :so likeanother  ion toconfigurat one from

 move MIGHTparser  backwards""Our 

 Suppose



Are reduction actions sufficient?

9 stack!  theof on top  want We

???

$,$

$,$

???

Bz

zxB

zx

reduce









 

 :stuck getsparser our  reverse,in   thisSimulating

. then and using

derivation  thehave  weSuppose









BBzA

zxBzxAx rmrm



We need an action that shifts a terminal 

onto the stack!

10
$,$

$,$

$,$

$,$

)(

xA

xBz

zxB

zx

reduce

sshift

reduce









 

 

 

zxBzxAx rmrm  

How do we

know when to 

stop shifting?

Here we don’t 

want to gobble

up x!



Sanity check. 

11$,$

$,$

$,$

$,$

)(

zBxA

zBxy

xyzB

xyz

reduce

sshift

reduce









 

 

 

:actions possible sparser'Our 

. then, production using

,production s' of side hand-right in theappear not 

does hen can work w  that thissure make sLet'









ByA

xyzBxyzBxAz

A

B

rmrm

All good! But 

again, how do 

we know when to 

reduce and when

to stop shifting?



Shift and reduce are sufficient.

12 holds! future the

 whatGUESS and ticdeterminis-non be lparser wil

our  So  replay!  toderivation a  toaccess have

t  won' we a parsing are  when weHowever,

.sufficient are reduce andshift  that us  tellsThis

$,$$$,

 actions ceshift/redu

 using reversein  it"replay " alwayscan  Then we

S

derivation a have we

if that edemonstrat slides  twoprevious The

*

*

rm

w

Sw

w







Replay parsing of (x+y) using shift/reduce actions.

X=top-of-stack,       a = next input token

shift )$$(

shift )$$(

 reduce)$$(

 reduce)$$(

 reduce)$$(

shift )$$(

shift )$($

 a]action[X,inputstack

yE

yE

TEyT

FTyF

idFyx

yx

yx















13



… informal shift/reduce parse continued    

accept!$'$

ES reduce$$

 reduce$$

 reduce$$

)( reduce$)$(

shift )$$(

 reduce)$$(

 reduce)$$(

 reduce)$$(

 a]action[X,inputstack

E

E

EFT

FTF

EFE

E

TEETE

FTFE

idFyE















14



How do we decide when to shift and 

when to reduce?    

 .  toreducecan then  that we

 sostack   theof on top  getting eventually of

 hope  with theparsing continue  want toMIGHT we

,

 have  weif However,

. with reduce  want toMIGHT we

,

ion configurat in the isparser our 

  When.production a is  Suppose

A

x$$

A

x$$

A















15



LR(0) items record how much of a 

production’s right-hand side we have 

already parsed

. from derivableinput  some seenext  MIGHT we

 and  from derivable input  some parsed

already  have we: oftion Interpreta

A

 item LR(0)  theproduce

))(,(A

productiongrammar every For 

*

*











x)(x

A

TN

rm







16



2grammar for  items )0( GLR













TE

TE

TEE

TEE

TEE

TEE













FT

FT

F*TT

F*TT

F*TT

T*TT













idF

idF

(E)F

)(EF

E)(F

(E)F

 EE'EE'

17



Valid LR(0) items

xAxS

A

rmrm 







*

 derivation a exists  thereif

 for   validis  Item .Definition

18

$.,$

ion configuratin  when guide a as

 item  theuse couldparser our then 

 for   validis  item If

z

A



 



uzx

zx

Bzx

xB

Ax

S

rm

irm

rm

rm

rm











*

*

*

 











$,$

$,$

$,$

$,$

$,$

$,$ 

*

*

*

*

uzx

zx

zxB

xB

xA

S

i





















i

i

BBA

B

BA

BA

















,

Derivation Parse Possible guides 

guides. parsing as used bemight  sproduction

 for these itemsin which   waysheConsider t

  .|||  and  Suppose 21 kBBA  



$,$$,$

 :reduction a perform MIGHT Then we

   .for   validis  and

$,$

  config in the isparser our  Suppose

$,$$,$

 :stack  theonto cshift  MIGHT Then we

   .for   validis  and

$,$

  config in the isparser our  Suppose

zAz

A

z

zccz

cA

cz

reduce

shift













 







20

Using items as parsing guides



 z.input  remaining  theofprefix  a

derive  will that guess couldparser our  is,That 

$.,$$,$$,$$,$

 :so like proceed MIGHTparser our  so, If

 that be MIGHTit  is,That   ).derivation that ofpast 

 (the parseour  of future  thecapture MIGHT Then 

   .for   validis  Suppose

. so  valid,is assume  willwhich we

$,$

  config in the isparser our  Suppose

*

**















xAxyxz

zyxxAxS

A

zS

z

reduce

rmrmrm

*

rm

 







21

Using items as parsing guides



The KEY idea in LR parsing

22

 stack.current   theof contents

 for the  validitems all ofset   thederive

can it ion configuratevery in  way that a

such in parser  ceshift/reduour Augment 

 

 guide. a as use set to  thisfrom

 iteman select   tically)determinis-(non

can parser   thestepeach at Then 



Defined a NFA with LR(0) items as 

states!

 cA   cA
c

 BA iB


23 NFA.  thisoffunction n  transitio thebe Let 

 state. final a is (state) itemevery  and

 example)(for        EE'

 production starting unique  thefrom

dconstructe item  thisis  state initial The

G

0





q

 BA   BAB



Main LR parsing theorem

.for   validis 

ifonly  and if ),( Theorem. 0









A

qA G

regular! is

stack   theof language

  the:fact  Amazing

24
See proof (not examinable) in Introduction to Automata Theory, Languages, and

Computation.  Hopcroft and Ullman.



2grammar for  tionsNFA transi fewA G

FT (E)F 

TEE 


TEE 



idF 





E)(F 

(

25



A non-deterministic LR parsing 

algorithm

ERROR then above  theof none if

input; more no ifexit    andaccept  then 

),(S if

stack;  theonto push  then and

stack  theoff  pop :reducethen 

),(A if

n;input tokenext  : c

stack   theonto shift then 

),( if

stack   the: 

 )while(true

input w$ of symbolfirst  : c

0

0

0











q

A

q

c

qcA

G

G

G













26

This is non-deterministic

since multiple conditions 

can be true and multiple 

items can match any 

condition.



How can we make the algorithm 

deterministic? 

27

1. The easy part: convert the NFA to a DFA
2. When there are shift/reduce or 

reduce/reduce conflicts, find some way of 
making a deterministic choice. 

3. For (2), peek into the input buffer.
4. For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be 

non-ambiguous grammars for which our deterministic 

parser will fail. 

Next lecture : we will look at two popular approaches, 

SLR(1) and LR(1). 



113

Compiler Construction

Lent Term 2022

Lecture 6: Deterministic SLR(1) and LR(1) 

parsing

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge  

1. SLR(1) parsing 
2. LR(1) parsing. 



Our goal: impose deterministic choices on 

this non-deterministic LR parsing algorithm

ERROR then above  theof none if

input; more no ifexit    andaccept  then 

),(S if

stack;  theonto push  then and

stack  theoff  pop :reducethen 

),(A if

n;input tokenext  : c

stack   theonto shift then 

),( if

stack   the: 

 )while(true

input w$ of symbolfirst  : c

0

0

0











q

A

q

c

qcA

G

G

G













2

This is non-deterministic

since multiple conditions 

can be true and multiple 

items can match any 

condition.



The easy part: NFA  DFA

idF

)(F

FT

F*TT

TE

TEE

EE'















E







})EE'({closure

 thenis statestart DFA  The

EE'

 statestart NFA   theproduceswhich 

EE'

 production add ,grammar 

  termsimple For the  symbol.start  original  theis S

  whereS,S' production new add general,In 

0

2



q

G

3



 function tion DFA transi The 

 lecture). Lexing (seeNFA an  from

DFA a build  tohow knowalready   wesince this

do reason to no see I CLOSURE). calledfunction 

(using items LR(0)  todspecialise

DFA ofon constructi repeat the and

 X).GOTO(I,  thiscalls booksMany 

})XA| Xclosure({A-X)(I,

DFA For this

I 

4



2grammar for  tionsDFA transi fewA G

idF

)(F

FT

F*TT

TE

TEE

E)(F















E (

 FT

 idF
*FTT

TE





E

id

F

T

TEE

)E(F





5



2 of languagestack  for theDFA  Full G

F
ro

m
 C

o
m

p
il
e

r
s
 b

y
 A

h
o
, 
L

a
m

, 
S

e
th

i,
 U

ll
m

a
n

 

6

As usual, the 

ERROR state 

and 

transitions to

it are not

included in 

the diagram. 



(enlarged to improve readability)



(enlarged to improve readability)



How can we avoid shift/reduce conflicts?

*FTT

TE

I2



2IConsider  

$}.,{(,  FOLLOW(E)

in is next token ifonly  TE with Reduce 2)

 .next token  theis * if usingShift  1)

 :LR(1)) (Simple

SLR(1) calledapproach  one inspires This 





9



Now we can do a DETERMINISTIC SLR(1) parse of 

(x+y)





























A  production with reducethen 

FOLLOW(A),c and I,A  c, is

 next token  theI, is statecurrent   When the3)

stack ontoshift t  then I,A and c, is

 next token  theI, is statecurrent   When the2)

ERROR)T*E,(I

I)*(T,(I

I)TE,(I

example,For   ).,(I statein  isparser 

  the, containsstack   When the1)

0

70

90

0

c

10



Replay parsing of (x+y) using SLR(1) actions

(FW(X) abbreviates FOLLOW(X))

66

88

2

3

5

44

00

IidFshift  I)$,$(

ITEEshift  I)$,$(

FW(E)"" reduce I)$,$(

FW(T)"" reduce I)$,$(

FW(F)"" reduce I)$,$(

 IidFshift I)$$(,

I(E)Fshift I)$($,

reason          action      Stateinput,stack















yE

yE

TEyT

FTyF

idFyx

yx

yx

11



accept!$,'$

 )FW(E'"$"EE' reduce I$,$

 FW(F)"$"  reduce I$,$

 FW(T)"$" reduce I$,$

 FW(F)"$")( reduce I$),$(

I)(EEshift  I)$,$(

 FW(E))"" reduce I)$,$(

 FW(T))"" reduce I)$,$(

 FW(F))"" reduce  I)$,$(

reason           action        Stateinput,stack

1

2

3

11

88

9

3

5

E

E

EFT

FTF

EFE

E

TEETE

FTFE

idFyE

















12



Better idea: Replace the stack contents with state 

numbers!  

E

E

T

F

id

(

(

(

(

(

(

E

T

F

E

E

TE

FE

idE

)(

(

(

(

(







0486

048

042

043

045

04

0

01

02

03

1104

048

04869

04863

04865



stack on the statesDFA  with parsing LR

ERROR else

exit andaccept then 

accept  a]ACTION[s, if else

stack  theonto  A]GOTO[t,push 

stack of at top state :t 

stack  theoff states || popthen 

A reducea]ACTION[s, if else

ninput tokenext  : a

stack on push t then 

shift t  a]ACTION[s, if

stack  of at top state : s

 )while(true

input w$ of symbolfirst  : a



















14



SLR(1)for  GOTO and ACTION

GOTO()?)n rather tha  use prefer to I why seeyou  do (Now

 j  A] GOTO[i, then IA),(I If

accept]ACTION[i,$ then I]S[S' If

A reducea]ACTION[i,

 FOLLOW(A), allfor then 

 S'A and I][A If

jshift a]ACTION[i, then I),I( and I][A If

ji

i

i

jii























a

aa

15

Note: there 

may still be 

shift/reduce or 

reduce/reduce

conflicts!



SLR(1)for  GOTO and ACTION

F
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parse Example

F
ro

m
 C

o
m

p
il
e

r
s
 b

y
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h
o
, 
L

a
m
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S

e
th
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m

a
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SLR(1)? Beyond

18

)',,,( 3333 SPTNG 

R}L, S, ,{S'3 N

id} , ,*{3 T

 L R

id|*R L

R|RL  S

S$ S':3







P



3grammar for DFA  LR(0) G

 LRRLS  and 

betweenconflict  ceshift/redu

 a is  there4 stateIn 

19



 conflict.  thisresolvecannot  SLR(1)

20

L

L

RL











R reduce]""ACTION[4, so

 ,$},"{"FOLLOW(R)"" and

 I][R However,

6shift ]""ACTION[4, so and

 I)"",I( so I][S

4

644 



 LR(1)!    SLR(1)? Beyond

21

  token.ahead-lookexplicit an  is a where

 a],[A

 form  theof items with starts parsing LR(1)

 . techniquepowerful more a useor grammar  fix theEither 

 defined.uniquely not  are

GOTO and ACTION when conflicts reduce-reduceor 

 reduce-shift bemay   thereSLR(1) with : Problems

 



states as items )1(NFA with an  Define LR

ac ,A   ac ,A  
c

aB ,A   b,B 


22

:)(FIRSTeach For ab 

aB ,A   aB ,A  B



3grammar for DFA  LR(1) G

 . is next token ifshift  Otherwise $. is next token if

only  LR Reduce ambiguity. No







LR(1)for  GOTO and ACTION

 j  A] GOTO[i, then IA),(I If

accept]ACTION[i,$ then I$],S[S' If

A reduceb]ACTION[i,

 then  ,S'A and I],[A If

jshift a]ACTION[i, then I),I( and I],[A If

ji

i

i

jii



















b

aaa

24



LR(1)  vsSLR(1)











A reducea]ACTION[i,

 FOLLOW(A), allfor then 

 S'A and I][A If

:SLR(1)

i

a

25









A reduceb]ACTION[i,

 then  ,S'A and I],[A If

:LR(1)

ib

shifts.for not  ,reductionsfor  ONLY used

is  symbol ahead-look  that theNote b



LR(1)  vsSLR(1)

26

1. LR(1) is more powerful than SLR(1) 
2. The DFA associated with a LR(1) parser may 

have a very large number of states
3. This inspired an optimisation (collapsing 

states) resulting in a the class of LALR 
papers normally implemented as YACC. 
These parsers have fewer states but can 
produce very strange error messages. 

4. Ocaml’s Menhir is based on LR(1) and claims 
to overcome many YACC problems.  

5. We will not cover LALR parsing. 
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LECTURE 7

Slang front end and interpreter 0 

• Slang (= Simple LANGuage) 
– A subset of L3 from Semantics …

– … with very ugly concrete syntax 

– You are invited to experiment with improvements to this 
concrete syntax. 

• Slang : concrete syntax, types

• Abstract Syntax Trees (ASTs) 

• The Front End

• Interpreter 0 : The high-level “definitional” interpreter
1. Slang/L3 values represented directly as OCaml values

2. Recursive interpreter implements a denotational semantics 

3. The interpreter implicitly uses OCaml’s runtime stack and 
heap
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The Slang compiler

• The compiler is available from the course web site.

• It is written in Ocaml

• Slang = Simple Language.  Based on L3 from 
Semantics of Programming Languages, Part 1B. 

• The best way to learn about compilers is to modify 
one. 

• There are several suggested improvements listed 
on the course web site. I hope that some of you will 
implement these.  If they work, I’ll let you commit 
your changes to the repository. Fame! Fortune! 



Bridging the Gap? 

Slang 

Program

Text

The Slang

compiler 

Low-level, 

stack-based

code for the 

Jargon Virtual

Machine

Question : How do we leap from the mathematical 

semantics of L3 to a low-level stack machine? 

Answer : We will start with a high-level interpreter 

based on semantics, and then derive the stack 

machine by a sequence of semantics preserving 

transformations!
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Lectures 7 – 11 : the derivation 

Interpreter 0 

Interpreter 1 

Interpreter 2 

Interpreter 3 

Jargon VM   

Split stack into two, refactor  

Linearise code  

Low-level addressable stack  

Note : this is not the traditional way of teaching compilers!  Many 

textbooks will start with a stack machine and bridge the gap 

informally.  We will develop a deeper understanding! 

Explicit stack via CPS+DFS  



Clunky Slang Syntax (informal)

uop := - | ~ 

bop ::= + | - | * | < | = | && | || 

t ::= bool | int | unit | (t) | t * t | t + t | t -> t | t ref 

e ::= () | n | true | false | x | (e) | ? | 

e bop e |  uop e | 

if e then else e end | 

e e | fun (x : t) -> e end | 

let x : t = e in e end |

let f(x : t) : t = e in e end | 

!e | ref e | e := e | while e do e end |

begin e; e; … e end |

(e, e) | snd e | fst e | 

inl t e | inr t e | 

case e of inl(x : t) -> e | inr(x:t) -> e end 

(~ is boolean negation)

(? requests an integer 

input from terminal) 

(notice type annotation

on inl and inr constructs)
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From slang/examples

let fib( m : int) : int = 

if m = 0

then 1 

else if m = 1 

then 1 

else fib (m - 1) + 

fib (m -2) 

end 

end

in 

fib(?) 

end 

let gcd( p : int * int) : int =

let m : int = fst p 

in let  n : int = snd p 

in  if m = n 

then m 

else if m < n 

then gcd(m, n - m)

else  gcd(m - n, n)

end

end 

end  

end 

in gcd(?, ?) end 

The ? requests an integer input from the terminal 



Slang Front End 

Input file foo.slang 

Remove “syntactic sugar”, file location information, 

and most type information 

Parsed AST (Past.expr)

Static analysis : check types, and context-

sensitive rules, resolve overloaded operators

Parse (we use Ocaml versions of LEX and YACC,

covered in Lectures 3 --- 6)

Intermediate AST (Ast.expr) 

Parsed AST (Past.expr)



Parsed AST 

(past.ml)

type var = string 

type loc = Lexing.position 

type type_expr = 

| TEint

| TEbool 

| TEunit

| TEref of type_expr 

| TEarrow of type_expr * type_expr

| TEproduct of type_expr * type_expr

| TEunion of type_expr * type_expr

type oper = ADD | MUL | SUB | LT | 

AND | OR | EQ | EQB | EQI

type unary_oper = NEG | NOT 

type expr = 

| Unit of loc  

| What of loc 

| Var of loc * var

| Integer of loc * int

| Boolean of loc * bool

| UnaryOp of loc * unary_oper * expr

| Op of loc * expr * oper * expr

| If of loc * expr * expr * expr

| Pair of loc * expr * expr

| Fst of loc * expr 

| Snd of loc * expr 

| Inl of loc * type_expr * expr 

| Inr of loc * type_expr * expr 

| Case of loc * expr * lambda * lambda 

| While of loc * expr * expr 

| Seq of loc * (expr list)

| Ref of loc * expr 

| Deref of loc * expr 

| Assign of loc * expr * expr

| Lambda of loc * lambda 

| App of loc * expr * expr

| Let of loc * var * type_expr * expr * expr

| LetFun of loc * var * lambda 

* type_expr * expr

| LetRecFun of loc * var * lambda 

* type_expr * expr

Locations (loc) are used in 

generating error messages.  
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static.mli, static.ml

val infer : (Past.var * Past.type_expr) list 

-> (Past.expr * Past.type_expr) 

val check : Past.expr -> Past.expr   (* infer on empty environment *) 

• Check type correctness 

• Rewrite expressions to resolve EQ to EQI (for integers) 

or EQB (for bools). 

• Only LetFun is returned by parser.  Rewrite to 

LetRecFun when function is actually recursive.  

Lesson : while enforcing “context-sensitive rules” we can resolve 

ambiguities that cannot be specified in context-free grammars. 
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Internal AST

(ast.ml)

type var = string 

type oper = ADD | MUL | SUB | LT | 

AND | OR | EQB | EQI

type unary_oper = NEG | NOT | READ 

type expr = 

| Unit  

| Var of var

| Integer of int

| Boolean of bool

| UnaryOp of unary_oper * expr

| Op of expr * oper * expr

| If of expr * expr * expr

| Pair of expr * expr

| Fst of expr 

| Snd of expr 

| Inl of expr 

| Inr of expr 

| Case of expr * lambda * lambda 

| While of expr * expr 

| Seq of (expr list)

| Ref of expr 

| Deref of expr 

| Assign of expr * expr 

| Lambda of lambda 

| App of expr * expr

| LetFun of var * lambda * expr

| LetRecFun of var * lambda * expr

and lambda = var * expr 

No locations, types.

No Let,  EQ.                         

Is getting rid of types 

a bad idea? Perhaps

a full answer would be 

language-dependent… 
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past_to_ast.ml

let x : t  = e1 in e2 end  

(fun (x: t) -> e2 end) e1

This is done to simplify some of our code.  

Is it a good idea?   Perhaps not! 

See 2021 paper 4 question 3. 

val translate_expr : Past.expr -> Ast.expr 
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Approaches to Mathematical Semantics 

• Axiomatic: Meaning defined through logical 

specifications of behaviour. 

• Hoare Logic (Part II)  

• Separation Logic 

• Operational: Meaning defined in terms of transition 

relations on states in an abstract machine. 

• Semantics (Part 1B) 

• Denotational: Meaning is defined in terms of 

mathematical objects such as functions. 

• Denotational Semantics (Part II) 



151

A denotational semantics for L3?

A = set of addresses 

S = set of stores = A V

V = set of value 

≈ A

+ N

+ B

+ { () } 

+ V× V

+ (V + V) 

+ (V× S)  (V× S)

N = set of integers B = set of booleans 

I = set of identifiers 

E = set of environments = I V

Set of values V solves this 

“domain equation” (here + 

means disjoint union). 

Solving such equations is 

where some difficult maths 

is required … 

M = the meaning function 

M : (Expr × E× S)  (V× S)

Expr = set of L3 expressions
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Interpreter 0 : An OCaml approximation

A = set of addresses 

S = set of stores = A V

V = set of value 

≈ A

+ N

+ B

+ { () } 

+ V× V

+ (V + V) 

+ (V× S)  (V× S)

E = set of environments = A V

M = the meaning function 

M : (Expr × E× S)  (V× S)

type address  

type store = address -> value 

and value = 

| REF of address 

| INT of int 

| BOOL of bool 

| UNIT

| PAIR of value * value 

| INL of value 

| INR of value 

| FUN of ((value * store) 

-> (value * store))

type env = Ast.var -> value 

val interpret :  

Ast.expr * env * store 

-> (value * store) 
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Most of the code is obvious! 
let rec interpret (e, env, store) = 

match e with

| If(e1, e2, e3) -> 

let (v, store') = interpret(e1, env, store) in 

(match v with 

| BOOL true -> interpret(e2, env, store')

| BOOL false -> interpret(e3, env, store')

| v -> complain "runtime error.  Expecting a boolean!”)

| Pair(e1, e2)  -> 

let (v1, store1) = interpret(e1, env, store) in

let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2) 

| Fst e -> 

(match interpret(e, env, store) with

| (PAIR (v1, _), store') -> (v1, store') 

| (v, _) -> complain "runtime error.  Expecting a pair!”)

| Snd e  -> 

(match interpret(e, env, store) with

| (PAIR (_, v2), store') -> (v2, store') 

| (v, _) -> complain "runtime error.  Expecting a pair!”)

| Inl e   -> let (v, store') = interpret(e, env, store) in (INL v, store') 

| Inr e  -> let (v, store') = interpret(e, env, store) in (INR v, store') 

:

:
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Tricky bits : Slang functions mapped to OCaml functions!

let rec interpret (e, env, store) = 

match e with

:

:

| Lambda(x, e)  -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)

| App(e1, e2) -> (* I chose to evaluate argument first!  *) 

let (v2, store1) = interpret(e2, env, store) in 

let (v1, store2) =  interpret(e1, env, store1) in 

(match v1 with

| FUN f -> f (v2, store2)

| v -> complain "runtime error.  Expecting a function!”)

| LetFun(f, (x, body), e) -> 

let new_env = 

update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (x, v)), s))))

in interpret(e, new_env, store) 

| LetRecFun(f, (x, body), e) -> 

let rec new_env g = (* a recursive environment!!! *) 

if g = f then FUN (fun (v, s) -> interpret(body, update(new_env, (x, v)), s)) 

else env g

in interpret(e, new_env, store) 

update : env * (var * value) -> env 
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Interpreter 0 is using OCaml’s runtime stack.

How can we move toward the Jargon VM?  

let fun f (x) = x + 1 

fun g(y) = f(y+2)+2

fun h(w) = g(w+1)+3 

in 

h(h(17))

end  

h h

g

h

g

f

h

g

h h h

g

h

g

f

h

g

h

Execution

The run-time data structure is 

the call stack containing an 

activation record for each function 

invocation.  
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Recall tail recursion  : fold_left vs 

fold_right 

(* fold_left :  ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

fold_left f a [b1; ...; bn]]  = f (... (f (f a b1) b2) ...) bn

*) 

let rec fold_left f a l =

match l with

| []            -> a

| b :: rest -> fold_left f (f a b) rest 

(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

fold_right f [a1; ...; an] b = f a1 (f a2 (... (f an b) ...))

*)

let rec fold_right f l b =

match l with

| []          -> b

| a::rest -> f a (fold_right f rest b)

From ocaml-4.01.0/stdlib/list.ml : 

This is tail 

recursive

This is NOT

tail 

recursive



Convert tail-recursion to iteration 

(* gcd : int * int -> int *) 

let rec gcd(m, n) = 

if m = n 

then m 

else if m < n 

then gcd(m,      n - m)

else  gcd(m - n,       n)

(* gcd_iter : int * int -> int *) 

let gcd_iter (m, n) = 

let rm = ref m 

in let rn = ref n 

in let result = ref 0 

in let not_done = ref true 

in let _ = 

while !not_done

do 

if !rm = !rn

then (not_done := false; 

result := !rm) 

else if !rm < !rn

then rn := !rn - !rm

else rm := !rm - !rn

done

in !result

Here we have illustrated

tail-recursion elimination 

as a source-to-source 

transformation.  However, the

OCaml compiler will do something

similar to a lower-level intermediate

representation.  Upshot : we will 

consider all tail-recursive OCaml

functions as representing  iterative 

programs.  
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Question: can we transform any 

recursive function (such as 

interpreter 0) into a tail recursive 

function? 
The answer is  YES! 

• We add an extra argument, called a continuation, 
that represents “the rest of the computation”  

• This is called the Continuation Passing Style 
(CPS) transformation. 

• We will then “defunctionalize” (DFC) these 
continuations and represent them with a stack. 

• Finally, we obtain a tail recursive function that 
carries its own stack as an extra argument! 

We will apply this kind of 

transformation to the code of interpreter 0 as 

the first steps towards deriving interpreter 1.  
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LECTURES 8 & 9

Derivation of Interpreters 1 & 2

• Continuation Passing Style (CPS) : transform 
any recursive function to a tail-recursive 
function 

• “Defunctionalisation”  (DFC) : replace higher-
order functions with a data structure

• Putting it all together: 
– Derive the Fibonacci Machine 
– Derive the Expression Machine, and 

“compiler”! 
• This provides a roadmap for the interp_0 

interp_1  interp_2 derivations. 
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(CPS) transformation of fib 

(* fib : int -> int *) 

let rec fib m =

if m = 0 

then 1 

else if m = 1 

then 1 

else fib(m - 1) + fib (m - 2) 

(* fib_cps : int * (int -> int)  -> int *)

let rec fib_cps (m,  cnt) =

if m = 0 

then cnt 1 

else if m = 1 

then cnt 1 

else fib_cps(m -1,  

fun a -> fib_cps(m - 2 , 

fun b  -> cnt (a + b)))
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A closer look  

let rec fib_cps (m,  cnt) =

if m = 0 

then cnt 1 

else if m = 1 

then cnt 1 

else fib_cps(m -1,  fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b)))

The rest of the computation after computing “fib(m)”.  That is, cnt is a 

function expecting the result of “fib(m)” as its argument. 

The computation waiting 

for the result of “fib(m-2)”

The computation waiting 

for the result of “fib(m-1)”

This makes explicit the order of 

evaluation that is implicit in the 

original “fib(m-1) + fib(m-2)” : 

-- first compute fib(m-1) 

-- then compute fib(m-2)

-- then add results together 

-- then return 
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Expressed with “let” rather than “fun”

(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

if m = 0 

then cnt 1 

else if m = 1 

then cnt 1 

else let cnt2 a b = cnt (a + b)

in let cnt1 a = fib_cps_v2(m - 2, cnt2 a) 

in fib_cps_v2(m - 1, cnt1)

Some prefer writing CPS forms without explicit funs ….
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Use the identity continuation … 

(* fib_cps : int * (int -> int)  -> int *)

let rec fib_cps (m, cnt) =

if m = 0 

then cnt 1 

else if m = 1 

then cnt 1 

else fib_cps(m -1,  fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b)))

let id (x : int) = x 

let fib_1 x = fib_cps(x, id) 

List.map fib_1 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;

=  [1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]
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Correctness?

For all c : int -> int, for all m, 0 <= m, 

we have,   c(fib m) = fib_cps(m, c).

Proof: assume c : int -> int. By Induction 

on m. Base case : m = 0: 

fib_cps(0, c) = c(1) = c(fib(0). 

Induction step: Assume for all n < m,  c(fib n) = fib_cps(n, c). 

(That is, we need course-of-values induction!) 

fib_cps(m + 1, c) 

= if m + 1 = 1

then c 1 

else fib_cps((m+1) -1, fun a -> fib_cps((m+1) -2, fun b -> c (a + b))) 

= if m + 1 = 1

then c 1 

else fib_cps(m, fun a -> fib_cps(m-1, fun b -> c (a + b)))   

= (by induction) 

if m + 1 = 1

then c 1 

else (fun a -> fib_cps(m -1, fun b -> c (a + b))) (fib m)

NB: This proof pretends that we can 

treat OCaml functions as ideal 

mathematical functions, which of course 

we cannot. OCaml functions might raise 

exceptions like "stack overflow” or 

"you burned my toast", and so on.   But 

this is a convenient fiction as long as 

we remember to be careful. 
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Correctness? 

= if m + 1 = 1

then c 1 

else fib_cps(m-1, fun b -> c ((fib m) + b))

= (by induction) 

if m + 1 = 1

then c 1 

else (fun b -> c ((fib m) + b)) (fib (m-1))

= if m + 1 = 1

then c 1 

else c ((fib m) + (fib (m-1)))

= c (if m + 1 = 1

then 1 

else ((fib m) + (fib (m-1))))

= c(if m +1 = 1 

then 1 

else fib((m + 1) - 1) + fib ((m + 1) - 2))

= c (fib(m + 1))

QED.
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Can with express fib_cps without a 

functional argument ?
(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

if m = 0 

then cnt 1 

else if m = 1 

then cnt 1 

else let cnt2 a b = cnt (a + b)

in let cnt1 a = 

fib_cps_v2(m - 2, cnt2 a) 

in fib_cps_v2(m - 1, cnt1)

Idea of “defunctonalisation” (DFC): replace id, cnt1 and cnt2 with 

instances of a new data type: 

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt 

Now we need an “apply” function of type   cnt * int -> int         
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“Defunctionalised” version of fib_cps

(* datatype to represent continuations *) 

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt 

(* apply_cnt : cnt * int -> int *)

let rec apply_cnt = function 

| (ID, a)                       -> a 

| (CNT1 (m, cnt), a) -> fib_cps_dfc(m - 2, CNT2 (a, cnt))

| (CNT2 (a, cnt), b)  -> apply_cnt (cnt, a + b)

(*  fib_cps_dfc : (cnt * int) -> int *) 

and fib_cps_dfc (m, cnt) =

if m = 0 

then apply_cnt(cnt, 1) 

else if m = 1 

then apply_cnt(cnt, 1) 

else fib_cps_dfc(m -1, CNT1(m, cnt)) 

(*  fib_2 : int -> int *)

let fib_2 m = fib_cps_dfc(m, ID) 
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Correctness? 

Let < c > be of type cnt representing 

a continuation c : int -> int constructed by fib_cps. 

Then 

apply_cnt(< c >, m) = c(m)   

and 

fib_cps(n, c) = fib_cps_dfc(n, < c >). 

fun b  -> cnt (a + b)                                            CNT2(a, < cnt >)  

fun a -> fib_cps(m - 2 , fun b  -> cnt (a + b))      CNT1(m, < cnt >)  

Proof left 

as an 

exercise! 

fun x  -> x                                                           ID

Functional continuation c                    Representation < c > 
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Eureka! Continuations are just lists 

(used like a stack)

type tag = SUB2 of int | PLUS of int

type tag_list_cnt = tag list 

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt 

Replace the above continuations with lists! (I’ve selected

more suggestive names for the constructors.) 

Think

nil

Think

cons

type1

type int_list = NIL | CONS of int * int_list

Think

cons

type2
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The continuation lists are used like a stack! 

type tag = SUB2 of int | PLUS of int 

type tag_list_cnt = tag list 

(* apply_tag_list_cnt : tag_list_cnt * int -> int *)

let rec apply_tag_list_cnt = function 

| ([], a)                           -> a 

| ((SUB2 m) :: cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)

| ((PLUS a) :: cnt, b)  -> apply_tag_list_cnt (cnt, a + b)

(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *) 

and fib_cps_dfc_tags (m, cnt) =

if m = 0 

then apply_tag_list_cnt(cnt, 1) 

else if m = 1 

then apply_tag_list_cnt(cnt, 1) 

else fib_cps_dfc_tags(m - 1, (SUB2 m) :: cnt) 

(*  fib_3 : int -> int *)

let fib_3 m = fib_cps_dfc_tags(m, []) 
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Combine Mutually tail-recursive 

functions into a single function 

type state_type = 

| SUB1 (* for right-hand-sides starting with fib_   *) 

| APPL (* for right-hand-sides starting with apply_ *) 

type state = (state_type * int * tag_list_cnt) -> int 

(* eval : state -> int              A two-state transition function*) 

let rec eval = function 

| (SUB1, 0,                    cnt) -> eval (APPL, 1,                           cnt) 

| (SUB1, 1,                    cnt) -> eval (APPL, 1,                           cnt) 

| (SUB1, m,                   cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt) 

| (APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt)

| (APPL, b,  (PLUS a) :: cnt) -> eval (APPL, (a+b),                    cnt)

| (APPL, a,                       [])  -> a 

(*  fib_4 : int -> int *)

let fib_4 m = eval (SUB1, m, []) 
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Eliminate tail recursion to obtain The Fibonacci Machine! 

(* step : state -> state *) 

let step = function

| (SUB1, 0,                     cnt) -> (APPL, 1,                           cnt) 

| (SUB1, 1,                     cnt) -> (APPL, 1,                           cnt) 

| (SUB1, m,                    cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt) 

| (APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2),  (PLUS a) :: cnt)

| (APPL, b,  (PLUS a) :: cnt) -> (APPL, (a+b),                     cnt)

| _ -> failwith "step : runtime error!”

(* clearly TAIL RECURSIVE! *) 

let rec driver state = function 

| (APPL, a, []) -> a 

|  state           -> driver (step state)

(*  fib_5 : int -> int *)

let fib_5 m = driver  (SUB1, m, []) 

In this version we have

simply made the  

tail-recursive

structure very explicit.
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Here is a trace of fib_5 6. 

1 SUB1 || 6 || []

2 SUB1 || 5 || [SUB2 6]

3 SUB1 || 4 || [SUB2 6, SUB2 5]

4 SUB1 || 3 || [SUB2 6, SUB2 5, SUB2 4]

5 SUB1 || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

6 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

8 SUB1 || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]

14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]

15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]

20 APPL || 5 || [SUB2 6, SUB2 5]

21 SUB1 || 3 || [SUB2 6, PLUS 5]

22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]

23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

24 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3]

28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2]

29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2]

30 APPL || 3 || [SUB2 6, PLUS 5]

31 APPL || 8 || [SUB2 6]

32 SUB1 || 4 || [PLUS 8]

33 SUB1 || 3 || [PLUS 8, SUB2 4]

34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3]

35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3]

40 SUB1 || 1 || [PLUS 8, SUB2 4, PLUS 2]

41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2]

42 APPL || 3 || [PLUS 8, SUB2 4]

43 SUB1 || 2 || [PLUS 8, PLUS 3]

44 SUB1 || 1 || [PLUS 8, PLUS 3, SUB2 2]

45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2]

46 SUB1 || 0 || [PLUS 8, PLUS 3, PLUS 1]

47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1]

48 APPL || 2 || [PLUS 8, PLUS 3]

49 APPL || 5 || [PLUS 8]

50 APPL ||13|| []

The OCaml file in basic_transformations/fibonacci_machine.ml 

contains some code for pretty printing such traces…. 
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Pause to reflect

• What have we accomplished? 

• We have taken a recursive function and turned it 
into an iterative function that does not require 
“stack space” for its evaluation (in OCaml) 

• However, this function now carries its own 
evaluation stack as an extra argument! 

• We have derived this iterative function in a step-
by-step manner where each tiny step is easily 
proved correct. 

• Wow! 



175

That was fun!  Let’s do it again! 

type expr = 

| INT of int 

| PLUS of expr * expr

| SUBT of expr * expr

| MULT of expr * expr

(* eval : expr -> int 

a simple recusive evaluator for expressions *) 

let rec eval = function 

| INT a                -> a 

| PLUS(e1, e2)   -> (eval e1) + (eval e2) 

| SUBT(e1, e2)   -> (eval e1) - (eval e2) 

| MULT(e1, e2)   -> (eval e1) * (eval e2) 

This time we will derive a

stack-machine AND 

a “compiler” that translates 

expressions into a list of 

instructions for the machine. 
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Here we go again : CPS 

type cnt_2  = int -> int 

type state_2 = expr * cnt_2 

(* eval_aux_2 : state_2 -> int *) 

let rec eval_aux_2 (e, cnt) = 

match e with

| INT a        -> cnt a 

| PLUS(e1, e2) -> 

eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 + v2)))

| SUBT(e1, e2) -> 

eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))

| MULT(e1, e2) -> 

eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 * v2)))

(* id_cnt : cnt_2 *)

let id_cnt (x : int) = x 

(*  eval_2 : expr -> int *) 

let eval_2 e = eval_aux_2(e, id_cnt) 
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Defunctionalise! 

type cnt_3 = 

| ID

| OUTER_PLUS of expr * cnt_3

| OUTER_SUBT of expr * cnt_3

| OUTER_MULT of expr * cnt_3

| INNER_PLUS of int * cnt_3

| INNER_SUBT of int * cnt_3

| INNER_MULT of int * cnt_3

type state_3 = expr * cnt_3 

(* apply_3 : cnt_3 * int -> int *) 

let rec apply_3 = function 

| (ID,                   v)                  -> v 

| (OUTER_PLUS(e2, cnt), v1) -> eval_aux_3(e2, INNER_PLUS(v1, cnt))

| (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))

| (OUTER_MULT(e2, cnt), v1) -> eval_aux_3(e2, INNER_MULT(v1, cnt))

| (INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2) 

| (INNER_SUBT(v1, cnt), v2) -> apply_3(cnt, v1 - v2) 

| (INNER_MULT(v1, cnt), v2) -> apply_3(cnt, v1 * v2) 
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Defunctionalise! 

(* eval_aux_2 : state_3 -> int *) 

and eval_aux_3 (e, cnt) = 

match e with

| INT a        -> apply_3(cnt, a) 

| PLUS(e1, e2) -> eval_aux_3(e1, OUTER_PLUS(e2, cnt)) 

| SUBT(e1, e2) -> eval_aux_3(e1, OUTER_SUBT(e2, cnt)) 

| MULT(e1, e2) -> eval_aux_3(e1, OUTER_MULT(e2, cnt)) 

(* eval_3 : expr -> int *) 

let eval_3 e = eval_aux_3(e, ID) 
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Eureka! Again we have a stack!

type tag = 

| O_PLUS of expr

| I_PLUS of int 

| O_SUBT of expr

| I_SUBT of int 

| O_MULT of expr

| I_MULT of int 

type cnt_4 = tag list 

type state_4 = expr * cnt_4

(* apply_4 : cnt_4 * int -> int *) 

let rec apply_4 = function 

| ([],              v)                    -> v 

| ((O_PLUS e2) :: cnt, v1) -> eval_aux_4(e2, (I_PLUS v1) :: cnt)

| ((O_SUBT e2) :: cnt, v1) -> eval_aux_4(e2, (I_SUBT v1) :: cnt)

| ((O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT v1) :: cnt)

| ((I_PLUS v1) :: cnt, v2) -> apply_4(cnt, v1 + v2)

| ((I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)

| ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)
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Eureka! Again we have a stack!

(* eval_aux_4 : state_4 -> int *) 

and eval_aux_4 (e, cnt) = 

match e with 

| INT a                -> apply_4(cnt, a) 

| PLUS(e1, e2) -> eval_aux_4(e1, O_PLUS(e2) :: cnt) 

| SUBT(e1, e2) -> eval_aux_4(e1, O_SUBT(e2) :: cnt) 

| MULT(e1, e2) -> eval_aux_4(e1, O_MULT(e2) :: cnt) 

(* eval_4 : expr -> int *) 

let eval_4 e = eval_aux_4(e, []) 
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Eureka! Can combine apply_4 and 

eval_aux_4   

type acc = 

| A_INT of int 

| A_EXP of expr 

type cnt_5 = cnt_4

type state_5 = cnt_5 * acc 

val : step : state_5 -> state_5  

val driver : state_5 -> int 

val eval_5 : expr -> int

Type of an “accumulator” that 

contains either an int 

or an expression. 

The driver will be 

clearly tail-recursive …
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Rewrite to use driver, accumulator 

let step_5 = function

| (cnt,                    A_EXP (INT a)) -> (cnt, A_INT a)

| (cnt,     A_EXP (PLUS(e1, e2))) -> (O_PLUS(e2) :: cnt, A_EXP e1) 

| (cnt,     A_EXP (SUBT(e1, e2))) -> (O_SUBT(e2) :: cnt, A_EXP e1) 

| (cnt,     A_EXP (MULT(e1, e2))) -> (O_MULT(e2) :: cnt, A_EXP e1) 

| ((O_PLUS e2) :: cnt,  A_INT v1) -> ((I_PLUS v1) :: cnt, A_EXP e2)

| ((O_SUBT e2) :: cnt,  A_INT v1) -> ((I_SUBT v1) :: cnt, A_EXP e2)

| ((O_MULT e2) :: cnt, A_INT v1) -> ((I_MULT v1) :: cnt, A_EXP e2)

| ((I_PLUS v1) :: cnt,   A_INT v2) -> (cnt, A_INT (v1 + v2))

| ((I_SUBT v1) :: cnt,   A_INT v2) -> (cnt, A_INT (v1 - v2))

| ((I_MULT v1) :: cnt,   A_INT v2) -> (cnt, A_INT (v1 * v2))

| ([],                                A_INT v) -> ([], A_INT v) 

let rec driver_5 = function

| ([], A_INT v) -> v

| state            -> driver_5 (step_5 state) 

let eval_5 e = driver_5([], A_EXP e) 
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Eureka! There are really two 

independent stacks here --- one for 

“expressions” and one for values 

type directive = 

| E of expr 

| DO_PLUS

| DO_SUBT

| DO_MULT 

type directive_stack = directive list 

type value_stack = int list 

type state_6 = directive_stack * value_stack 

val step_6 : state_6 -> state_6 

val driver_6 : state_6 -> int

val exp_6 : expr -> int 

The state is now 

two stacks! 
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Split into two stacks 

let step_6 = function 

| (E(INT v) :: ds,                 vs) -> (ds, v :: vs)

| (E(PLUS(e1, e2)) :: ds,     vs) -> ((E e1) :: (E e2) :: DO_PLUS :: ds, vs)

| (E(SUBT(e1, e2)) :: ds,     vs) -> ((E e1) :: (E e2) :: DO_SUBT :: ds, vs) 

| (E(MULT(e1, e2)) :: ds,     vs) -> ((E e1) :: (E e2) :: DO_MULT :: ds, vs)

| (DO_PLUS :: ds, v2 :: v1 :: vs) -> (ds, (v1 + v2) :: vs) 

| (DO_SUBT :: ds, v2 :: v1 :: vs) -> (ds, (v1 - v2) :: vs) 

| (DO_MULT :: ds, v2 :: v1 :: vs) -> (ds, (v1 * v2) :: vs) 

| _ -> failwith "eval : runtime error!"        

let rec driver_6 = function 

| ([], [v]) -> v

| state     -> driver_6 (step_6 state) 

let eval_6 e = driver_6 ([E e], []) 
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An eval_6 trace 

e = PLUS(MULT(INT 89,  INT 2),  SUBT(INT 10,  INT 4))

Top of each

stack is on 

the right

state 1  DS = [E(PLUS(MULT(INT(89), INT(2)), SUBT(INT(10), INT(4))))]

VS = []

state 2  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); E(MULT(INT(89), INT(2)))]

VS = []

state 3  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2)); E(INT(89))]

VS = []

state 4  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2))]

VS = [89]

state 5  DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT]

VS = [89; 2]

state 6  DS = [DO_PLUS; E(SUBT(INT(10), INT(4)))]

VS = [178]

state 7  DS = [DO_PLUS; DO_SUBT; E(INT(4)); E(INT(10))]

VS = [178]

state 8  DS = [DO_PLUS; DO_SUBT; E(INT(4))]

VS = [178; 10]

state 9  DS = [DO_PLUS; DO_SUBT]

VS = [178; 10; 4]

state 10DS = [DO_PLUS]

VS = [178; 6]

state 11DS = []

VS = [184]

in
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Key insight

This evaluator is interleaving two distinct computations: 

(1) decomposition of the input expression into sub-expressions

(2) the computation of +, -, and *. 

Idea: why not do the decomposition BEFORE the computation? 

Key insight: An interpreter can (usually) be refactored into a 

translation (compilation!) followed by a lower-level interpreter.    

Interpret_higher (e)  = interpret_lower(compile(e))

Note : this can occur at many levels of abstraction: think of machine code

being interpreted in micro-code … 
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Refactor --- compile! 

(* low-level instructions *) 

type instr = 

| Ipush of int 

| Iplus 

| Isubt

| Imult 

type code = instr list 

type state_7 = code * value_stack 

(* compile : expr -> code *) 

let rec compile = function

| INT a                  -> [Ipush a] 

| PLUS(e1, e2)   -> (compile e1) @ (compile e2) @ [Iplus] 

| SUBT(e1, e2)   -> (compile e1) @ (compile e2) @ [Isubt] 

| MULT(e1, e2)  -> (compile e1) @ (compile e2) @ [Imult] 

Never put off till run-time what 

you can do at compile-time.

-- David Gries
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Evaluate compiled code. 

(* step_7 : state_7 -> state_7 *) 

let step_7 = function 

| (Ipush v :: is,          vs) ->  (is, v :: vs)

| (Iplus :: is, v2::v1::vs) -> (is, (v1 + v2) :: vs)

| (Isubt :: is, v2::v1::vs) -> (is, (v1 - v2) :: vs)

| (Imult :: is, v2::v1::vs) -> (is, (v1 * v2) :: vs)

| _ -> failwith "eval : runtime error!" 

let rec driver_7 = function 

| ([], [v]) -> v

| _ -> driver_7 (step_7 state)

let eval_7 e = driver_7  (compile e, []) 
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An eval_7 trace 

compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4)))

= [push 89; push 2; mult; push 10; push 4; subt; plus]

Top of each

stack is on 

the right

state 1   IS = [add; sub; push 4; push 10; mul; push 2; push 89]

VS = []

state 2   IS = [add; sub; push 4; push 10; mul; push 2]

VS = [89]

state 3   IS = [add; sub; push 4; push 10; mul]

VS = [89; 2]

state 4   IS = [add; sub; push 4; push 10]

VS = [178]

state 5   IS = [add; sub; push 4]

VS = [178; 10]

state 6   IS = [add; sub]

VS = [178; 10; 4]

state 7   IS = [add]

VS = [178; 6]

state 8   IS = []

VS = [184]
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interpret is implicitly using Ocaml’s runtime stack

let rec interpret (e, env, store) = 

match e with

| Integer n            -> (INT n, store) 

| Op(e1, op, e2)  ->

let (v1, store1) = interpret(e1, env, store) in

let (v2, store2) = interpret(e2, env, store1) in 

(do_oper(op, v1, v2), store2)

:

:  

• Every invocation of interpret is 

building an activation record on 

Ocaml’s runtime stack.  

• We will now define interpreter 2 

which makes this stack explicit
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Interp_0.ml  interp_1.ml  interp_2.ml 

The derivation from eval to compile+eval_7 can be used 

as a guide to a derivation from Interpreter 0 to interpreter 2.  

1. Apply CPS to the code of Interpreter 0

2. Defunctionalise 

3. Arrive at interpreter 1, which has a single 

continuation stack containing expressions, 

values and environments (analogous  to eval_6) 

4. Spit this stack into two stacks : one for 

instructions and the other for values and 

environments 

5. Refactor into compiler + lower-level interpreter 

6. Arrive at interpreter 2. (analogous to eval_7)
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Interpreter 0  Interpreter 2 

Interpreter 2: A high-level stack-oriented machine 
1. Makes the Ocaml runtime stack explicit 

2. Complex values pushed onto stacks 

3. One stack for values and environments 

4. One stack for instructions 

5. Heap used only for references 

6. Instructions have tree-like structure 

(we will not look at the details of interpreter 1 …) 
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Inpterp_2 data types

type address = int 

type value = 

| REF of address 

| INT of int 

| BOOL of bool 

| UNIT

| PAIR of value * value 

| INL of value 

| INR of value 

| CLOSURE of bool * 

closure    

and closure = code * env 

and instruction = 

| PUSH of value 

| LOOKUP of var 

| UNARY of unary_oper 

| OPER of oper 

| ASSIGN 

| SWAP

| POP 

| BIND of var 

| FST

| SND

| DEREF 

| APPLY

| MK_PAIR 

| MK_INL

| MK_INR

| MK_REF 

| MK_CLOSURE of code 

| MK_REC of var * code 

| TEST of code * code

| CASE of code * code

| WHILE of code * code

type address  

type store = address -> value 

and value = 

| REF of address 

| INT of int 

| BOOL of bool 

| UNIT

| PAIR of value * value 

| INL of value 

| INR of value 

| FUN of ((value * store) 

-> (value * store))

type env = Ast.var -> value 

Interp_0 Interp_2
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and code = instruction list 

and binding = var * value

and env = binding list

type env_or_value = EV of env | V of value 

type env_value_stack = env_or_value list 

type state = code * env_value_stack 

val step : state -> state 

val driver : state -> value

val compile : expr -> code 

val interpret : expr -> value 

Interp_2.ml : The Abstract Machine

The state is actually 

comprised of a 

heap --- a global array 

of values --- a pair

of the form 

(code, evn_value_stack)
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Interpreter 2: The Abstract Machine

type state = code * env_value_stack 

val step : state -> state 
The state transition function. 
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The driver.  Correctness

(* val driver : state -> value *)

let rec driver state = 

match state with 

| ([], [V v]) -> v

| _                  

-> driver (step state) 

val compile : expr -> code 

The idea:  if e passes the frond-end and 

Interp_0.interpret e = v 

then 

driver (compile e, []) = v’ 

where v’ (somehow) represents v. 

In other words, 

evaluating 

compile e

should leave the 

value of e on top 

of the stack
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Implement inter_0 in interp_2

let step = function 

| (MK_PAIR :: ds,  (V v2) :: (V v1) :: evs)  ->  (ds,   V(PAIR(v1, v2)) :: evs)

| (FST :: ds,            V(PAIR (v, _)) :: evs) ->  (ds,   (V v) :: evs)

:

let rec compile = function

| Pair(e1, e2)   -> (compile e1) @ (compile e2) @ [MK_PAIR] 

| Fst e              -> (compile e) @ [FST] 

:

let rec interpret (e, env, store) = 

match e with

| Pair(e1, e2)  -> 

let (v1, store1) = interpret(e1, env, store) in

let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2) 

| Fst e -> 

(match interpret(e, env, store) with

| (PAIR (v1, _), store') -> (v1, store') 

| (v, _) -> complain "runtime error.  Expecting a pair!”)

:

interp_0.ml

interp_2.ml
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Implement inter_0 in interp_2

let step = function 

| ((TEST(c1, c2)) :: ds,  V(BOOL true) :: evs) -> (c1 @ ds, evs) 

| ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs) 

:

let rec compile = function 

| If(e1, e2, e3) -> (compile e1) @ [TEST(compile e2, compile e3)]

: 

let rec interpret (e, env, store) = 

match e with

| If(e1, e2, e3) -> 

let (v, store') = interpret(e1, env, store) in 

(match v with 

| BOOL true -> interpret(e2, env, store')

| BOOL false -> interpret(e3, env, store')

| v -> complain "runtime error.  Expecting a boolean!”)

:

interp_0.ml

interp_2.ml
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Tricky bits again! 

let rec interpret (e, env, store) = 

match e with

| Lambda(x, e)  -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)

| App(e1, e2) -> (* I chose to evaluate argument first!  *) 

let (v2, store1) = interpret(e2, env, store) in 

let (v1, store2) =  interpret(e1, env, store1) in 

(match v1 with

| FUN f -> f (v2, store2)

| v -> complain "runtime error.  Expecting a function!”)

:

let step = function 

| (POP :: ds,                               s :: evs) -> (ds,  evs) 

| (SWAP :: ds,                  s1 :: s2 :: evs) -> (ds,  s2 :: s1 :: evs) 

| ((BIND x) :: ds,                   (V v) :: evs) -> (ds,  EV([(x, v)]) :: evs) 

| ((MK_CLOSURE c) :: ds,              evs) -> (ds,   V(mk_fun(c, evs_to_env evs)) :: evs)

| (APPLY :: ds,  V(CLOSURE (_, (c, env))) :: (V v) :: evs) 

-> (c @ ds,  (V v) :: (EV env) :: evs)

let rec compile = function

| Lambda(x, e)   -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]

| App(e1, e2)      -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP] 

: 

interp_0.ml

interp_2.ml
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Example : Compiled code for rev_pair.slang 

let rev_pair (p : int * int) : int * int  = (snd p, fst p) 

in 

rev_pair (21, 17) 

end 

MK_CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]);

BIND rev_pair;

PUSH 21;

PUSH 17;

MK_PAIR;

LOOKUP rev_pair;

APPLY;

SWAP;

POP;

SWAP;

POP

DEMO TIME!!! 
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LECTURE 10 

Derive Interpreter 3     

1. “Flatten” code into linear array

2. Add “code pointer” (cp) to machine state

3. New instructions :  LABEL,  GOTO, RETURN 

4. “Compile away” conditionals and while loops
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Linearise code 

Interpreter 2 copies code 

on the code stack. 

We want to introduce one 

global array of instructions 

indexed by a code pointer (cp). 

At runtime the cp points at the 

next instruction to be executed. 

cp next 

instruction 

:    :

:    : 

:    :

:    : 

This will require two new  instructions: 

LABEL L  : Associate label L with this location in the code array 

GOTO L : Set the cp to the code address associated with L   
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Compile conditionals, loops 

If(e1, e2, e3)

code for e1

TEST k

code for e2

GOTO m

k: code for e3

m:   

m: code for e1

TEST k

code for e2

GOTO m

k:    

While(e1, e2)
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If ? = 0 Then 17 else 21 end 

PUSH UNIT;

UNARY READ;

PUSH 0;

OPER EQI;

TEST(

[PUSH 17], 

[PUSH 21]

)

PUSH UNIT;

UNARY READ;

PUSH 0;

OPER EQI;

TEST L0;

PUSH 17;

GOTO L1;

LABEL L0;

PUSH 21;

LABEL L1;

HALT

0: PUSH UNIT;

1: UNARY READ;

2: PUSH 0;

3: OPER EQI;

4: TEST L0 = 7;

5: PUSH 17;

6: GOTO L1 = 9;

7: LABEL L0;

8: PUSH 21;

9: LABEL L1;

10: HALT

interp_2 interp_3 interp_3 (loaded)

Symbolic code 

locations 

Numeric code 

locations 
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Implement inter_2 in interp_3

let step = function 

| ((TEST(c1, c2)) :: ds,  V(BOOL true) :: evs) -> (c1 @ ds, evs) 

| ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs) 

:

interp_2.ml

let step (cp, evs) = 

match (get_instruction cp, evs) with

| (TEST (_, Some _),  V(BOOL true) :: evs)  ->  (cp + 1, evs) 

| (TEST (_, Some i),  V(BOOL false) :: evs)  ->  (i,          evs) 

| (LABEL l,                                                 evs)  ->  (cp + 1, evs) 

| (GOTO (_, Some i),                                 evs)  -> (i,           evs) 

: 

Code locations are represented as

(“L”, None)    :  not yet loaded (assigned numeric address) 

(“L”, Some i)  : label “L” has been assigned numeric address i 

Interp_3.ml
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Tricky bits again! 

let step = function 

| (POP :: ds,                               s :: evs) -> (ds,  evs) 

| (SWAP :: ds,                  s1 :: s2 :: evs) -> (ds,  s2 :: s1 :: evs) 

| ((BIND x) :: ds,                   (V v) :: evs) -> (ds,  EV([(x, v)]) :: evs) 

| ((MK_CLOSURE c) :: ds,              evs) -> (ds,   V(mk_fun(c, evs_to_env evs)) :: evs)

| (APPLY :: ds,  V(CLOSURE (_, (c, env))) :: (V v) :: evs) 

-> (c @ ds, (V v) :: (EV env) :: evs)

interp_2.ml

let step (cp, evs) = 

match (get_instruction cp, evs) with 

| (POP,                                     s :: evs) -> (cp + 1, evs) 

| (SWAP,                             s1 :: s2 :: evs) -> (cp + 1, s2 :: s1 :: evs) 

| (BIND x,                              (V v) :: evs) -> (cp + 1, EV([(x, v)]) :: evs) 

| (MK_CLOSURE loc,                                evs)        -> (cp + 1, 

V(CLOSURE(loc, evs_to_env evs)) :: evs)

| (RETURN,    (V v) :: _ :: (RA i) :: evs)  -> (i, (V v) :: evs) 

| (APPLY,  V(CLOSURE ((_, Some i), env)) :: (V v) :: evs) 

->   

(i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

interp_3.ml

Note that in interp_2 the body of a closure is consumed from

the code stack. But in interp_3 we need to save the return

address on the stack (here i is the location of the closure’s code).  
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Tricky bits again! 

let rec compile = function

| Lambda(x, e)   -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]

| App(e1, e2)     -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP] 

: 

interp_2.ml

let rec comp = function 

| App(e1, e2)    -> 

let (defs1, c1) = comp e1 in  

let (defs2, c2) = comp e2 in

(defs1 @ defs2, c2 @ c1 @ [APPLY]) 

| Lambda(x, e)   -> 

let (defs, c) = comp e in

let f = new_label () in 

let def = [LABEL f ; BIND x] @ c @ [SWAP; POP; RETURN] in

(def @ defs, [MK_CLOSURE((f, None))])

Interp_3.ml

let compile e = 

let (defs, c) = comp e in

c                    (* body of program *) 

@ [HALT]     (* stop the interpreter *) 

@ defs           (*  function definitions *) 

Interp_3.ml
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Interpreter 3 

(very similar to interpreter 2) 
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Some observations

• A very clean machine! 

• But it still has a very inefficient treatment of 

environments.

• Also, pushing complex values on the stack is 

not what most virtual machines do. In fact, we 

are still using OCaml’s runtime memory 

management to manipulate complex values.
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Example : Compiled code for rev_pair.slang 

let rev_pair (p : int * int) : int * int  = (snd p, fst p) 

in 

rev_pair (21, 17) 

end 

MK_CLOSURE(

[BIND p; LOOKUP p; SND; 

LOOKUP p; FST; MK_PAIR; 

SWAP; POP]);

BIND rev_pair;

PUSH 21;

PUSH 17;

MK_PAIR;

LOOKUP rev_pair;

APPLY;

SWAP;

POP;

SWAP;

POP

DEMO TIME!!! Interp_2

MK_CLOSURE(rev_pair)

BIND rev_pair

PUSH 21

PUSH 17

MK_PAIR

LOOKUP rev_pair

APPLY

SWAP

POP

HALT

LABEL rev_pair

BIND p

LOOKUP p

SND

LOOKUP p

FST

MK_PAIR

SWAP

POP

RETURNInterp_3
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LECTURES 11

Deriving The Jargon VM 

(interpreter 4) 

1. First change: Introduce an addressable stack. 

2. Replace variable lookup by a (relative) location on the stack 
or heap determined at compile time.  

3. Relative to what? A frame pointer (fp) pointing into the stack 
is needed to keep track of the current activation record. 

4. Second change: Optimise the representation of closures so 
that they contain only the values associated with the free 
variables of the closure and a pointer to code. 

5. Third change: Restrict values on stack to be simple (ints, 
bools, heap addresses, etc).  Complex data is moved to the 
heap, leaving pointers into the heap on the stack.

6. How might things look different in a language without first-
class functions?  In a language with multiple arguments to 
function calls? 
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Jargon Virtual Machine 

frame 0

Stack

(really array) 

frame 1

stack      sp

pointer 

frame      fp

Pointer 

Frame 2

grows

shrinks

Code

(array of instructions)

heap

(array of heap values)

heap[0]

heap[heal_limit]

cp

Code 

pointerNeed for 

fp to be 

explained 

soon …



The stack in interpreter 3  

(1, (2, 17)) 

Inl(inr(99)) 

:        : 

:        : 

A stack

in interpreter 3 

Stack elements in interpreter 3 

are not of fixed size. 

Virtual machines (JVM, etc) 

typically restrict stack elements

to be of a fixed size

We need to shift data from the 

high-level stack of interpreter 3

to a lower-level stack with 

fixed size elements.

Solution : put the data in the heap. 

Place pointers to the heap on 

the stack. 

“All problems in computer 

science can be solved by 

another level of indirection, 

except of course for the 

problem of too many 

indirections.”

--- David Wheeler 
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The 

Jargon VM

stack 

c :             Header 3, PAIR

1 c+1 :             

d c+2 :             

d :             Header 3, PAIR

2 d+1 :             

17 d+2 :             

b :             Header 2, INL

ab+1 :             

a :             Header 2, INR

99a+1 :          

:        :  

:        :  

:        :  

:        :  

Heap 

Some stack elements

represent pointers

into the heap

Stack 

c
b    

:        : 

:        : 

c    
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type instruction = 

| PUSH of value 

| LOOKUP of Ast.var 

| UNARY of Ast.unary_oper 

| OPER of Ast.oper 

| ASSIGN 

| SWAP

| POP 

| BIND of Ast.var 

| FST

| SND

| DEREF 

| APPLY

| RETURN 

| MK_PAIR 

| MK_INL

| MK_INR

| MK_REF 

| MK_CLOSURE of location 

| TEST of location 

| CASE of location

| GOTO of location

| LABEL of label 

| HALT 

type instruction = 

| PUSH of stack_item           (* modified *) 

| LOOKUP of value_path      (* modified *) 

| UNARY of Ast.unary_oper 

| OPER of Ast.oper 

| ASSIGN 

| SWAP

| POP 

(*  | BIND of var            not needed *) 

| FST

| SND

| DEREF 

| APPLY

| RETURN 

| MK_PAIR 

| MK_INL

| MK_INR

| MK_REF 

| MK_CLOSURE of location * int   (* modified *) 

| TEST of location 

| CASE of location

| GOTO of location

| LABEL of label 

| HALT 

interp_3.mli jargon.mli
Small change to 

instructions  
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type value = | REF of address | INT of int | BOOL of bool | UNIT

| PAIR of value * value | INL of value | INR of value | CLOSURE of location * env 

type env_or_value = | EV of env | V of value | RA of address

type env_value_stack = env_or_value list 

type stack_item = 

| STACK_INT of int 

| STACK_BOOL of bool 

| STACK_UNIT

| STACK_HI of heap_index    (* Heap Inde            *) 

| STACK_RA of code_index    (* Return Address       *) 

| STACK_FP of stack_index   (* (saved) Frame Pointer *) 

A word about implementation  

type heap_item = 

| HEAP_INT of int 

| HEAP_BOOL of bool 

| HEAP_UNIT

| HEAP_HI of heap_index                      (* Heap  Index                                    *) 

| HEAP_CI of code_index                     (* Code pointer for closures               *) 

| HEAP_HEADER of int * heap_type      (* int is number items in heap block *) 

type heap_type = 

| HT_PAIR

| HT_INL

| HT_INR 

| HT_CLOSURE

Interpreter 3 

Jargon VM

The headers will be essential for 

garbage collection!
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MK_INR (MK_INL is similar)

(MK_INR,       (V v) :: evs) 

->    (cp + 1, V(INR(v)) :: evs)

c

v    

:        : 

:        : 

MK_INR

c

a    

:        : 

:        : 

a :             Header 2, INR

v a+1 :             

Newly allocated

locations in 

the heap

The stack

before  
The stack

after  

Jargon VM 

In interpreter 3 

Note: The header types are not really required.  We could 

instead add an extra field here (for example, 0 or 1).  

However, header types aid in understanding the code and 

traces of runtime execution.  
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CASE (TEST is similar) 

(CASE (_, Some _),  V(INL v)::evs) -> (cp + 1, (V v) :: evs) 

(CASE (_, Some i),  V(INR v)::evs) -> (i,          (V v) :: evs) 

CASE i
c

a    

:        : 

:        : 

a :             INR

v a+1 :             

cp = t

c

v    

:        : 

:        : 

cp = i

CASE i
c

a    

:        : 

:        : 

a :             INL

v a+1 :             

cp = t

c

v    

:        : 

:        : 

cp = t + 1
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MK_PAIR

(MK_PAIR,       (V v2) :: (V v1) :: evs)    ->     (cp + 1, V(PAIR(v1, v2)) :: evs)

c
v1    

:     : 

:     : 

v2    

MK_PAIR

c

a    

:     : 

:     : 

a :             Header 3, PAIR

v1 a+1 :             

a+2 :             v2 

Newly allocated

locations in 

the heap

The stack

before  
The stack

after  

In Jargon VM: 

In interpreter 3: 
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FST (similar for SND)

(FST,       V (PAIR(v1, v2)) :: evs)    

->     (cp + 1, v1 :: evs)

c

v1    

:     : 

:     : 

FSTc

a    

:     : 

:     : 

a :             Header 3, PAIR

v1 a+1 :             

a+2 :             v2 

Somewhere  

in the heap

The stack

after  

The stack

before  

In Jargon VM: 

In interpreter 3: 

Note that v1 could be a simple value (int or bool), or aother heap address. 



These require more care …  

let step (cp, evs) = 

match (get_instruction cp, evs) with 

| (MK_CLOSURE loc,   evs) 

-> (cp + 1, V(CLOSURE(loc, evs_to_env evs)) :: evs)

| (APPLY,    V(CLOSURE ((_, Some i), env)) :: (V v) :: evs) 

-> (i,  (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

| (RETURN,    (V v) :: _ :: (RA i) :: evs) 

-> (i,  (V v) :: evs) 

In interpreter 3: 



MK_CLOSURE(c, n)

c
:              

v2    
MK_CLOSURE(c, n)

a :             closure header

c a+1 :             

a+2 :             v1 

Newly allocated

locations in 

the heap

The stack

before  
The stack

after  

c = code location of start of instructions for closure,

n = number of free variables in the body of closure.

Put values associated with free variables on stack, 

then construct the closure on the heap 

v1    

vn    

:

:              

c

a    

:

:              
a+n+1 :             vn 

c

:        :             
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A stack frame 

c

a    

:     : 

:     : 

v    

r     

fp’fp

:     : 

:     : 

Return address  

Saved frame pointer  

Pointer to closure  

Argument value  

Stack frame.

(Boundary 

May vary in the 

literature.) 

Currently executing code for the closure at heap address “a” 

after it was applied to argument v. 



APPLY

(APPLY,   V(CLOSURE ((_, Some i), env)) :: (V v) :: evs) 

-> (i,  (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

APPLY

c

a    

:     : 

:     : 

a :             Header n+2, 

CLOSURE 

v1 

a+n+1 :             

a+1 :             

vn 

AFTER   
Jargon VM: 

v    

i

:     :  

a+2 :             

BEFORE   

c

a    

:     : 

:     : 

v    

k+1    

j     

cp = k 

fp = j 
cp = i 

fp = m 

m :             fp

Interpreter 3: 



RETURN

(RETURN,    (V v) :: _ :: (RA i) :: evs)  ->  (i,   (V v) :: evs) 

RETURN

AFTER   Jargon VM: 

Interpreter 3: 

BEFORE   

ca    

:     : 

:     : 

v1    

t     

j     

cp = i 

fp           

v2    

c:     : 

:     : 

cp = t  

(return address) 

fp = j           

v2    

Replace stack frame

with return value



Finding a variable’s value at runtime  

c
a    

:     : 

:     : 

a :             Header n+2, 

CLOSURE 

v1 

a+1 :             

vn 

v    

code location i 

:     :  

a+2 :             

k+1    

j     

fp           

:     : 

:     : 

sp           

Suppose we are 

executing code 

associated with this 

closure. Then every

free variable in the 

body of the closure 

can be found from 

the frame pointer fp: 

• Formal parameter: at stack location fp-2

• Other free variables : 

• Follow heap pointer found at fp -1

• Each free variable can be associated 

with  a fixed offset from this heap 

address 



LOOKUP (HEAP_OFFSET k)   

(LOOKUP x,                          evs) -> (cp + 1, V(search(evs, x)) :: evs)

LOOKUP

(HEAP_OFFET k) 

AFTER   Jargon VM: 

Interpreter 3: 

BEFORE   

c

a    

:     : 

:     : 

v    

k+1    

j     

:     : 

FREE    sp           

fp           
c

a    

:     : 

:     : 

v    

k+1    

j     

:     : 

FREE    sp           

fp           

vk    

a :             Header

v1 

vk 

i 

:     :  

:     :  



LOOKUP (STACK_OFFSET -2)   

(LOOKUP x,                          evs) -> (cp + 1, V(search(evs, x)) :: evs)

LOOKUP

(STACK_OFFET  -2) 

AFTER   Jargon VM: 

Interpreter 3: 

BEFORE   

c

a    

:     : 

:     : 

v    

k+1    

j     

:     : 

FREE    sp           

fp           
c

a    

:     : 

:     : 

v    

k+1    

j     

:     : 

FREE    sp           

fp           

v    

push argument 

value onto the 

stack 
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Oh, one problem

Solution in Jargon VM 

interpreter 3 let rec comp = function 

: 

| LetFun(f, (x, e1), e2) -> 

let (defs1, c1) = comp e1 in  

let (defs2, c2) = comp e2 in 

let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in 

(def @ defs1 @ defs2, 

[MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])

: 

Problem:  Code c2 can be anything --- how are we going to 

find the closure for f when we need it?  It has to be a fixed offset

from a frame pointer --- we no longer scan the stack for bindings!

let rec comp vmap = function 

:

| LetFun(f, (x, e1), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

: 

Similar trick for LetRecFun



LOOKUP (STACK_OFFSET -1)   

AFTER   Jargon VM: 

BEFORE   

c

a    

:     : 

:     : 

v    

k+1    

j     

:     : 

FREE sp           

fp           
c

a    

:     : 

:     : 

v    

k+1    

j     

:     : 

FREE sp           

fp           

a

For recursive function calls,

push current closure on to the stack.  

LOOKUP

(STACK_OFFET  -1) 

closure closure 
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Example : Compiled code for rev_pair.slang 

let rev_pair (p : int * int) : int * int  = (snd p, fst p) 

in 

rev_pair (21, 17) 

end 

After the front-end, compile treats this as follows. 

App(

Lambda(

”rev_pair”, 

App(Var ”rev_pair”,  Pair (Integer 21, Integer 17))), 

Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))
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Example : Compiled code for rev_pair.slang 

MK_CLOSURE(L1, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 :          PUSH STACK_INT 21

PUSH STACK_INT 17

MK_PAIR

LOOKUP STACK_LOCATION -2

APPLY

RETURN

L1 :          LOOKUP STACK_LOCATION -2

SND

LOOKUP STACK_LOCATION -2

FST

MK_PAIR

RETURN

App(

Lambda(”rev_pair”, 

App(Var ”rev_pair”,  Pair (Integer 21, Integer 17))), 

Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))

-- Make closure for second lambda

-- Make closure for first lambda 

-- do application 

-- the end! 

-- code for first lambda, push 21

-- push 17

-- make the pair on the heap

-- push closure for second lambda on stack

-- apply first lambda 

-- return from first lambda 

-- code for second lambda, push arg on stack

-- extract second part of pair 

-- push arg on stack again

-- extract first part of pair 

-- construct a new pair 

-- return from second lambda  

“first lambda”

“second lambda” 



Example : trace of rev_pair.slang execution 

Installed Code = 

0: MK_CLOSURE(L1 = 11, 0)

1: MK_CLOSURE(L0 = 4, 0)

2: APPLY

3: HALT

4: LABEL L0

5: PUSH STACK_INT 21

6: PUSH STACK_INT 17

7: MK_PAIR

8: LOOKUP STACK_LOCATION-2

9: APPLY

10: RETURN

11: LABEL L1

12: LOOKUP STACK_LOCATION-2

13: SND

14: LOOKUP STACK_LOCATION-2

15: FST

16: MK_PAIR

17: RETURN

========== state 1 ==========

cp = 0 -> MK_CLOSURE(L1 = 11, 0)

fp = 0

Stack = 

1: STACK_RA 0

0: STACK_FP 0

========== state 2 ==========

cp = 1 -> MK_CLOSURE(L0 = 4, 0)

fp = 0

Stack = 

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0

Heap = 

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

……



Example : trace of rev_pair.slang execution 

========== state 15 ==========

cp = 16 -> MK_PAIR

fp = 8

Stack = 

11: STACK_INT 21

10: STACK_INT 17

9: STACK_RA 10

8: STACK_FP 4

7: STACK_HI 0

6: STACK_HI 4

5: STACK_RA 3

4: STACK_FP 0

3: STACK_HI 2

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0

Heap = 

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

========== state 19 ==========

cp = 3 -> HALT

fp = 0

Stack = 

2: STACK_HI 7

1: STACK_RA 0

0: STACK_FP 0

Heap = 

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

7 -> HEAP_HEADER(3, HT_PAIR)

8 -> HEAP_INT 17

9 -> HEAP_INT 21

Jargon VM : 

output> (17, 21)
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Example : closure_add.slang

let f(y : int) : int -> int = let g(x :int) : int = y + x  in g end 

in let add21 : int -> int  = f(21)  

in let add17 : int -> int  = f(17) 

in add17(3) + add21(10) 

end 

end 

end 

App(Lambda(f, App(Lambda(add21, 

App(Lambda(add17, 

Op(App(Var(add17), Integer(3)), 

ADD, 

App(Var(add21), Integer(10)))), 

App(Var(f), Integer(17))), 

App(Var(f), Integer(21))))), 

Lambda(y, App(Lambda(g, Var(g)), 

Lambda(x, Op(Var(y), ADD, Var(x))))))

After the front-end, this becomes represented as follows. 

Note : we really do need 

closures on the heap here —

the values 21 and 17 

do not exist on the stack

at this point in the execution. 
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Can we make sense of this? 

MK_CLOSURE(L3, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 :           PUSH STACK_INT 21

LOOKUP STACK_LOCATION -2

APPLY

LOOKUP STACK_LOCATION -2

MK_CLOSURE(L1, 1)

APPLY

RETURN

L1 :           PUSH STACK_INT 17

LOOKUP HEAP_LOCATION 1

APPLY

LOOKUP STACK_LOCATION -2

MK_CLOSURE(L2, 1)

APPLY

RETURN

L2 :           PUSH STACK_INT 3

LOOKUP STACK_LOCATION -2

APPLY

PUSH STACK_INT 10

LOOKUP HEAP_LOCATION 1

APPLY

OPER ADD

RETURN

L3 :           LOOKUP STACK_LOCATION -2

MK_CLOSURE(L5, 1)

MK_CLOSURE(L4, 0)

APPLY

RETURN

L4 :           LOOKUP STACK_LOCATION -2

RETURN

L5 :           LOOKUP HEAP_LOCATION 1

LOOKUP STACK_LOCATION -2

OPER ADD

RETURN
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The Gap, illustrated

let fib (m :int) : int  =

if m = 0 

then 1 

else if m = 1 

then 1 

else fib(m - 1) + fib (m - 2)

end 

end 

in fib (?) end  

slang.byte –c –i4 fib.slang

Jargon VM code    

fib.slang

MK_CLOSURE(fib, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 :        PUSH STACK_UNIT

UNARY READ

LOOKUP STACK_LOCATION -2

APPLY

RETURN

fib :       LOOKUP STACK_LOCATION -2

PUSH STACK_INT 0

OPER EQI

TEST L1

PUSH STACK_INT 1

GOTO L2

L1 :        LOOKUP STACK_LOCATION -2

PUSH STACK_INT 1

OPER EQI

TEST L3

PUSH STACK_INT 1

GOTO L4

L3 :        LOOKUP STACK_LOCATION -2

PUSH STACK_INT 1

OPER SUB

LOOKUP STACK_LOCATION -1

APPLY

LOOKUP STACK_LOCATION -2

PUSH STACK_INT 2

OPER SUB

LOOKUP STACK_LOCATION -1

APPLY

OPER ADD

L4 :

L2 :        RETURN
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Taking stock 

Interpreter 0 

Interpreter 1 

Interpreter 2 

Interpreter 3 

Jargon VM   

Split stack into two, refactor  

Linearise code  

Low-level addressable stack  

Starting from a direct implementation of Slang/L3 semantics, 

we have DERIVED a Virtual Machine in a step-by-step manner.  

The correctness of aach step is (more or less) easy to check. 

Explicit stack via CPS+DFS  
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Remarks 

1. The semantic GAP between a Slang/L3 program 

and a low-level translation (say x86/Unix) has been 

significantly reduced. 

2. Implementing the Jargon VM at a lower-level of 

abstraction (in C?, JVM bytecodes?  X86/Unix? …) 

looks like a relatively easy programming problem. 

3. However, using a lower-level implementation (say 

x86, exploiting fast registers) to generate very 

efficient code is not so easy.  See Part II Optimising 

Compilers. 

Verification of compilers is an active area of research. 

See  CompCert, CakeML, and DeepSpec. 
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We could implement a Jargon byte code interpreter …

... 

... 

void vsm_execute_instruction(vsm_state *state, bytecode instruction)

{

opcode code   = instruction.code; 

argument arg1 = instruction.arg1;

switch (code) {

case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }

case POP : { state->sp--; state->pc++; break; }

case GOTO: { state->pc = arg1; break; }

case STACK_LOOKUP: {

state->stack[state->sp++] = 

state->stack[state->fp + arg1]; 

state->pc++;  break; }

... 

... 

}

}

... 

... 

• Generate compact byte code for 

each Jargon instruction.

• Compiler writes byte codes to a file. 

• Implement an interpreter in C or C++ 

for these byte codes.

• Execution is much faster than our 

jargon.ml implementation.

• Or, we could generate assembly 

code from Jargon instructions ….
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Backend could target multiple platforms 

Intermediate 

code

x86/Linux  code gen     

ARM/Android code gen   

…… …

Target?

Back end

x86/windows 

x86/linux 

ARM/android 

Assembly code

x86/Windows code gen     

One of the great benefits of Virtual Machines is their 

portability.  However, for more efficient code we may want to 

compile to assembler.  Lost portability can be regained 

through the extra effort of implementing code generation for 

every desired target platform.



Lectures 12 --- 16

Assorted Topics

1.Separate compilation, linking 

2. Interface with OS   

3.Stacks vs registers

4.Calling conventions  

5.Generating assembler code

6.Simple optimisations 

7.The runtime system (automatic memory 

management, …)

8. Static links (for languages without nested 

functions/procedures)

9. Implementing OOP with inheritance

10.Implementing exceptions

11.Compiling a compiler, “boot strapping” 
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Assembly and Linking

assembly 

code file

assembler

assembly 

code file

assembler

…

…

…

linker     

object 

code file

object 

code file

single executable object code file

Operating System

Object code 

libraries

From symbolic

names and 

addresses to 

numeric codes 

and numeric

addresses

Name resolution,

create single 

address space 

by address 

relocation

Link errors
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The gcc manual (810 pages)

https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf
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Applications Binary Interface (ABI)

• C calling conventions used for systems calls 

or calls to compiled C code. 

• Register usage and stack frame layout

• How parameters are passed, results 

returned

• Caller/callee responsibilities for placement 

and cleanup 

• Byte-level layout and semantics of object files. 

• Executable and Linkable Format (ELF).  

Formerly known as Extensible Linking 

Format. 

• Linking, loading, and name mangling 

We will use x86/Unix as our running example.

Specifies many things, including the following.  

Note: the conventions 

are required for 

portable interaction

with compiled C. 

Your compiled 

language does not

have to follow the 

same conventions!



Object files 

Must contain at least 

• Program instructions

• Symbols being exported 

• Symbols being imported

• Constants used in the program (such as strings)  

Executable and Linkable Format (ELF) is a common 

format for both linker input and output. 



ELF details (1)



ELF details (2)



The (Static) Linker 

What does a linker do?

• takes some object files as input,  notes all undefined symbols. 

• recursively searches libraries adding ELF files which 

define such symbols until all names defined (“library search”). 

• whinges if any symbol is undefined or multiply defined.

Then what?

• concatenates all code segments (forming the output 

code segment).

• concatenates all data segments. 

• performs relocations (updates code/data segments 

at specified offsets.



Dynamic vs. Static linking

Static linking (compile time)

Problem: a simple “hello world” program may give a 10MB 

executable if it refers to a big graphics or other library.

Dynamic linking (run time)

For shared libraries, the object files contain stubs, not code, 

and the operating system loads and links the code on demand.

Pros and Cons of dynamic linking:

(+) Executables are smaller 

(+) Bug fixes to libraries don’t require re-linking. 

(-) Non-compatible changes to a library can wreck previously 

working programs (“dependency hell”).
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A “runtime system” 

A library implementing functionality needed to run compiled 

code on a given operating system.  Normally tailored to the 

language being compiled. 

• Implements interface between OS and language.

• May implement memory management. 

• May implement “foreign function” interface (say we want 

to call compiled C code from Slang code, or vice versa). 

• May include efficient implementations of primitive 

operations defined in the compiled language. 

• For some languages, the runtime system may perform 

runtime type checking, method lookup, security checks, 

and so on.   

• … 
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Runtime system 

Virtual Machine 

Implementation 

Includes runtime 

system 

Generated 

code 
Generated 

code 
Run-time system  

Linker 

Executable  

Targeting a VM Targeting a platform 

In either case, implementers of the compiler and 

the runtime system must agree on many low-level details of 

memory layout and data representation.
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Typical (Low-Level) Memory Layout (UNIX)

Rough schematic of traditional 

layout in (virtual) memory. 

high

memory

low

memory

program instructions

Global vars and constants

Stack

Heap

The heap is used for 

dynamically allocating 

memory.  Typically either 

for very large objects or 

for those objects that are

returned by functions/procedures

and must outlive 

the associated activation record. 

In languages like Java and ML, 

the heap is managed

automatically (“garbage collection”) 

Dealing with Virtual Machines

allows us to ignore some of

the low-level details….
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Stack vs regsisters   

V1

add

V2

V1 + V2

r7 : …

add r8 r3 r7

r3 : V2

r8 : V1

…

r7 : V1 + V2

r3 : V2

r8 : V1

…

Stack-oriented:

(+) argument locations is 

implicit, so instructions 

are smaller.

(---) Execution is slower 

Register-oriented:

(+++) Execution MUCH faster

(-) argument location is 

explicit, so instructions

are larger  
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Main dilemma : registers are fast, but are fixed in 

number.  And that number is rather small. 

• Manipulating the stack involves RAM access, which can be 

orders of magnitude slower than register access (the “von 

Neumann Bottleneck”)

• Fast registers are (today) a scarce resource, shared by many 

code fragments

• How can registers be used most effectively? 

• Requires a careful examination of a program’s structure 

• Analysis phase: building data structures (typically directed 

graphs) that capture definition/use relationships

• Transformation phase : using this information to rewrite 

code, attempting to most efficiently utilise registers

• Problem is NP-complete

• One of the central topics of Part II Optimising Compilers.

• Here we focus only on general issues : calling conventions and 

register spilling  
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Caller/callee conventions 

• Caller and callee code may use overlapping sets of registers

• An agreement is needed concerning use of registers

• Are some arguments passed in specific registers?

• Is the result returned in a specific register? 

• If the caller and callee are both using a set of registers for 

“scratch space” then caller or callee must save and restore 

these registers so that the caller’s registers are not 

obliterated by the callee.

• Standard calling conventions identify specific subsets of 

registers as “caller saved” or “callee saved” 

• Caller saved: if caller cares about the value in a register, 

then must save it before making any call

• Callee saved: The caller can be assured that the callee 

will leave the register intact (perhaps by saving and 

restoring it)  
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Another C example.  

X86, 64 bit, with gcc

int 

callee(int, int,int,

int,int,int,int);

int caller(void)

{

int ret;

ret = 

callee(1,2,3,4,5,6,7);

ret += 5;

return ret;

}

_caller:

pushq %rbp # save frame pointer 

movq%rsp, %rbp # set new frame pointer 

subq $16, %rsp # make room on stack 

movl $7, (%rsp)  # put 7th arg on stack

movl $1, %edi # put 1st arg on in edi

movl $2, %esi # put 2nd arg on in esi

movl $3, %edx # put 3rd arg on in edx

movl $4, %ecx # put 4th arg on in ecx

movl $5, %r8d    # put 5th arg on in r8d

movl $6, %r9d    # put 6th arg on in r9d

callq _callee #will put resut in eax

addl $5, %eax # add 5 

addq $16, %rsp # adjust stack 

popq %rbp # restore  frame pointer

ret                 # pop return address, go there
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Regsiter spilling 

• What happens when all registers are in use?

• Could use the stack for scratch space …

• … or (1) move some register values to the stack, (2) 

use the registers for computation, (3) restore the 

registers to their original value 

• This is called register spilling 
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A Crash Course in x86 assembler

• A CISC architecture 

• There are 16, 32 and 64 bit versions

• 32 bit version : 

• General purpose registers : EAX EBX ECX EDX

• Special purpose registers : ESI EDI EBP EIP ESP

• EBP : normally used as the frame pointer

• ESP : normally used as the stack pointer 

• EDI : often used to pass (first) argument 

• EIP  : the code pointer 

• Segment and flag registers that we will ignore … 

• 64 bit version: 

• Rename 32-bit registers with “R” (RAX, RBX, RCX, …)

• More general registers:  R8 R9 R10 R11 R12 R13 R14 R15

Register 

names can 

indicate “width” 

of  a value. 

rax : 64 bit version

eax : 32 bit version (or lower 32 bits of rax) 

ax : 16 bit version (or lower 16 bits of eax)

al : lower 8 bits of ax

ah : upper 8 bits of ax 



See https://en.wikibooks.org/wiki/X86_Assembly

movl $4, %eax          // GAS (aka AT&T) notation

mov  eax, 4                // Intel notation

The syntax of x86 assembler comes in several flavours.  

Here are two examples of “put integer 4 into register eax”: 

I will (mostly) use the GAS syntax, where a suffix is used

to indicate width of arguments: 

• b (byte) = 8 bits

• w (word) = 16 bits

• l (long) = 32 bits

• q (quad) = 64 bits

For example,  we have movb, movw movl, and movq.  
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Examples (in GAS notation)  

movl $4, %eax     # put 32 bit integer 4 in register eax

movw $4, %eax    # put 16 bit integer 4 in lower 16 bits of eax

movb $4, %eax    # put 8 bit integer 4 in lowest 8 bits of eax

movl %esp, %ebp    # put the contents of esp into ebp

movl (%esp), %ebp  # interpret contents of esp as a memory

# address. Copy the value at that address 

# into register ebp 

movl %esp, (%ebp)  # interpret contents of ebp as a memory

# address. Copy the value in esp to

# that address.  

movl %esp, 4(%ebp)# interpret contents of ebp as a memory

# address. Add 4 to that address. Copy 

# the value in esp to this new address.
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A few more examples

call label  # push return address on stack and jump to label

ret            # pop return address off stack and jump there 

# NOTE: managing other bits of the stack frame 

# such as stack and frame pointer must be done 

# explicitly

subl $4, %esp   # subtract 4 from esp. That is, adjust the 

# stack pointer to make room for one 32-bit

# (4 byte) value. (stack grows downward!) 

Assume that we have implemented a procedure in C called 

allocate that will manage heap memory. We will compile and 

link this in with code generated by the slang compiler. At the x86

level, allocate will expect a header in edi and return a heap 

pointer in eax. 



Some Jargon VM instructions are “easy” to translate 

GOTO loc jmp loc

POP addl $4, %esp // move stack pointer 1 word = 4 bytes

PUSH v       subl $4, %esp // make room on top of stack 

movl $i, (%esp)    // where i is an integer  representing v

FST movl (%esp), %edx //store "a" into edx

movl 4(%edx), %edx // load v1, 4 bytes, 1 word, after header

movl %edx, (%esp)    // replace “a” with “v1” at top of stack 

SND movl (%esp), %edx //store "a" into edx

movl 8(%edx), %edx // vload v2, 8 bytes, 2 words, after header

movl %edx, (%esp)     // replace “a” with “v2” at top of stack 

c

v1    

:     : 

:     : 

FSTc

a    

:     : 

:     : 

a :             header

v1 a+1 :             

a+2 :             v2 

sp             sp             

Remember: X86 is CISC, so RISC architectures may require more instructions …  
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… while others require more work

c
v1    

:     : 

:     : 

v2    

MK_PAIR

c

a    

:     : 

:     : 

a :             Header 3, PAIR

v1 a+1 :             

a+2 :             v2 

movl $3, %edi // construct header in edi

shr $16, %edi,     // … put size in upper 16 bits (shift right)

movw $PAIR, %di   // … put type in lower 16 bits of edi

call allocate     // input: header in ebi, output: “a” in eax

movl (%esp), %edx // move “v2” to the heap, 

movl %edx, 8(%eax)   //  …  using temporary register edx

addl $4, %esp // adjust stack pointer (pop “v2”)

movl (%esp), %edx // move “v1” to the heap 

movl %edx, 4(%eax)    //  …  using temporary register edx

movl %eax, (%esp)     // copy value “a” to top of stack

One possible x86 (32 bit) implementation of MK_PAIR: 
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call function computed at runtime?

For things you don’t understand, just experiment!

OK, you need to pull an address out of a closure and call it.  Hmm, 

how does something similar get compiled from C?    

_func:  

pushq %rbp # save frame pointer

movq %rsp, %rbp # set frame pointer to stack pointer 

subq $16, %rsp # make some room on stack 

movl $17, %eax # put 17 in argument register eax

movq %rdi, -8(%rbp) # rdi contains the argument f

movl %eax, %edi # put 17 in register edi, so f will get it

callq *-8(%rbp)        # WOW, a computed address for call! 

addq $16, %rsp # restore stack pointer 

popq %rbp # restore old frame pointer 

ret                     # restore stack 

int func ( int (*f)(int) ) { return (*f)(17); } /* pass a function pointer and apply it /*

X86, 

64 bit

without 

–O2



What about arithmetic? 

Houston, we have a problem….

• It may not be obvious now, but if we want to have 

automated memory management we need to be 

able to distinguish between values (say integers) 

and pointers at runtime. 

• Have you ever noticed that integers in SML or 

Ocaml are either 31 (or 63) bits rather than the 

native 32 (or 64) bits? 

• That is because these compilers use a the 

least significant bit to distinguish integers (bit = 

1) from pointers (bit = 0). 

• OK, this works.  But it may complicate every 

arithmetic operation! 

• This is another exercise left for you to ponder 

…
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New topic: Memory Management  

• Many programming languages allow programmers to 
(implicitly) allocate new storage dynamically, with no 
need to worry about reclaiming space no longer used. 

– New records, arrays, tuples, objects, closures, etc.

– Java, SML, OCaml, Python, JavaScript, Python, 
Ruby, Go, Swift, SmallTalk, …

• Memory could easily be exhausted without some method 
of reclaiming and recycling the storage that will no longer 
be used.

– Often called “garbage collection”

– Is really “automated memory management” since it 
deals with allocation, de-allocation, compaction, and 
memory-related interactions with the OS.   
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Explicit (manual) memory management

• User library manages memory; programmer 
decides when and where to allocate and de-
allocate
– void* malloc(long n)

– void free(void *addr)

– Library calls OS for more pages when necessary

– Advantage: Gives programmer a lot of control.

– Disadvantage: people too clever and make mistakes. 
Getting it right can be costly. And don’t we want to 
automate-away tedium?  

– Advantage: With these procedures we can implement 
memory management for “higher level” languages ;-)
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Automation is based on an approximation : if data can be 

reached from a root set, then it is not “garbage”

r1

stack

and 

registers

r2

ROOT SET

-------------------- HEAP ----------------------------------------

Type information required (pointer or not), 
some kind of “tagging” needed.
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… Identify Cells Reachable From Root Set… 

r1

stack

r2

registers
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… reclaim unreachable cells

r1

stack

r2

registers
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But How? Two basic techniques, 

and many variations  

• Reference counting : Keep a reference count 
with each object that represents the number of 
pointers to it.  Is garbage when count is 0. 

• Tracing : find all objects reachable from root set. 
Basically transitive close of pointer graph. 

For a very interesting (non-examinable) treatment of this subject see

A Unified Theory of Garbage Collection. 

David F. Bacon, Perry Cheng, V.T. Rajan. 

OOPSLA 2004. 

In that paper reference counting and tracing are presented as “dual” 

approaches, and other techniques are hybrids of the two. 
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Reference Counting, basic idea:

• Keep track of the number of pointers to each object (the 
reference count).

• When Object is created, set count to 1.

• Every time a new pointer to the object is created, 
increment the count. 

• Every time an existing pointer to an object is destroyed, 
decrement the count

• When the reference count goes to 0, the object is 
unreachable garbage
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Reference counting can’t detect cycles!

r1

stack
r2

• Cons

• Space/time overhead to maintain count. 

• Memory leakage when have cycles in data.

• Pros

• Incremental (no long pauses to collect…) 
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Mark and Sweep

• A two-phase algorithm

– Mark phase: Depth first traversal of object 

graph from the roots to mark live data

– Sweep phase:  iterate over entire heap, 

adding the unmarked data back onto the free 

list
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Copying Collection

• Basic idea: use 2 heaps

– One used by program

– The other unused until GC time

• GC:

– Start at the roots & traverse the reachable data

– Copy reachable data from the active heap (from-

space) to the other heap (to-space)

– Dead objects are left behind in from space

– Heaps switch roles
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Copying Collection

to-spacefrom-space

roots
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Copying GC

• Pros
– Simple & collects cycles

– Run-time proportional to # live objects

– Automatic compaction eliminates fragmentation

• Cons
– Twice as much memory used as program requires

• Usually, we anticipate live data will only be a small fragment 
of store

• Allocate until 70% full

• From-space = 70% heap; to-space = 30%

– Long GC pauses = bad for interactive, real-time apps
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OBSERVATION: for a copying garbage 

collector

• 80%  to 98% new objects die very quickly.

• An object that has survived several collections has a bigger 

chance to become a long-lived one.

• It’s a inefficient that long-lived objects be copied over and over.

Diagram from Andrew Appel’s Modern Compiler Implementation 
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IDEA: Generational garbage collection

Segregate objects into multiple areas by age, and collect areas 

containing older objects less often than the younger ones.

Diagram from Andrew Appel’s Modern Compiler Implementation 
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Other issues…

– When do we promote objects from young generation to old 
generation

• Usually after an object survives a collection, it will be 
promoted

– Need to keep track of older objects pointing to newer ones!

– How big should the generations be?

• When do we collect the old generation?

• After several minor collections, we do a major collection

– Sometimes different GC algorithms are used for the new and 
older generations.

• Why? Because the have different characteristics

• Copying collection for the new

– Less than 10% of the new data is usually live

– Copying collection cost is proportional to the live data

• Mark-sweep for the old
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New topic : Simple optimisations.     

Inline expansion 

fun f(x) = x + 1 
fun g(x) = x – 1 
…
…
fun h(x) = f(x) + g(x)

fun f(x) = x + 1 
fun g(x) = x – 1 
…
…
fun h(x) = (x+1) + (x-1)

inline f and g 

(+) Avoid building activation

records at runtime

(+) May allow further 

optimisations   

(-) May lead to “code bloat”

(apply only to functions 

with “small”  bodies?) 

Question: if we inline all 

occurrences of a function, 

can we delete its definition from 

the code?

What if it is needed at link time?



Be careful with variable scope 

let val x = 1

fun g(y) = x + y 

fun h(x) = g(x) + 1   

in 

h(17) 

end  

let val x = 1

fun g(y) = x + y 

fun h(x) = x + y + 1   

in 

h(17) 

end  

Inline g in h

let val x = 1

fun g(y) = x + y 

fun h(z) = x + z + 1   

in 

h(17) 

end  

NO

YES

What kind of care might be needed will 

depend on the representation level of the 

Intermediate code involved. 
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(b) Constant propagation, constant folding 

David Gries : 

“Never put off till 

run-time what you can do 

at compile-time.”

How about this? 

Replace 

x * 0 

with 

0

OOPS, not if x has type 

float! 

NAN*0 = NAN,

But be careful 

Note : opportunities

are often exposed 

by inline expansion!

let x = 2 
let y = x – 1
let z = y * 17  

let x = 2 
let y = 2 – 1
let z = y * 17  

let x = 2 
let y = 1
let z = y * 17  

let x = 2 
let y = 1
let z = 1 * 17  

let x = 2 
let y = 1
let z = 17        

Propagate 

constants and

evaluate simple 

expressions at 

compile-time 
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(c) peephole optimisation

Communications of the ACM, 

July 1965

Eliminate! 

Results for syntax-directed code generation.
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peephole optimisation

… code sequence … 

Sweep a window over the code 

sequence looking for instances of simple code

patterns that can be rewritten to better code …

(might be combined with constant folding, etc, 

and employ multiple passes)  

Examples 

-- eliminate useless combinations (push 0; pop) 

-- introduce machine-specific instructions 

-- improve control flow.  For example:  rewrite 

“GOTO L1 … L1: GOTO L2” 

to 

“GOTO L2 … L1 : GOTO L2”) 



gcc example. 

-O<m> turns on optimisation to level m

int h(int n)  { return (0 < n) ? n : 101 ; } 

int g(int n)  { return 12 * h(n + 17); } 

g.c

gcc –O2 –S –c g.c 

_g:                                  

.cfi_startproc

pushq %rbp

movq %rsp, %rbp

addl $17, %edi

imull $12, %edi, %ecx

testl %edi, %edi

movl $1212, %eax          

cmovgl %ecx, %eax

popq %rbp

ret

.cfi_endproc

g.s (fragment)

Wait. What happened to 

the call to h??? 

GNU AS (GAS) Syntax

x86, 64 bit



gcc example (-O<m> turns on optimisation)

int h(int n)  { return (0 < n) ? n : 101 ; } 

int g(int n)  { return 12 * h(n + 17); } 

g.c

The compiler must have done something similar to this: 

int g(int n)  { return 12 * h(n + 17); }



int g(int n)  { int t := n+ 17; return 12 * h(t); }



int g(int n)  { int t := n+ 17; return 12 *((0 < t) ? t : 101 ); }



int g(int n)  { int t := n+ 17; return (0 < t) ? 12 * t : 1212 ; }

…



New topic : static links on the call stack. 

• Many textbooks on compilers treat only languages with 

first-order functions --- that is, functions cannot be passes 

as an argument or returned as a result.  In this case, we 

can avoid allocating environments on the heap since all 

values associated with free variables will be somewhere 

on the stack!

• But how do we find these values? We optimise stack 

search by following a chain of static links.  Static links are 

added to every stack frame and  points to the stack frame 

of the last invocation of the defining function. 

• One other thing: most languages take multiple arguments 

for a function/procedure call.  



Terminology: Caller and Callee

fun f (x, y) = e1

…

fun g(w, v) = 

w + f(v, v) 

For this invocation of 

the function f, we say 

that g is the caller

while f is the callee

Recursive functions can play 

both roles at the same time …
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Nesting depth 

fun b(z) = e

fun g(x1) = 

fun h(x2) = 

fun f(x3) = e3(x1, x2, x3, b, g h, f) 

in 

e2(x1, x2, b, g, h, f) 

end  

in 

e1(x1, b, g, h) 

end

… 

b(g(17))

…

Pseudo-code 
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Nesting depth 

fun b(z) = e

fun g(x1) = 

fun h(x2) = 

fun f(x3) = e3(x1, x2, x3, b, g h, f) 

in 

e2(x1, x2, b, g, h, f) 

end  

in 

e1(x1, b, g, h) 

end

… 

b(g(17))

…

code in big box is at nesting depth k 

nesting depth k + 1

nesting depth k + 1

nesting depth k + 2

nesting depth k + 3

Function g is the definer of h.  Functions g and b must 

share a definer defined at depth k-1
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Stack with static links and variable number of 

arguments

sp

FP-saved

RA

stack frame for 

callee defined

at nesting

depth i <= k + 1

stack frame for caller

defined at nesting depth 

k used to evaluate code

at depth k + 1.

args 

for 

callee 

fp

SL{i – 1} The static link points

down to the closest 

frame of definer 

at nesting 

depth i - 1

SL{k - 1}
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caller and callee at same nesting depth k   

call f 0 

cp

Code

FREEsp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

caller’s
frame

SL{k – 1}

SL{k – 1}

SL{k – 1}



caller at depth k and callee at depth i < k

call f (k - i) 

cp

Code

FREEsp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

SL{k - 1}

SL{i - 1}

SL{k - 1}

p := !(fp + 2); 
for c = 1 to k – i
{

p := !(p + 2);
} 
SL{i-1} := p; 
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caller at depth k and callee at depth k + 1

call f (-1)

cp

Code

FREEsp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

SL{k - 1} SL{k - 1}

FP-saved

FP-saved



Access to argument values at static 

distance 0  

arg 0 j sp

fp

FREE

ra 

sp

fp

FREE

ra 

V

Vfp - j

SL SL



Access to argument values at static  

distance d, 0 < d

arg d j sp

fp

FREE

ra 

sp

fp

FREE

ra 

V

SL SL

p := !(fp + 2); 
for c = 1 to d
{

p := !(p + 2);
} 
v := !(p – j); 



299

New Topic: 

OOP Objects (single inheritance)
let start := 10

class Vehicle extends Object {
var position := start 
method move(int x) = {position := position + x} 

}
class Car extends Vehicle {

var passengers := 0
method await(v : Vehicle) =

if (v.position < position)
then v.move(position – v.position) 
else self.move(10) 

} 
class Truck extends Vehicle {

method move(int x) = 
if x <= 55 then position := position +x

}
var t := new Truck
var c := new Car 
var v : Vehicle := c

in 
c.passengers := 2;
c.move(60);
v.move(70);
c.await(t)

end 

method override

subtyping allows a

Truck or Car to be viewed and

used as a Vehicle
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Object Implementation?

– how do we access object fields?
• both inherited fields and fields for the current 

object?

– how do we access method code?
• if the current class does not define a particular 

method, where do we go to get the inherited 
method code?

• how do we handle method override?

– How do we implement subtyping (“object 
polymorphism”)?

• If B is derived from A, then need to be able to 
treat a pointer to a B-object as if it were an A-
object.
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Another OO Feature

• Protection mechanisms

– to encapsulate local state within an object, 
Java has “private” “protected” and “public”
qualifiers

• private methods/fields can’t be called/used outside 
of the class in which they are defined

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking 
and so on), the compiler maintains this 
information in the symbol table for each class 
and enforces visibility rules. 
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Object representation

class A {

public:

int a1, a2;

virtial void m1(int i) {

a1 = i;

}

virtual void m2(int i) {

a2 = a1 + i;

}

}

C++

object data
a1

a2

m1_A

m2_A

vtable for class A

An A object 

NB: a compiler typically generates methods with an extra argument 

representing the object (self) and used to access object data.
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Inheritance (“pointer polymorphism”)

object data

m1_A

m2_A vtable for class B

a1

a2

b1

m3_B

class B : public A {

public:

int b1;

virtual void m3(void) {

b1 = a1 + a2;

}

}

a B object 

Note that a pointer to a B object can 

be treated as if it were a pointer to an A object!
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Method overriding

object data

m1_A_A

m2_A_C

vtable for class C

a1

a2

c1

m3_C_C

class C : public A {

public:

int c1;

virtual void m3(void) {

b1 = a1 + a2;

}

virtual void m2(int i) {

a2 = c1 + i;

}

}

declared defined

a C object 
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Static vs. Dynamic 

• which method to invoke on overloaded 

polymorphic types?

class C *c = ...;

class A *a = c;

a->m2(3);

???

m2_A_A(a, 3); static

m2_A_C(a, 3); dynamic
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Dynamic dispatch implemented 

with vtables 

A pointer to a class C object can be treated 

as a pointer to a class A object 

a1

a2

b1

m1_A_A

m2_A_C

m3_C_C

*(a->vtable[1])(a, 3);

class C *c = ...;

class A *a = c;

a->m2(3);



New Topic : Exceptions (informal description) 

e handle f raise e 

If expression e evaluates 

“normally” to value v, 

then v is the result of the 

entire expression.

Otherwise, an exceptional

value v’ is “raised” in the 

evaluation of e, then 

result is (f v’) 

Evaluate expression e to 

value v, and then raise v 

as an exceptional value,

which can only be 

“handled”.

Implementation of exceptions 

may require a lot of language-specific

consideration and care.  Exceptions

can interact in powerful and unexpected

ways with other language features. 

Think of C++ and class destructors, 

for example.



Viewed from the call stack

Call stack just

before evaluating 

code for 

e handle f 

handle

frame

Push a special

frame for the

handle

. . . 

. . .

handle

frame

current

frame

. . . 

. . .

“raise v” is 

encountered

while evaluating

a function body 

associated with 

top-most frame

frame 

for f

v

“Unwind” call stack.

Depending on language, 

this may involve some 

“clean up” to free resources.



Possible pseudo-code implementation  

e handle f 

let fun _h27 () =

build special “handle frame” 

save address of f in frame;

… code for e … 

return value of e 

in _h27 () end 

raise e … code for e … 

save v, the value of e; 

unwind stack until first 

fp found pointing at a handle frame;

Replace handle frame with frame 

for call to (extracted) f using 

v as argument. 

See 2019

Paper 4

Question 4
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New topic : Bootstrapping  a compiler 

• Compilers compiling themselves!

• Read Chapter 13 Of 

• Basics of Compiler Design 

• by Torben Mogensen 
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

http://mythologian.net/ouroboros-symbol-of-infinity/



Bootstrapping.  We need some notation . . .  

app

A 

A

mch 

A

inter

B 

An application 

called app written 

in language A

An interpreter or 

VM for language A

Written in language B

A machine called 

mch running 

language

A natively. 

hello

x86 

x86

M1 

JBC

jvm

x86 

hello

JBC 

x86

M1 

Simple Examples 



Tombstones 

C 

trans 
A B         

This is an application called trans

that translates programs in language

A into programs in language B, and it is 

written in language C. 



Ahead-of-time compilation 

JBC

jvm

x86 

Java     JBC 

JBC 

javac 
Hello

Java 

x86

M1 

Hello

JBC JBC        x86 

JBC 

aot 

JBC

jvm

x86 

x86

M1 

Hello

x86

x86

M1 

jvm

C++ C++        x86 

x86 

gcc 

x86

M1 

Thanks to David Greaves 

for the example.  



Of course translators can be translated 

C

trans
A B B

foo.B
D E

A

foo.A
D E

Translator foo.B is produced

as output from trans when 

given foo.A as input. 



Our seemingly impossible task  

L

comp.L
L B

We have just invented a really great 

new language L (in fact we claim that 

“L is far superior to C++”). To prove how 

great L is we write a compiler 

for L in L (of course!).   This 

compiler produces machine code B 

for a widely used instruction set

(say B = x86).

There are many many ways we could go about this task. 

The following slides simply sketch out one plausible route

to fame and fortune. 

B

comp.B
L B

Furthermore, we want to compile our 

compiler so that it can run 

on a machine running B.

Our compiler is written in L! 

How can we compiler our compiler?

?



Step 1

Write a small interpreter (VM) for

a small language of byte codes 

MBC

zoom

B 

B

M1 

C++          B 

B 

gcc 

B

M1 

MBC

zoom

C++ 

MBC = My Byte Codes

The zoom machine!



Step 2

Pick a small subset S of L and 

write a translator from S to MBC  

B

gcc
C++ BC++

comp_1.cpp
S MBC

Write comp_1.cpp by hand. (It sure would be nice if we 

could hide the fact that this is written is C++.)

Compiler comp_1.B is produced

as output from gcc when comp_1.cpp is given as input. 

B

comp_1.B
S MBC



Step 3

Write a compiler for L in S  

S

comp_2.S
L B

Write a compiler comp_2.S for the full language L, but written only 

in the sub-language S. 

Compile comp_2.S using comp_1.B to produce comp_2.mbc 

B

comp_1.B

S MBC MBC

comp_2.mbc
L B



Step 4

Write a compiler for L in L, and then compile it!  

L

comp.L
L B

Rewrite/extend compiler 

comp_2.S to produce

comp.L using the full 

power of language L. 

MBC

comp_2.mbc
L B B

comp.B
L B

MBC

zoom

B 

B

M1 

We have achieved

our goal! 



C++ 

S MBCcomp_1.cpp

B 

C++ Bgcc

S 

L Bcomp_2.S

B 

S MBCcomp_1.B MBC 

L B
comp_2.mbc B 

L B

L 

L Bcomp.L

Putting it all together 

We wrote these compilers 

and the MBC VM. 

MBC

zoom

B 

B

M1 

B

M1 
B

M1 

1

2

3

4

5

6

comp.B



Step 5 : Cover our tracks and leave the world

mystified and amazed!  

L

comp.L

L B

MBC

comp_2.mbc

L B

1. Use gcc to compile the zoom interpreter

2. Use zoom to run mr-e with input comp.L to output the 

compiler comp.B.   MAGIC!

MBC

zoom

C++

Our L compiler download site contains only three components: 

Our instructions: 

Shhhh!  Don’t tell 

anyone that 

we wrote the first 

compiler in C++

comp_2.mbc is a just file of bytes.

We give it the mysterious  name 

such as mr-e



Another example (Mogensen, Page 285)

Solving a different problem.

You have: 

(1) An ML compiler on ARM.  Who knows where it came from.

(2) An ML compiler written in ML, generating x86 code. 

You want: 

An ML compiler generating x86 and running on an x86 platform. 


