Compiler Construction
Lent Term 2022

Int main(int argc, char *argv]])

{
printf("hello world\n");

return O;

}

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

.LCO:
.string "hello world"
dext
.globl main
type main, @function
main:
.LFBO:
.cfi_startproc
pushq Yorbp
.cfi_def cfa offset 16
.cfi_offset 6, -16
movg %rsp, Y%rbp
.cfi_def _cfa register 6
subg $16, %rsp
movl %edi, -4(%rbp)
movqg %rsi, -16(%rbp)
movl $.LCO, %edi
call puts
movl $0, %eax
leave
.cfi_def cfa7,8
ret
.cfi_endproc

Why Study Compilers?

Although many of the basic ideas were
developed over 60 years ago, compiler
construction is still an evolving and active
area of research and development.

Compilers are intimately related to
programming language design and evolution.

Compilers are a Computer Science success
story illustrating the hallmarks of our field ---
higher-level abstractions implemented with
lower-level abstractions.

Every Computer Scientist should have a basic
understanding of how compilers work.

Compilation is a special kind of translation

Source
Program
| Text

The compiler

program for
=P target
“machine”

run program!

Just text — no way to

_'_I

We have a “machine’
to run this!

A good compiler shoulid ...

This course! {

OptComp,
Part Il {

be correct in the sense that meaning is preserved

produce usable error messages

generate efficient code
itself be efficient

Pick any 27

be well-structured and maintainable Just 17

Mind The Gap

High Level Language

Typical Target Language

Machine independent « Machine specific

Complex syntax

« Simple syntax

Complex type system « Simple types

Variables
Nested scope

memory, registers, words
Single flat scope

Procedures, functions

Objects
Modules

Help!!'! Where do we begin???

The Gap, illustrated

public class Fibonacci { public class Fibonacci { public static void
public static long fib(int m) { public Fibonacci(); main(java.lang.String[]);
it (m == 0) return 1; C%qe;load 0 Cc(;qz.load 0
else if (m == 1) return 1, 1: invokespecial #1 1:iconst_O
else return 4: return 2: aaload
fio(m - 1) + fib(m - 2); public static long fib(int); 3: invokestatic #3
} Code: 6: istore_1
public static void 0: iload_0O 7: getstatic #4
- - 1: ifne 6 10: new #5
m?::(ftrlng[] args) { 4: Iconst_1 13: QUp .
Integer.parselnt(args[0]): 5: Ireturn 14: invokespecial #6
' _ ' 6: iload_0O 17:iload 1
System.out.printin(7:iconst_1 18: invokestatic #2
fib(m) + "\n"); 8:if icmpne 13 21: invokevirtual #7
} 11: Iconst_1 24: ldc #8
} 12: Ireturn 26: invokevirtual #9
13: iload O 29: invokevirtual #10
14:iconst_1 32: invokevirtual #11
15: isub 35: return
16: invokestatic #2 }
> 19: iload O
. . .. 20: iconst_2
javac Fibonacci.java 21 isub JVM bytecodes
javap —c Fibonacci.class o2 nvokestatic #2 5

26: Ireturn

The Gap, illustrated

fib.ml

(* fib : int -> int *)
let rec fib m =
Tm=0
then 1
elseifm=1
then 1
else fibo(m - 1) + fib (m - 2)

>

ocamlc —dinstr fib.ml

branch L2

L1: accO
push

const O

eqint

branchifnot L4
const 1

return 1

L4: accO
push

const 1

eqint

branchifnot L3
const 1

return 1

L3: accO
offsetint -2
push
offsetclosure 0
apply 1

push

acc 1

offsetint -1
push
offsetclosure 0
apply 1

addint

return 1

L2: closurerec 1, 0

accO
makeblock 1, 0

pop 1
setglobal Fib!

OCaml VM bytecodes

The Gap, illustrated
fib.c

#include<stdio.h>

int Fibonacci(int);
iInt main()

{ .

int n;

scanf("%d",&n); | >
printf("%d\n", Fibonacci(n));
return O; gcc S fib.c

}

int Fibonacci(int n)

{
if (n==0) return O;
else if (n==1) return 1;
else return (Fibonacci(n-1) + Fibonacci(n-2));

} 7

The Gap, illustrated

.section __ TEXT,__text,regular,pure_instructions
.globl _main

.align 4, 0x90

_main: ## @main
.cfi_startproc

BB#O:

pushq %rbp

Ltmp2:

.cfi_def_cfa_offset 16

Ltmp3:

.cfi_offset %rbp, -16

movqg %rsp, %rbp
Ltmp4:

.cfi_def_cfa_register %rbp

subqg $16, %rsp

leaq L_.str(%rip), %rdi
leaq -8(%rbp), %rsi
movl $0, -4(%rbp)

movb $0, %eal

callq _scanf

movl -8(%rbp), %oedi
movl Y%eax, -12(%rbp) ## 4-byte Spill
callq _Fibonacci

leaq L_.str1(%rip), %rdi
movl Y%eax, %esi

movb $0, %al

callg _printf

movl $0, %esi

movl %eax, -16(%rbp) ## 4-byte Spill
movl %esi, Yeax

addq $16, %rsp

popq Y%rbp

ret

.cfi_endproc

.globl _Fibonacci

.align 4, 0x90
_Fibonacci: ## @Fibonacci
.cfi_startproc

BB#O:

pushq %rbp

Ltmp7:

.cfi_def_cfa_offset 16

Ltmp8:

.cfi_offset %rbp, -16

movg %rsp, %rbp
Ltmp9:

.cfi_def_cfa_register %rbp

subq $16, %rsp

movl %edi, -8(%rbp)
cmpl $0, -8(%rbp)

jne LBB1_2

BB#1:

movl $0, -4(%rbp)

jmp LBB1_5

LBB1_2:

cmpl $1, -8(%rbp)

jne LBB1_4

BB#3:

movl $1, -4(%rbp)

jmp LBB1_5

LBB1_4:

movl -8(%rbp), Y%eax
subl $1, %eax

movl Y%eax, Y%edi
callg _Fibonacci

movl -8(%rbp), %edi
subl $2, %edi

movl %eax, -12(%rbp) ## 4-byte Spill
callg _Fibonacci

movl -12(%rbp), %edi ## 4-byte Reload
addl Y%eax, Yedi

movl %edi, -4(%rbp)
LBB1_5:

movl -4(%rbp), Yeax
addq $16, %rsp

popq %rbp

ret

.cfi_endproc

.section ___TEXT,__cstring,cstring_literals
L_.str: ## @.str
.asciz "%d"

L_.strl: # @.strl
.asciz "%d\n"

.subsections_via_symbols

x86/Mac OS

Conceptual view of a typical compiler

ISA = Instruction Set Architecture

The compiler

ISA/OS

Source targeted code
Program Front End +—> Middle w=pi Back End +—>
Text (x86/unix, ...)

l ISA/OS

errors independent
. “byte code”
warnings

Virtual Machine (VM)
examples: JVM, Dalvik, .NET CLR

Operating System (OS)

Key to bridging The Gap : divide and conquet.
The gap is broken into small steps.
Each step broken into yet smaller steps ... 9

The shape of a typical “front end”

Source
Program
Text

report report report

errors errors errors

1 b P e SETETE Ly

y lexical AST [@nalysIS
tokens = Abstract
Syntax Tree

Lexical theory Parsing Theory Enforce
based on finite ~ based on “static sematics”
automaton push-down of language:
and regular automatonand type checking,

expressions

context-free
grammars

def/use rules,
and so on (SPL!)

AST +
other
Info

The AST output from the front-end should represent a legal program in the source language.

(“Legal” of course does not mean “bug-free™)

10

SPL = Semantics of Programming Languages, Part 1B

The middle

--High-level to Low-level
low-level » retargetable
— representation

AST + --Optimisations

other
info

Trade-off: with more optimisations the generated code
IS (normally) faster, but the compiler is slower

The back-end

« JVM bytecodes
« X86/LINuX
« X86/MacOS

Low-level
retargetable == Back-end ™% ° ng;\'j\;_eedBSD
representation e X INAOWS

« ARM/Android

« Requires intimate knowledge of instruction set and
detalils of target machine

« When generating assembler, need to understand
details of OS interface

 Target-dependent optimisations happen here!

Compilers must be compiled

Source
Program
| Text

The compiler

A program in
language B

—

A program in
language A

A program in
language C

Something to ponder:
A compiler Is just a program.
But how did it get compiled?
The OCaml compiler is written in

OCaml.

How was the compiler compiled?

The Shape of this Course

« Part | (Lectures 2 — 6) :Lexical analysis
and parsing

« Part Il (Lectures 7 — 16) : Development of
the SLANG (Simple LANGuage) compiler.
SLANG Is based on L3 from 1B
Semantics.

* A compiler for SLANG, written in Ocaml,
with link posted on the course web page.

Compiler Construction
Lent Term 2022
Lecture 2 : Lexical analysis

* Recall regular expressions

* Recall Finite Automata

* Recall NFA to DFA transformation

* What is the “lexing problem™?

 How DFAs are used to solve the lexing
problem?

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

What problem are we solving?

Translate a sequence of characters

ifm=0then 1elseifm=1then1lelsefib (m-1)+ fib(m-2)

Into a sequence of tokens

IF, IDENT “m”, EQUAL, INT O, THEN, INT 1, ELSE, IF,

IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 1,

RPAREN, ADD,
IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN

Implemented with some data type

type token =
| INT of int| IDENT of string | LPAREN | RPAREN
| ADD | SUB | EQUAL | IF | THEN | ELSE

Reqgular expressions e over alphabet X

e >¢le|ale+eleele” (aeX)
M(e)c X
M(¢)={}
M (e) =1}
M(a) ={a}
M(e, +e,)=M(e) U M(e,)
M(ee,) ={ww, |[w, e M (e), w, e M (e,)}
M (e”) ={&}
M (e"") =M (ee")

M) = JM(e") 3

n>0

Regular Expression (RE) Examples

M ((a+b) abb) =
{abb, aabb, baabb, aaabb, ababb,
baabb, bbabb, aaaabb,---}

M((E+®) EQ®) =
(E®®, ZE0Q®, REE®Q,
SEERQ®,EQZQR,QEE®Q,
PRERR,EEEER®R®, -} 4

Review of Finite Automata (FA)
M=(Q,%,0,q,,F)

Q :states > :alphabet
g, € Q:startstate F < Q :final states

VgeQ,ae, o6(q,a)eQ
for deterministic FA (DFA)

vgeQ,ae(Xuie}) 0(q,a) < Q
for nondeterministic FA (NFA)

NFA Example
An NFA accepting
M@ +b” +caa +cbb")

& a
start C Q—» d
I C
O——(J)
E

6

A bit of notation
q—>q For deterministic FA.
aw

g,—>q, If 6(q,,a)=09,andq, —>0Q,
L(M)={w|3dqgeF,q,—q}

q—q For nondeterministic FA.

g, —>0a; If g,€6(q,,¢) andq,—>q,

aw

g, —>d, Ifqg,eo(q,a) andg, —>Qq;
L(M) ={w|3q e F,q,—0q} /

Review of RE -> NFA

—_——— - - -

_N() —
A regular A nondeterministic
expression. FA accepting M(e) with

a single final state.

The construction is done by induction on
the structure of e.

Review of RE -> NFA

—_—_—————,e—,e—,ee—e—ee— e e ——

~N—_—————,—e— e =~

—_—_—————,e—,e—,ee—e—ee— e e ——

~N—_—————,—e— e =~

—_—_—————,e—,e—,ee—e—ee— e e ——

~N—_——————,—e— e =~

Review of RE -> NFA

Review of RE -> NFA

N(ee,) =

S

—_—————e e

—————————————————————————————————————

N e e e e e e e e e

—_—_—————,—— e e —

—_——— - — —

—_—_————

Review of RE -> NFA

N ((a +b)" abb)

Review of NFA -> DFA
M=(Q,%,0,q,,F)
M =(Q.,%,5,q,,F)
Q ={S|ScQ}
g—closure(S)={g'eQ|3dg e S,q—g>q'}
o (S,a) =¢—closure({q'e 5(q,a)|q € S})

0, = ¢ —closure{q,}
F ={ScQ|SnF = ¢} 14

How do we compute & —closure(S)?

g —closure(S):
push all elements of S onto a stack

result .= S
while stack not empty Look familiar?

It's just a version of
pop g off the stack transitive closure!
for each u € &(q,)

If u ¢ result
then result .={u} U result
push u on stack
15

return result

DFA(N ((a+Db) abb))
b

12,45
6,7 5
start : d
J b
0172, 2 1234, 1245 | b 1,2,4,5,
4,7 6,7,8 = 6,7,9 6,710
a
a

16

Traditional Regular Language Problem

Giveneand w,iswe L(e)?

Solution : construct NFA from e, then DFA, then run
the DFA on w.

But is this a solution to the “lexing problem?

NO!

17

Something closer to the “lexing problem?”
Given e]_1 ez °.°1ek and W
find (I, W,),(I,,W,), "'(In,Wn) so that

W=W,W,..W, and Vi3Jjw elL(e)
J
and what else?

The expressions are ordered by priority. Why?
Is “if” a variable or a keyword”? Need priority to

resolve ambiguity (so “if’ matched keyword RE
before identifier RE.
|

We need to do a longest match. Why? 18

Is “ifif” a variable or two “if" keywords?

Define Tokens with Regular Expressions (Finite
Automata)

Keyword: if

This FA is really shorthand for:

19

Define Tokens with Regular Expressions (Finite

Automata)

Regular Expression Finite Automata Token
iI:eyword: KEY(IF)
Keyword:

then KEY(then)

[a-zA-Z0-9]
Identifier:
() [a-zA-Z] 1D(s)

[a-zA-Z][a-zA-Z0-9]*

20

Define Tokens with Regular Expressions (Finite
Automata)

Regular Expression Finite Automata Token

[0-9]

Fc;'.g}?:.gl* @ [0-9] @O NUM(n)

real:
([0-9]+ .’ [0-9]")
| ([0-91* . [0-9]+)

NUM(n)

o9 21

No Tokens for “White-Space”

White-space with one line
comments starting with %

[A-za-z0-9’

]

22

Constructing a Lexer

INPUT: €,,6,---,6

an ordered list of regular expressions
Highest priority first, lowest last

‘ NFAfore=e +e,+---+¢
‘ DFA with each final state

assoclated with the e, of

highest priority.
23

Constructing a Lexer

(1) Keyword : then

(2) Ident : [a-z][a-z]"

(2) White-space: * °

State 5 could accept
either an ID or

the keyword “then”.
The priority rules
eliminates this
ambiguity and
associates state 5
with the keyword.

24

What about longest match?

—— | = current position, $=EOF
Start in initial state,
Repeat: current state
(1) read input until dead state is Input ; _
reached. Emit token associated ithen thenx$ 1 e last accepting stat
with last accepting state. tlhen thenx$ 2 2
(2) reset state to start state thlen thenx$ 3 3
the|n thenx$ 4 4
then|thenx$ 5 5
then |thenx$ 0 5 EMIT KEY(THEN)
then| thenx$ 1 O RESET
then |thenx$ 7 7
then tthenx$ 0 7 EMIT WHITE(®)
then |thenx$ 1 O RESET
then tlhenx$ 2 2
then thjenx$ 3 3
then thelnx$ 4 4
thenthen|x$ 5 5
then thenx|$ 6 6
then thenx$| 0 6 EMIT ID(thenx)

Compiler Construction
Lent Term 2022
Lecture 3: Context-Free Grammars

» Context-Free Grammars (CFGS)

 Each CFG generates a Context-Free
Language (CFL)

* Push-down automata (PDAS)

* PDAs recognize CFLs

* Ambiguity is the central problem

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge 1,

Programming Language Syntax

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-listop: ;
static_assert-declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersp,
type-specifier declaration-specifiersp,
type-qualifier declaration-specifiersgp,
function-specifier declaration-specifiersgp
alignment-specifier declaration-specifiers,p

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

A small fragment of the C standard. How can we turn this
specification into a parser that reads a text file and produces a
syntax tree?

Context-Free Grammars (CFGs)
G=(N,T,P,S)
N :set of nonterminals
T :set of terminals

Pc Nx(NUT) :asetof productions
S € N :start symbol

Each (A,) € PiIs written as A —> «

Example CFG
Gl — (N1’T1’ P11 E)
N, ={E} T, ={+.*,(,),1d}
P :
E—->E+E|E*E]|(E)|Id
This I1s shorthand for
P ={(E,E+E),(E,E*E),(E,(E)), (E,1d)}
4

Derivations
Notation conventions:

a, By, (NUT)
AB,C,---e N
Given : A and a production A — y
a derivation step Is written as

aAS = ayf
—>" means one or more derivation steps and

—" means zero or more derivation steps 2

Example derivations

E=E*E
= (E)*E
= (E+E)*E
= (Xx+E)*E
= (X+Vy)*E
= (x+Yy)*(E)
= (X+Yy)*(E+E)
= (X+y)*(z+E)
= (X+y)*(z+X)

E=E*E
= E*(E)
= E*(E+E)
= E*(E +X)
= E*(z+X)
= (E)*(z + X)
= (E+E)*(z+Xx)
= (E+Yy)*(z+X)
= (X+Yy)*(z+X)

A leftmost derivation

A rightmost derivation

Derivation Trees

The derivation tree for (X +y) * (z + X).
All derivations of this expression will
produce the same derivation tree.

Concrete vs. Abstract Syntax Trees

parse tree = An AST contains only the
derivation tree = information needed to
concrete syntax tree generate an intermediate

representation

L(G) = The Language Generated by Grammar G

L(G):{WET*\S:>+W}

For example, If G has productions
S—aSb|e
then

L(G)=1a"b"|n>0}
So CFGs can capture more than
regular languages!

Pushdown Automata (PDAs)

Regular languages are accepted by Finite Automata.
Context-free languages are accepted by Pushdown Automata,

a finite automata augmented with a stack.

lllustration from https://en.wikipedea.org/wiki/Pushdown_automaton

finite top
control | 0 p
state
'Z
a ‘
Input tape

stack
A diagram of a pushdown automaton = 10

Pushdown Automata (PDAs)
M=(Q,2,1,5,q,,2)

Q :states X :alphabet I :stack symbols
g, € Q:start state

Z € I" . Initial stack symbol
0.VgeQ,ac(uf{e}), X €T,
5(0,a,X)cQxI"
11

Pushdown Automata (PDAs)

(9', B) € 6(q,a, X) means that when the
machine Is In state q reading a with X on
top of thestack, it can move to state g' and
replace X with S. That s, It "pops" X and
"pushes” g (leftmost symbol is top of stack).

12

Pushdown Automata (PDAs)

ForqeQ,weX ,ael’

(9, w,)
Is called an instantaneous
description (ID). It denotes the PDA
In state g looking at the first symbol
of w, with o on the stack (top at left).

13

Language accepted by a PDA
For (0, B) € 6(q,a, X), a e X define
the relation — on IDs as
(9,aw, Xa) = (q', W, fa)
and for (g, #) € 0(q, &, X) as
(0, w, Xa) = (9", w, fa)
L(M) =

{weX"|39€Q, (d,W,Z) >" (0, &,)}
14

Exercise : work out the details of this PDA

(q, aaabbb, Z)
— (q,,aabbb, A)

> (q.,abbb, AA) M) =

L, (q..bbb, AAA) 127D"[n=0]
5 (q,,bb, AA)

— (9,.b, A)

— (9,,&,¢) 15

PDAs and CFGs Facts

(we will not prove them)

1) For every CFG G thereisa PDA M
such that L(G) = L(M).

2) For every PDA M thereis a CFG G
such that L(G) = L(M).

Parsing problem solved? Given a CFG G
just construct the PDA M ? Not so fast!
For programming languages we want

M to be deterministic! 16

Origins of nondeterminism?
Ambiguity!

Both derivation trees correspond “x +y * Z".
But (x+y) * z Is not the same as X + (y * 2).

This type of ambiguity will cause problems
when we try to go from program texts to
derivation trees! Semantic ambiguity!

56

Gz — (N2’T1’ PZ’ E)
N, ={ET.F} T, ={+*() id}
P, :
E->E+T|T (expressio ns)
To>T*F|F (terms)
F—(E)|Id (factors)

Can you prove that L(G,)=L(G,)? 18

The modified grammar eliminates

ambiguity

This I1s now
the unique
derivation
tree for
X+y*z

19

Fun Fun Facts

(1) Some context-free languages are
Inherently ambiguous --- every context-free
grammar for them will be ambiguous. For example:

L={a""c"d" |[m>1,n>1{
u{a”bmcmd”\m21,n21}

(2) Checking for ambiguity in an arbitrary context-free
grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking
L(G1) = L(G2) is not decidable! Ouch!

See Hopcroft and Uliman, “Introduction to Automata 20
Theory, Languages, and Computation”

Two approaches to building stack-
based parsing machines: top-down and
bottom-up

e Top Down : attempts a left-most derivation. We will
look at two techniques:

e Recursive decent (hand coded)
e Predictive parsing (table driven)

e Bottom-up : attempts aright-most derivation
backwards. We will look at two techniques:

e SLR(1) : Simple LR(1)
e LR(1)

Bottom-up techniques are strictly more powerful.
That Is, they can parse more grammars. 21

Recursive Descent Parsing

int tok = getToken();

(G5)

void eat (int t) {if (tok

S:=ifEthenSelseS error():}

| begin S L

| print E void SO {switch(tok) {

case IF: eat(IF);

default: error(Q;

L ::= end
|isL H
void L) {switch(tok) {
case END: eat(END);
Parse corresponds to case SEMI: eat(SEMI)
a left-most derivation default: error();

constructed In
a “top-down” manner

1}

void advance() {tok = getToken();}

== t) advance(); else

E(); eat(THEN);

S(); eat(ELSE); S(); break;
E ::= NUM = NUM case BEGIN: eat(BEGI
case PRINT: eat(PRINT); E(); break;

N); SQ; L(Q; break;

break;
; SO; LQO; break;

void E(Q) {eat(NUM) ; eat(EQ); eat(NuM); }

Example From Andrew Appel, “Modern Compiler
Implementation in Java” page 46

22

But "lett recursion” E - E+ 1 In G, will

lead to an infinite loop! A
Eliminate left recursion! AL @
A
A->Acl |[Aa2|...|Ack | AB
B1[B2]...|PBn
A
{ A
I
A->BIA|B2A|...|BNA OLA\A,
©N
A->o01A|a2A]...|akA|e

For eliminating left-recursion in general, see Aho and Ullman®*

Eliminate left recursion

G, =(N,, T, P, E)

N, ={E,E'\T,T',F} T, ={+*,(,),1d}
P, :

E->TE

E'—>+T E'|¢

To>FT

T'> *FT'|¢e

F—(E)|Id
Can you prove that L(G,) = L(G,)?

24

Recursive descent pseudocode

getE() = getT(); getE' ()
getE'() = if token() ="+"then eat("+"); getT (); getE' ()
getT() = getF (); getT' ()
getT' () =If token() ="*"then eat(**"); getF (); getT'()
getF() =1f token()=1d

then eat(id)

else eat("("); getE(); eat(")")

25

Where’s the stack machine?
It’s implicit in the call stack!

Parsing (x+y)*(z+x) using a call to getE()

eat("(") getE()

getF() getF() getF()

getT() getT() getT() getT()
getE() getE() getE() getE() getE()

call stack over time ...
260

Compiler Construction
Lent Term 2022
Lecture 4: Table-driven top-down (LL) parsing

. LL(k) vs LR(k) parsing
Automating left-most derivations?

FIRST, FOLLOW, and the LL(1)
parsing table.

. LL(1) table-based parsing
. Computing FIRST and FOLLOW

AR WM

Timothy G. Griffin

tgg22@cam.ac.uk
Computer Laboratory 1
University of Cambridge |

LL(k) and LR(K)

* LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(K) parser
must predict the next production. We have been
looking at LL(1).

* LR(K) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond). LR parsers perform a rightmost
derivation backwards!

2

LL(k) vs. LR(k) reductions (SLR(1) as well)

AsB="w Be(TUN) weT

LL(K)

LR(K)

W

T k token look ahead

=)

Stack

g

(left-most
symbol at

top)

W B
——

k token look

ahead
(right-most B A
symbol at rl:
top)

Stack

For LL(1), augment Grammar with end-of-input
G,=(N,,T,,R,S)

N, ={E,E,T,T.F,S} T;={+%(),1d,$}
- % t
P, :
(—) ED ($is end of input marker)
ESTE
E' >+T E'|¢
T>FT
T'—> *FT'|s
F— (E)|id 4

Leftmost derivations

weT’ a,fe(NUT)
Given : WA/ and a production A — y
a leftmost derivation step Is written as

WAﬂ :>Im W%B

A left-most derivation of (x+y)

S=,, E$
=, TE'$
=, FT'E'$
=,. (E)T'E'$
=, (TENT'E'$
= (FT'E)T'E'$
=, (XT'E')T'E'$
=, (XE)T'E'$
=, (X+TE)T'E'S
=>n (X+FT'E)T'E'$
=, (X+YyT'E)T'E'$
=, (X+yE)T'E'$
=, (X+y)T'E'$
—=>m (X+Y)E'S
> (X+Y)$

|dea : Can we turn left - most
derivations into a stack
machine (a PDA)? Perhaps this

will work: If S = wa$ then
w has been read from the
Input and « Is on on the stack.

6

This looks promising. But can we make

it work?

Input stack via production
(x+y)$ S S—>ES$
(X+y)$ E$ E—>TE
(X+Yy)$ TE'S T o> FT'
(X+Y)$ FT'E'S F—>(E)
(X+y)$ (E)T'E'$S match

X+ Yy)$ EYT'E'$S E—>TE'
X+Y)$ TEYT'E'S T-o>FT'

x+y)$ FT'ENT'E'$S F —id
X+ Y)$ IdT'E')T'E'S match
+Y)$ T'E')T'E'S T'>e¢ 7

But how do we automate selection of
the production to use at each step?

Input stack via production
+y)$ EYVT'E'S E'—>+TE'
+y)$ +TE)T'E'S match

y)$ TE)T'E'S T ->FT
y)$ FT'E)T'E'S F—id
y)$ idT'E)T'E'$ match
)$ T'E)T'E'S T'>¢
)$ EYVT'E'S E'>¢
)$ JT'E'$ match
$ T'E'S T'>¢
$ E'$ E'—>e¢
$ $ accept! 3

FIRST (we will see how to compute later)

FIRST(2)={aeT |3 (NUT), a="aj|

S > E$
E—->TFE

E' 54T E'|e
T—>FT'
T'> *FT'|e
- —(E)|1d

RST(S) ={(,ic

RST(E) ={(,1c

}
}

CIRST(E') ={+, &}

FIRST(T) ={(,id}
FIRST(T') ={*,&}
FIRST(T) ={(,id}

FOLLOW (we will see how to compute later)

FOLLOW(A)=1{a|3a 8,5 =" ahaf|

S—>E$

ESTE FOLLOW(E) ={),$}

E' >+T E'|e FOLLOW(E') ={),$}
TSFT FOLLOW(T) ={+,),$}
T'> *FT'|le FOLLOW(T')={+,),$}
F— (E)|id FOLLOW(F) ={+*),$}

")'e FOLLOW(E)?

S=E$=TE'$S=FT'E'$S= (E)T'E'$

10

The LL(1) Parsing table M
forall Ae N, aeT, M[A a] = {}
foreach Ae N
for each production A - «
If acFIRST(a)anda = ¢
then M[A, a]= M[A a]JU{A—> o}
else if £ e FIRST ()
then for eachb € FOLLOW(A)
M[A b]=M[A b]JU{A— o}
11

Table M for grammar G,

E et E>TE'
= E'—> +TE E'>¢ E'>¢
T T-oFT T —>FT
T T'se T'>*FT T'5e T'>e
F Foid F — (E)

The LL(1) Parsing Algorithm

a: = LexNextToken()
X: =TopOfStack()
while (X = $)
If X =a (*amatch¥*)
then pop; a : = LexNextToken()
else If M[X,a] ={X — o/
then pop; push « (leftmost symbol on top)
X = TopOfStack() 13

Now use M to parse (xty) ...

Input stack action

(X+Yy)$ S MI[S, (]={S —> E$}
(X+Yy)$ E$ MIE,(]={E > TE'"}
(X+Yy)$ TE'$ MI[T,(]={T > FT'}
(X+Y)$ FT'E'S M[F,(]={F — (E)}
(X+Y)$ (E)T'E'$ match

X+Y)$ E)YT'E'$S MI[E,id]={E > TE"}
X+Y)$ TE')T'E'$ MI[T,id]={T > FT'}
X+Y)$ FT'E)T'E'S MI[F,id]={F —id}
X+Y)$ IdT'E')T'E'S match

+y)$ T'E)T'E'$ M[T'+]={T"'> &}

14

.. kachunk, kachunk, kachunk ...

Input stack action
+Vy)$ EVT'E'S M[E'+]={E'> +TE"}
+y)$ +TE)T'E'S match
y)$ TEYT'E'$S M[T,id]={T > FT"}
y)$ FT'ENT'E'S MI[F,id]={F —id}
y)$ idT'E")T'E'$ match
)$ T'EYT'E'S M[T')]={T"> &}
)$ ENT'E'S M[E',)]={E'> &}
)$ JT'E'$S match
$ T'E'$ M[T"$]={T"'> &}
$ E'$S M[E'$]={E'> &}
$ $ accept 15

NULLABLE
NULLABLE(a) = true

if andonly if o =" &.

NULLABLE(¢g) =true
NULLABLE(c) = false (ceT)

NULLABLE(A) = (AeN)
v NULLABLE(a)
NULLABLE(XB)= (X eT UN)

NULLABLE(X) A NULLABLE(fS) 16

Computing FIRST

forallaeT, FIRST(a):={a}
forall Ae N, FIRST(A) ={}
while FIRST changes
If A— ¢is a production
then FIRST (A) .= FIRST(A) u{s}
If A— X X,---X, Isaproduction
then j=1,; done :=false
while not done and j<k
FIRST(A) =FIRST(A) U(FIRST(X;)-{¢})
if NULLABLE(X;)
then j=j+1
else done :=true
If j=k+1then FIRST(A):=FIRST(A) u{s}

17

Computing FOLLOW

forall Ae N, FOLLOW(A) ={}
FOLLOW(S) ={$} (Sis thestart symbol)
while FOLLOW changes
If A— aBfisaproduction (Be N, S #¢)
then FOLLOW(B) .= FOLLOW(B) U (FIRST(S) -{¢})
If A— aBfIsaproduction and ¢ € FIRST(f)
then FOLLOW(B) .= FOLLOW(B) U FOLLOW(A)
If A— aBisaproduction (Be N)

then FOLLOW(B) := FOLLOW(B) U FOLLOW(A)
18

Many grammars cannot be parsed LL(1)

S —>d | XYS FIRST FOLLOW

y S {acd}y {}
—Cle Y {c} {a,c,d}

X >Y|a X {a,c} {a,c,d}

M[S,d]={S —>d,S > XYS}
This Is ambiguity!

Grammar is not LL(1)!
19

Bottom-up (LR) parsing to the rescue!
G, = (N21T1’ P, E)

N, ={E, T,F} T, ={+*,(,),1d}
E->E+T|T T-o>T*F|F

With LR parsing we no

longer have to eliminate

left recursion from the
20 grammar!

Compiler Construction
Lent Term 2022
Lecture 5 : Theoretical foundations of
Bottom-up (LR) parsing

1. This lecture develops a general theory for

2.

non-deterministic bottom-up parsing

Next lecture will present two techniques for
Imposing determinism --- SLR(1) parsing and
LR(1) parsing.

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge »

This grammar will be our running example
G, = (N2’T1’ P, E’)
N, ={E',E, T,F} T, ={+*,(,),1d}
P,:E'—>E
E->E+T|T (expressio ns)
To>T*F|F (terms)
F— (E)|Id (factors)

Note: E’ was added for convenience to ensure
that there Is a single starting production. 2

Rightmost derivations

weT a,Be(NUT)
Given : cAw and a production A— S
a rightmost derivation step Is written as

AW = afW

A rightmost derivation of (x+y)

E'= E
=
=, F
=m (E)
= (E+T)
= (E+F)
=>m (E+Y)
=>m (T +Y)
=>m (F+Y)

= (X+Y)

Top-down (LL) parsing Is
based on
left-most derivations.

Bottom-up (LR) parsing Is
based on
right-most derivations.

But Bottom-up parsers perform the

derivation in reverse!

=m E (X+Y) < Start parse
= 1 A (F+y) < g

= m P FLIPL (T+y) <

= m (E) (E+y) <

=>m (E+T) (E+F) <

=>m (E+F) (E+T) <

=m (E+Y) (E) <

=m (T+Y) F <

=>m (F+Y) T <

= (X+Y) E—E'

Finish

5

Can we transform a backwards
derivation into
an execution of a stack machine?

(X+VY) <
(F+y)<«<
(T+y)<=
(E+Yy) <
(E+F) <
(E+T) <

(E) =

F <

T <«
E

View the reversed
derivation as a
stack machine (use
$ as stack bottom

and end - of - input).

i 2
—FE' this work”

stack Input
$ (X+V)$
$(F +y)$
$(T +y)$
$(E +VY)$
$(E+F)$
$(E+T)$
$(E) $
$F $
$T $
$E $
$E' $

Let’s try to formalize such a parser

An LR parser configuration has the form

a, x
(¢ Is the stack, x the remaining input)

The configuration is valid when there exists
a right-most derivation of the form

S =, aX

Let’s try to formalize our (non-
deterministic) parser

Suppose
aAX = affBzX
Our "backwards" parser MIGHT move
from one configurat ion to another like so :
$afBz, x$ —=E 5 aA, x
This action Is called a reduction
using production A — Bz

Are reduction actions sufficient?

Suppose we have the derivation
aPAX = affBzXx = affyzX
using A— fBz and then B — ».
Simulating this in reverse, our parser gets stuck :

afy, zx
reduce)$0[,BB, ZX$
75977

We want Bz on top of the stack! 9

We need an action that shifts a terminal
onto the stack!

aAX = affBzX = = affyZX

Soffy , Ix$ How do we

reduce >$0(,BB, 7x$ | know when to
stop shifting?

shift(s))$OtﬂBZ, X$ Heret ;Ne dgrl;’lt
want to gobble

reduce)$0€A, X$ up x!

10

Sanity check.
Let's make sure that this can work when B does
not appear In the right - hand side of A's production,
aBXAz = = aBXyz = = ayxyz
using production A — vy, then B — 7.
Our parser's possible actions :

ay, xyz All good! But
again, how do

>aB, Xyz |we know when to

reduce and when
>$aBXy, z$ to stop shifting?

reduce)$0€BXA, Z$ 11

reduce

shift(s)

Shift and reduce are sufficient.
The previous two slides demonstrate that if
we have a derivation
S= W
Then we can always "replay It" in reverse using
shift/reduce actions

$,w$—> $S,$
This tells us that shift and reduce are sufficient.
However, when we are parsing a w we won't
nave access to a derivation to replay! So our
parser will be non - deterministic and GUESS what
the future holds!

12

Replay parsing of (x+y) using shift/reduce actions.
X=top-of-stack,

a = next input token

stack Input action[X, a]

$ (X+Yy)$ shift

$(X+y)$ shift

$(x +y)$ reduce F — id
$(F +Y)$ reduceT —» F
$(T +y)$ reduceE > T
$(E +VY)$ shift

$(E y)$ shift 13

... informal shift/reduce parse continued

stack Input action[X, a]

$(E+y)$ reduce F —id

$(E+F)$ reduceT - F

$(E+T)$ reduceE > E+T

(E) shift

$(E) $ reduce F - (E)

$F $ reduceT > F

$T $ reduceF - E

$E $ reduceS—E

$E' $ accept! 14

How do we decide when to shift and
when to reduce?

Suppose A — By Is a production. When
our parser is In the configurat ion
$apfy, x$
we MIGHT want to reduce with A — Sy.
However, If we have
op, x
we MIGHT want to continue parsing with the hope
of eventually getting £y on top of the stack so
that we can then reduce to A. 15

LR(0) items record how much of a
production’s right-hand side we have
already parsed

For every grammar production
A—pr (Bye(NUT))
produce the LR(0) item
A— fey
Interpretation of A— fey :we havealready
parsed some input x derivable from B (8 = x)and

we MIGHT next see some input derivable from .
16

LR(0) items for grammar G,

E' > oE E' > Ee
EF >eE+T T—oeT*T F—e(E)

EF>Ee+T T—oTe*F F—(eE)
E>E+eT T—>T*eF F—(Ee)
FE>E+Te T—o>T*Fe F—(E)e
E—eT T > oF F — eid
Eo>Te T—>Fe F—>ide

17

Valid LR(0) items

Definition . Item A — S ey Is valid for ¢f
If there exists a derivation

S :>tm ¢AX :>rm ¢ﬂ7/x

If item A— [eyis valid for ¢f
then our parser could use the item
as a guide when in configuration

$98, 9.

13

Suppose A— fByandB—- o, |, |-+ | .
Consider the ways in which items for these
productions might be used as parsing guides.

Derivation Parse Possible guides

S $S,$
= PAX " oA, x
=m MPBIX | « S4By, X$ | A—> By e
= . OPBIX | "« $48B, x$| A [Bey
= PP IX | «—$gPa;,, 2x$| B> q; e
= gpuzX | "« pB,uzx | A— BeBy, B e,

Using items as parsing guides

Suppose our parser is in the config
$¢3, cz$
and A— fSecyis valid for ¢p.
Then we MIGHT shift ¢ onto the stack :

$¢ﬂ1 CZ$ shift >$¢,BC, Z$

Suppose our parser is in the config

$o0, 29
and A — feis valid for ¢g.

Then we MIGHT perform a reduction :
$o05, 2$—C S $oA, 25 20

Using items as parsing guides

Suppose our parser is in the config

$90, 29
which we will assume is valid, s0 S = ¢f%z.
Suppose A— S ey is valid for ¢gg.
Then y MIGHT capture the future of our parse (the
past of that derivation). Thatis, it MIGHT be that

S = PAX = BYX =, PPYX = @z

If so, our parser MIGHT proceed like so:

$a0, 2$ =508, yx$ = $d8y, x$—L1C 5 oA, x.

That s, our parser could guess that » will derive
a prefix of the remaining input z.

21

The KEY idea in LR parsing

Augment our shift/reduce parser Iin such

a way t
derive t

nat in every configuration It can

ne set of all items valid for the

contents of the current stack.

Then at

each step the parser can

(non - deterministically) select an item
from this set to use as a guide.

22

Defined a NFA with LR(O) items as
states!

A—> f[eCy | ——— | A—> [Coy

A fBeBy| —2— [A— Bey

A— feBy | ——— | B> g,

Theinitial state g, Is this item constructed
from the unique starting production
E'—>eE (for example)
and every item (state) Is a final state.
Let 5. be the transition function of this NFA. 23

Main LR parsing theorem

Theorem.A— Sey e.(q,,90) If and only If
A— [eyis valid for ¢p.
Amazing fact : the

language of the stack <§ 00

is regular! ihﬁ

See proof (not examinable) in Introduction to Automata Theory, Languages, and
Computation. Hopcroft and Ullman. 7

A few NFA transitions for grammar G,

E—>Ee+T

L E S E+eT

;e

F— o(E)

—] > eF

K

F— (eE)

| &

F — eld

25

A non-deterministic LR parsing

algorithm
¢ .= first symbol of input w$
while(true)
« = the stack

if A—> fecyed.(d,,a)
then shift ¢ onto the stack
C = next input token;

ifA—),BoeéG(qo,a) —

then reduce : pop S off the stack

and then push Aonto the stack;
If S— feco;(q,,)
then accept and exit if no more in[ﬁ;
If none of the above then ERROR

This is non-deterministic

since multiple conditions

can be true and multiple

items can match any
condition.

20

How can we make the algorithm
deterministic?

N =

3. For (2), peek into the input buffer.
4,

The easy part: convert the NFA to a DFA

When there are shift/reduce or
reduce/reduce conflicts, find some way of
making a deterministic choice.

For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be
non-ambiguous grammars for which our deterministic
parser will falil.

Next lecture : we will look at two popular approaches,
SLR(1) and LR(1). 21

Compiler Construction
Lent Term 2022
Lecture 6: Deterministic SLR(1) and LR(1)

parsing

1. SLR(1) parsing
2. LR(1) parsing.

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

113

Our goal: impose deterministic choices on
this non-deterministic LR parsing algorithm

¢ .= first symbol of input w$
while(true)
a = the stack
if A—> fecyed.(d,,a)
then shift ¢ onto the stack
C = next input token;

ifA—),BoeéG(qo,a) —

then reduce : pop S off the stack

and then push Aonto the stack;
If S— feco;(q,,)
then accept and exit if no more infﬁ;
If none of the above then ERROR

This is non-deterministic

since multiple conditions

can be true and multiple

items can match any
condition.

The easy part: NFA - DFA

In general, add new production S'— S, where
Sis the original start symbol. For the simple term
grammar G,, add production

E'—>E E'— ek
E—eE+T

which produces the NFA start state

E'— oE =

— ®

% _ T —>eT*F
The DFA start state Is then T s eF

¢ —closure({E'— oE}) = _, o(E)

F— eid

The DFA transition function o

For this DFA
o(l, X)=¢g-closure({A > aXef |A—>aeXpfel})
Many books calls this GOTO(l, X).
and repeat the construction of DFA
specialise d to LR(0) items (using
function called CLOSURE). | see no reason to do
this since we already know how to build a DFA
from an NFA (see Lexing lecture).

A few DFA transitions for grammar G,

E>Te T |F— (eE) d
To>Te*F E—>eE+T

E—>el F T E
—
T > eT*F maR

T — eF
F— (Ee) E F— o(E) (
P —
E>Ee+T F — eid

Full DFA for the stack language of G,

IU ._.._L-... Ii —+-.._ Iﬁ - _.._'!{ Iﬂ

E'—-E | E'-E E—E+-T E—E+T-
E—--E+T E—=E. 4T T3 T F F T—T-»F g
R &s T.F IR . £
T—}‘T*F accﬂpt + F— {E} i.l.'l —
T'—.F ~—= F—.d — |
F—.(E) —
Foid I 5 I, e %
T 3T % F ?:Eﬂﬂ} _& T T+ F- En
AS usual, the id - I <! id 7 3
ERROR state o it g

id
(: + >
and h - Iy — Is I o
. Fo(B) e BB 4T Fo(B) | w
transitions to [E>E+T) [Fo(B:) g
(|oic Q.
" T—T#*F 3
It are not Chiii t g
. . F_.._}{E) I —
F—.id -

Included In] (:
. F -
L

the diagram. L r j . F) 6

TR

(enlarged to improve readability)

E'—-E
E—-E+T
E—-T
T T*F
T .F
P B]

| F—.id

Iy
E=E+4+T:

T—=T-xF

L id

FET)
T—=T= F-

E—=FE-+T

F—({ FE)

L I A =

(enlarged to improve readability)

L i | F—.id ?] |2 71 ="
| e
F—id = !
fid ‘_!_ (|
N - 14 I Is I
F—{ -E)™ E—*E-+T”}‘*‘“‘" Fo(E)
E—-E+T F=(E-) '
(F—.T
C T—-+T#F|
T—-F ! (
— F—:id |- g
FF'
F - Iﬁl il F o

How can we avoid shift/reduce conflicts?

I2
Consider I, | _, 1,

T > Te*F

This inspires one approach called SLR(1)

(Simple LR(1)):

1) Shift using If *Is the next token.

2) Reduce with E — T only If next token is In
FOLLOW(E) ={(, +, $}.

Now we can do a DETERMINISTIC SLR(1) parse of
(xty)
1) When the stack contains «, the

parser is in state 6(l,,). For example,
o(l,, E4+T) =1,
o(l, (T™) =1,
o(l,, E*T)=ERROR
2) When the current state Is |, the next token
IS c,and A — fecy e, then shift t onto stack
3) When the current state is |, the next token
ISc, A— fecl,andce FOLLOW(A),
then reduce with production A — S 10

Replay parsing of (x+y) using SLR(1) actions
(FW(X) abbreviates FOLLOW(X))

stack, Input |State action reason
$, (x+y)$ | I,shift F—e(E)el,
$(, x+y)$ I,shift F—eid e,

$(x, +y)$ | I, reduce F —»id "+"'e FW(F)
$(F, +y)$| I,reduceT - F "+'e FW(T)
$(T, +y)$| I, reduceE T "+"e FW(E)
$(E, +Vy)$ | I, shift E—>Ee+Tel,
$(E+, y)$ | I, shift F—>eid I,

11

stack, input

State action reason

$(E+y,)$
$(E+F,)$
$(E+T,)$
$(E,)%
$(E), $
$F, $
$T, $
$E, $
$E’, $

|. reduce F —1d ")'e FW(F)
|, reduceT —> F ")'e FW(T)
|, reduceE > E+T ")"e FW(E)

|, shift E— (Ee) el
|, reduce F »> (E) "$"e FW(F)
|, reduceT —> F "$"e FW(T)
|, reduce F - E "$"e FW(F)
|, reduce E'—> E "$"e FW(E")

accept! 12

Better idea: Replace the stack contents with state

numbers!

(1d
(F
(T
(E
(E +

0
04
045
043
042
048
04386

(E+1d
(E+F
(E+T
(E
(E)

F

T

E

04865
04863
04869
0438
04 11
03
02
01

LR parsing with DFA states on the stack

a = first symbol of input w$
while(true)
s .= state at top of stack
If ACTIONI[s,a]=shiftt
then push t on stack
a = next input token
else if ACTION([s,a]=reduce A - S
then pop | S | states off the stack
t .= state at top of stack
push GOTO[t, A] onto the stack
else if ACTION][s, a]=accept
then accept and exit 14
else ERROR

ACTION and GOTO for SLR(1)

If[A—>aeapf]el and5(l;,a) =1, then ACTION[I, a] = shift

Note: there
If [A > ae]lel.and A=S may still be
then for all a e FOLLOW(A), shift/reduce or
ACTION][I,a] =reduce A > « redU(?e/reduce
conflicts!

If [S'— Se] e I. then ACTION[i,$] = accept
If 5(1,,A) = 1, then GOTO[i, A] = |

(Now do you see why | prefer to use ¢ rather than GOTO()?)
15

ACTION and GOTO for SLR(1)

ACTION GOTO

STATE
id + = () $ E T F

0 S50 54 1 2 3
1 sb ACe

2 r2 &7 r2 r2

3 rd r4d rd4 r4

4 99 54 & 2 3
5 r6 rh 6 b

i 59 54 4 3
7 39 54 10
8 36 sl1

9 rl &7 rl rl

10 r3 rd r3 r3

11 rs rh 5 rd -

From Compilers by Aho, Lam, Sethi, Ullman

Example parse

STACK | SYMBOLS InpUT ACTlmi

0 id # id + id § | shift

05 id ¥id +1d § | reduce by F — id
03 F #id +1d $ | reduce by T — F
02 T +id + 1d $ | shift

027 T % id +1d $ | shift

0275 | T=*id +id§ | reduce by F = id
02710 | T'xF +id5 | reduce by T = T+ I
02 T +id§ | reduce by E =+ T

01 E +1id 5 | shift

016 E + id$ | shift

0165 | E+1d $ | reduce by F — id
0163 | B+ F $ | reduce by T — F
0169 | E4+T $ | reduce by E—+ E+T
01 E 3 | accept

From Compilers by Aho, Lam, Sethi, Ullman

H
\I

Beyond SLR(1)?
Gs — (N31T3’ P3’ S')
N, ={S",S,L,R}

T, ={%=1d}

P,:S'—>S$
S—>L=R|R
L —>*R|id
R—>L

18

LR(0) DFA for grammar G,

In state 4 there Is a
shift/reduce conflict between R
S—>lLe=RandR—Le L

8 :
7 : S-->1=R.

0:

17 : R-->.L
15:L-->.*R
12 :L-->.1
10 : S-->.L=R
6:S->R
0:S-->.5

SLR(1) cannot resolve this conflict.

[S—> Le=R]el,soo(l,,"=")=1I;
and so ACTION[4,"="]=shift 6

However,[R — Le] e,
and"="e€ FOLLOW(R) ={"=",%},
so ACTION[4,"="]=reduceR —> L

20

BeyondSLR(1)? LR(1)!

Problems : with SLR(1) there may be shift - reduce
or reduce - reduce conflicts when ACTION and GOTO
are not uniquely defined.

Either fix the grammar or use a more powerful technique.

LLR(1) parsing starts with items of the form
[A > aef,a]
where a is an explicit look - ahead token.

21

Define an NFA with LR(1) items as states

A—>aecf, a L» A—oaCe 3 a

A—>aeBf, a L» A—>oaBef a

Foreachb e FIRST(/a):

A—>aeBf, a _° B—ey,b

22

LR(1) DFA for grammar G,

1:8'- >S , S
S
2:
L->1., =
L-->i., $
0: : 13:
45 : L->*R, = 48 :R->L, = . ﬂ t >:11§ §
43 :L->.1, = 46 : L-->*R, = >
32:R->L$ | , |[45:L-—>'R = "
29 :L->*R, $ 43 :L-->i, = 12 8:
27 :L->4i, $ 32:R->L,S [& o p7o L-->i, $
23: S">.L=R, $ 30: L-'>*.R, $ 33 R">L-, g
21:S->R, $ 20:L-->*R, $ i ” :
0:5->.8,$ 27 :L->4, $ 32 Re>L $
= . | 30iL>R s Spf ! L;R ‘
4: 32:R->L,$ 7 237 .LL_?$ 1R,$$ L
R 33:R-->L.,$ 29:L->.*R, $: =
24 : S-->L.=R, $ 27 :L-->4, % L 9 -
25:8->L=R,§ | —»{ 33:R-5L. $
5: R
22 :S-->R., $
10 :
26-S—>L=R$

No ambiguity. Reduce R — L only
If next token is $. Otherwise shift if next token is =.

ACTION and GOTO for LR(1)

If[A—>aeap,alel;and 6(1;,a) =1, then ACTION(I, a] = shift

If [A > ae,b]el.and A =S, then
ACTIONII, b] =reduce A - «

If [S'— Se, $] € I. then ACTIONTi,$] = accept

If 5(1;,A) =1, then GOTO[i, A] = j

24

SLR(1) vs LR(1)

SLR(1):

If [A > ae]el and A=S

then for all a € FOLLOW(A),
ACTION]JI,a]=reduce A —» «

LR(1):
If [A > ae,b]el. and A=S', then
ACTION]JI, b]=reduce A > «

Note that the look - ahead symbol b is

used ONLY for reductions, not for shifts.

25

N =

SLR(1) vs LR(1)

LR(1) is more powerful than SLR(1)

The DFA associated with a LR(1) parser may
have a very large number of states

This inspired an optimisation (collapsing
states) resulting in a the class of LALR
papers normally implemented as YACC.
These parsers have fewer states but can
produce very strange error messages.

Ocaml’s Menhir is based on LR(1) and claims
to overcome many YACC problems.

We will not cover LALR parsing.

20

LECTURE 7
Slang front end and interpreter 0

Slang (= Simple LANGuage)
— A subset of L3 from Semantics ...
— ... with very ugly concrete syntax

— You are invited to experiment with improvements to this
concrete syntax.

Slang : concrete syntax, types
Abstract Syntax Trees (ASTS)
The Front End

Interpreter 0 : The high-level “definitional” interpreter
1. Slang/L3 values represented directly as OCaml values
2. Recursive interpreter implements a denotational semantics

3. The interpreter implicitly uses OCaml’s runtime stack and
heap

139

The Slang compiler

The compiler is available from the course web site.
It is written in Ocaml

Slang = Simple Language. Based on L3 from
Semantics of Programming Languages, Part 1B.

The best way to learn about compilers is to modify
one.

There are several suggested improvements listed
on the course web site. | hope that some of you will
implement these. If they work, I'll let you commit
your changes to the repository. Fame! Fortune!

140

Bridging the Gap?

Slang Low-level,
Program The Slang =P | stack-based
__Text compiler code for the
Jargon Virtual
Machine

Question : How do we leap from the mathematical
semantics of L3 to a low-level stack machine?

Answer : We will start with a high-level interpreter
based on semantics, and then derive the stack
machine by a sequence of semantics preserving
transformations!

Lectures 7 - 11 : the derivation

Note : this is not the traditional way of teaching compilers! Many
textbooks will start with a stack machine and bridge the gap
Informally. We will develop a deeper understanding!

Interpreter O

Explicit stack via CPS+DFS> Interpreter 1

Split stack into two, refactor> Interpreter 2

Linearise code > Interpreter 3

Low-level addressable stack> Jargon VM

142

Clunky Slang Syntax (informal)

uop :=-| ~
bop =+ |-[*[<|=]&& |||
t::=bool|int|unit|(t)[t*t|t+t|t->t]|tref

e:=(|n]|true|false| x| (e)]|?]|
e bope| uope|
If e then else e end |
ee|fun(x:t)->eend|
letx:t=eineend |
letf(x:t):t=eineend|
le|refe|e:=e|while e do e end |
begine; e; ... eend |
(e,e)|snde|fste|
infte|inrte|
case e of inl(x : t) -> e | inr(x:t) -> e end

(~ is boolean negation)

(? requests an integer
iInput from terminal)

(notice type annotation
on inl and inr constructs)

From slang/examples

let fib(m :int) : int =
fm=0
then 1
elseifm=1
then 1
elsefibo(m-1) +
fib (m -2)
end
end
N
fib(?)
end

let gcd(p:int*int) :int =
letm :int="fstp
Inlet n:int=sndp
In fm=n
then m
elseifm<n
then gcd(m, n - m)
else gcd(m-n, n)
end
end
end
end
In gcd(?, ?) end

The ? requests an integer input from the terminal

144

Slang Front End

Input file foo.slang

Parse (we use Ocaml versions of LEX and YACC,
covered in Lectures 3 --- 6)

Parsed AST (Past.expr)

@ Static analysis : check types, and context-
sensitive rules, resolve overloaded operators

Parsed AST (Past.expr)

@ Remove “syntactic sugar”, file location information,
and most type information

Intermediate AST (Ast.expr)

Parsed AST
(past.ml)

type var = string
type loc = Lexing.position

type type_expr =
| TEInt
| TEbool
| TEunit
| TEref of type_expr
| TEarrow of type_expr * type_expr
| TEproduct of type_expr * type_expr
| TEunion of type_expr * type_expr

type oper = ADD | MUL | SUB | LT |
AND | OR | EQ | EQB | EQ!

type unary_oper = NEG | NOT

Locations (loc) are used In

generating error messages.

type expr =

| Unit of loc
| What of loc
| Var of loc * var
| Integer of loc * int
| Boolean of loc * bool
| UnaryOp of loc * unary_oper * expr
| Op of loc * expr * oper * expr
| If of loc * expr * expr * expr
| Pair of loc * expr * expr
| Fst of loc * expr
| Snd of loc * expr
| Inl of loc * type_expr * expr
| Inr of loc * type_expr * expr
| Case of loc * expr * lambda * lambda
| While of loc * expr * expr
| Seq of loc * (expr list)
| Ref of loc * expr
| Deref of loc * expr
| Assign of loc * expr * expr
| Lambda of loc * lambda
| App of loc * expr * expr
| Let of loc * var * type_expr * expr * expr
| LetFun of loc * var * lambda

* type_expr * expr
| LetRecFun of loc * var * lambda

* type_expr * expr

static.mli, static.ml

val infer : (Past.var * Past.type expr) list
-> (Past.expr * Past.type _expr)

val check : Past.expr -> Past.expr (* infer on empty environment *)

« Check type correctness

« Rewrite expressions to resolve EQ to EQI (for integers)
or EQB (for bools).

* Only LetFun is returned by parser. Rewrite to
LetRecFun when function is actually recursive.

Lesson : while enforcing “context-sensitive rules” we can resolve
ambiguities that cannot be specified in context-free grammars.
147

Internal AST
(ast.ml)

type var = string

type oper = ADD | MUL | SUB | LT |
AND | OR | EQB | EQI

type unary_oper = NEG | NOT | READ

No locations, types.
No Let, EQ.

Is getting rid of types
a bad idea? Perhaps
a full answer would be
language-dependent...

type expr =

| Unit

| Var of var

| Integer of int

| Boolean of bool

| UnaryOp of unary_oper * expr
| Op of expr * oper * expr

| If of expr * expr * expr

| Pair of expr * expr

| Fst of expr

| Snd of expr

| Inl of expr

| Inr of expr

| Case of expr * lambda * lambda
| While of expr * expr

| Seq of (expr list)

| Ref of expr

| Deref of expr

| Assign of expr * expr

| Lambda of lambda

| App of expr * expr

| LetFun of var * lambda * expr
| LetRecFun of var * lambda * expr

and lambda = var * expr 148

past_to _ast.ml

val translate_expr : Past.expr -> Ast.expr

letx:t =eline2end

)

This is done to simplify some of our code.

(fun (x: t) -> e2 end) el

Is it a good idea? Perhaps not!
See 2021 paper 4 question 3.

149

Approaches to Mathematical Semantics

« Axiomatic: Meaning defined through logical
specifications of behaviour.
« Hoare Logic (Part II)
e Separation Logic
« Operational: Meaning defined in terms of transition
relations on states in an abstract machine.
« Semantics (Part 1B)
« Denotational: Meaning is defined in terms of
mathematical objects such as functions.
« Denotational Semantics (Part I1)

150

A denotational semantics for L3?

N = set of integers B = set of booleans A = set of addresses
I = set of identifiers Expr = set of L3 expressions

E = set of environments=1->V

V = set of value e
~ A
+ N
+ B
+{0}
+V XV
+(V + V)

S —setofstores=A->V

+(VX8)>VxS)

M = the meaning function

M: (Expr Xx E X 8) > (V X S)

Set of values V solves this
“domain equation” (here +
means disjoint union).

Solving such equations is
where some difficult maths
IS required ...

151

Interpreter 0 : An OCaml approximation

A = set of addresses
S =setofstores=A->V

V = set of value
~ A
+ N
+ B
+{0}
+V XV
+(V+V)
+(V X 8) > (V X8

E = setof environments=A 2>V

M = the meaning function

M: (Expr X E X §) 2 (V X §)

type address
type store = address -> value

and value =
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| FUN of ((value * store)
-> (value * store))

type env = Ast.var -> value
val interpret :

Ast.expr * env * store
-> (value * store)

152

Most of the code is obvious!

let rec interpret (e, env, store) =
match e with
| If(el, e2, e3) ->
let (v, store') = interpret(el, env, store) in
(match v with
| BOOL true -> interpret(e2, env, store')
| BOOL false -> interpret(e3, env, store")
| v -> complain "runtime error. Expecting a boolean!”)
| Pair(el, e2) ->
let (v1, storel) = interpret(el, env, store) in
let (v2, store2) = interpret(e2, env, storel) in (PAIR(V1, v2), store2)
| Fste ->
(match interpret(e, env, store) with
| (PAIR (v1,), store') -> (v1, store’)
| (v,) -> complain "runtime error. Expecting a pair!”)
|Snd e ->
(match interpret(e, env, store) with
| (PAIR (_, v2), store') -> (v2, store’)
| (v,) -> complain "runtime error. Expecting a pair!”)
| Inle ->let (v, store') = interpret(e, env, store) in (INL v, store')
| Inr e ->let (v, store’) = interpret(e, eny, store) in (INR v, store’)

153

Tricky bits : Slang functions mapped to OCaml functions!

let rec interpret (e, envy, store) =
match e with

| Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (X, v)), S)), store)
| App(el, e2) -> (* | chose to evaluate argument first! *)
let (v2, storel) = interpret(e2, env, store) in
let (v1, store2) = interpret(el, env, storel) in
(match v1 with
| FUN f -> f (v2, store2)
| v -> complain "runtime error. Expecting a function!”)
| LetFun(f, (x, body), e) ->
let new_env =
update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (X, v)), S))))
In interpret(e, new_env, store)
| LetRecFun(f, (x, body), e) ->
let rec new_env g = (* a recursive environment!!! *)
if g =fthen FUN (fun (v, s) -> interpret(body, update(new_env, (X, v)), S))
else env g
In interpret(e, new_eny, store)

update : env * (var * value) -> env o

Interpreter 0 is using OCaml’s runtime stack.
How can we move toward the Jargon VM?

letfunf (x) =x + 1 The run-time data structure iIs

A ARG the call stack containingan
inh(h(! activation record for each function

17 : -
end invocation.
f f
g g
h h h h h h h h

155
Execution >

Recall tail recursion : fold left vs

fold_right
From ocaml-4.01.0/stdlib/list.ml :

(* fold left: ((a->'b->'a)->'a->'blist->"'a

fold leftfa[bl; ...;bn]] =f(... (f(fabl)b2)...) bn
%)
let rec fold leftfal =
match | with
| (] ->a
| b :: rest -> fold_left f (f a b) rest

(* fold_right: ('a->'b->'b)->"alist->'b->"b

fold rightf[al;...;an]b=fal (fa2 (... (fanb) ...))
%)
let rec fold_right fl b =
match | with
| {1 > b
| a::;rest -> f a (fold_right f rest b)

This iIs tall
recursive

This is NOT
tail

recursive
156

Convert tail-recursion to iteration

(* gcd : int * int -> int *) (* gcd _iter :int * int -> int *)
let rec ged(m, n) = let gcd_iter (m, n) =
fm=n letrm =refm
thenm nletrn=refn
elseifm<n in let result =ref0
thenged(m, n-m) in let not_done = ref true
else gecd(m - n, n) Inlet =
while 'not_done
Here we have illustrated do
tail-recursion elimination tlrm=1!rn
as a source-to-source then (not_done := false;
transformation. However, the result := !rm)
OCaml compiler will do something else it Irm < Irn
similar to a lower-level intermediate thenrn:=!rn-!rm
representation. Upshot : we will else rm:=!rm-!rn
consider all tail-recursive OCaml done
functions as representing iterative |In !result
programs.

Question: can we transform any
recursive function (such as
interpreter 0) into a tail recursive
function?

The answer is YES!
We add an extra argument, called a continuation,
that represents “the rest of the computation”

This is called the Continuation Passing Style
(CPS) transformation.

We will then “defunctionalize” (DFC) these
continuations and represent them with a stack.

Finally, we obtain a tail recursive function that
carries its own stack as an extra argument!

We will apply this kind of
transformation to the code of interpreter O as
the first steps towards deriving interpreter 1. 158

LECTURES 8 & 9
Derivation of Interpreters 1 & 2

Continuation Passing Style (CPS) : transform
any recursive function to atail-recursive
function

“Defunctionalisation” (DFC) : replace higher-
order functions with a data structure

Putting it all together:

— Derive the Fibonacci Machine

— Derive the Expression Machine, and
“compiler”!

This provides aroadmap for the interp_0 =

interp_1 -> interp_2 derivations.

159

(CPS) transformation of fib

(* fib : Int -> Int *)
letrec fibm =
fm=0
then 1
elseifm=1
then 1
else fib(m - 1) + fib (m - 2)

(* fib_cps :int* (int ->int) ->int *)
let rec fib_cps (m, cnt) =
fm=0
thencnt 1
elseifm=1
thencnt 1
else fib_cps(m -1,
funa->fib_cps(m- 2,
funb ->cnt (a + b)))

160

A closer look

The rest of the computation after computing “fib(m)”. That s, cntis a
function expecting the result of “fib(m)” as its argument.

let rec fib_cps (m, cnt) =
Tm=0
then cnt 1
elseifm=1

The computation waiting
for the result of “fib(m-1)”

A

thencnt 1 ’

|

else fib_cps(m -1, funa->fib_cps(m -2, funb ->cnt(a + b)))

This makes explicit the order of
evaluation that is implicit in the
original “fib(m-1) + fib(m-2)" :

-- first compute fib(m-1)

-- then compute fib(m-2)

-- then add results together

-- then return

\ J
|

The computation waiting

for the result of “fib(m-2)”

161

Expressed with “let” rather than “fun”

(* fib_cps_Vv2 : (Int ->int) * Int -> Int *)
let rec fib_cps v2 (m, cnt) =
Tm=0
thencnt 1
elseifm=1
thencnt 1
elseletcnt2ab=cnt(a+b)
inletcntla=fib cps v2(m -2, cnt2 a)
infib_cps v2(m -1, cntl)

Some prefer writing CPS forms without explicit funs
162

Use the identity continuation ...

(* fib_cps :int * (int -> int) ->int *)
let rec fib_cps (m, cnt) =
Tm=0
thencnt 1
elseifm=1
then cnt 1
else fib_cps(m -1, funa->fib_cps(m-2, funb ->cnt(a+ b)))

letid (X :int) =X

let fib_1 x =fib_cps(x, id)

Listmap fib 11[0;1;2;3;4;5;6;7;8;9; 10];;

= [1;1; 2; 3; 5; 8; 13; 21; 34; 55; 89]

163

Correctness?

For all c: int->int, forall m, 0 <=m,
we have, c(fibo m) =fib_cps(m, c).

Proof: assume c : int -> int. By Induction
on m. Base case : m = 0:
fib_cps(0, c) = c(1) = c(fib(0).

NB: This proof pretends that we can
treat OCaml functions as ideal
mathematical functions, which of course
we cannot. OCaml functions might raise
exceptions like "stack overflow” or

"you burned my toast", and so on. But
this is a convenient fiction as long as
we remember to be careful.

Induction step: Assume for all n <m, c(fib n) =fib_cps(n, c).
(That is, we need course-of-values induction!)

fib cps(m + 1, c)

else fib_cps((m+1) -1, fun a -> fib_cps((m+1) -2, fun b -> c (a + b)))

=ifm+1=1
thenc 1

=ifm+1=1
thenc 1

else fib_cps(m, fun a -> fib_cps(m-1, fun b -> ¢ (a + b)))

= (by induction)
fm+1=1
thenc 1

else (fun a ->fib_cps(m -1, fun b -> c (a + b))) (fib m)

164

Correctness?

=fm+1=1
thenc 1
else fib_cps(m-1, fun b -> ¢ ((fib m) + b))
= (by induction)
fm+1=1
thenc 1
else (fun b -> ¢ ((fib m) + b)) (fib (m-1))
=ifm+1=1
thenc 1
else c¢ ((fibo m) + (fib (m-1)))
=c(ifm+1=1
then 1
else ((fib m) + (fib (m-1))))
=c(ifm+1=1
then 1
else fib((m+1)-1) +fib ((Im+ 1) - 2))
= ¢ (fibo(m + 1))
165

QED.

Can with express fib_cps without a
functional argument ?

(* fib_cps_v2 : (int -> int) * int -> int *)
let rec fib_cps_v2 (m, cnt) =
fm=0
thencnt 1
elseifm=1
thencnt 1l
else letcnt2ab =cnt (a + b)
nletentla=
fib_cps_v2(m - 2, cnt2 a)
in fib_cps_v2(m -1, cntl)

|ldea of “defunctonalisation” (DFC): replace id, cntl and cnt2 with
Instances of a new data type:

type cnt=1D | CNT1 of int * cnt | CNT2 of int * cnt

Now we need an “apply” function of type cnt * int -> int

166

“Defunctionalised” version of fib_cps

(* datatype to represent continuations *)
type cnt=1D | CNT1 of int * cnt | CNT2 of int * cnt

(* apply_cnt : cnt * int -> int *)

let rec apply_cnt = function
| (ID, a) -> a
| (CNT1 (m, cnt), a) -> fib_cps_dfc(m - 2, CNT2 (a, cnt))
| (CNT2 (a, cnt), b) ->apply_cnt (cnt, a + b)

(* fib_cps_dfc: (cnt * int) -> int *)
and fib_cps_dfc (m, cnt) =

fTm=0
then apply_cnt(cnt, 1)
elseifm=1

then apply_cnt(cnt, 1)
else fib_cps_dfc(m -1, CNT1(m, cnt))

(* fib_2:int->iInt*) 167
let fib_2 m =fib_cps_dfc(m, ID)

Correctness?

Let < ¢ > be of type cnt representing
a continuation c : int -> int constructed by fib_cps. Proof left
Then as an_
apply_cnt(< ¢ >, m) = ¢(m) exercise!
and
fib_cps(n, c) = fib_cps_dfc(n, <c >).

Functional continuation c Representation < ¢ >
funa->fio_cps(m-2,funb ->cnt(a+b)) | CNT1(m, <cnt>)
funb ->cnt(a+ b) CNT2(a, <cnt >)

funx -> X ID

168

Eureka! Continuations are just lists
(used like a stack)

type int_list = NIL | CONS of int * int_list

typecnt=ID | CNT1 of int * cnt | CNT2 of int * cnt

il cons cons
typel type2

Replace the above continuations with lists! (I've selected
more suggestive names for the constructors.)

type tag = SUB2 of int | PLUS of int

type tag_list_cnt = tag list

169

The continuation lists are used like a stack!

type tag = SUB2 of int | PLUS of int
type tag_list_cnt = tag list

(* apply tag_list_cnt : tag_list_cnt * int -> int *)

let rec apply_tag_list_cnt = function
| (I, &) > a
| (SUB2 m) ::cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)
| (PLUS a) :: cnt, b) -> apply tag list_cnt (cnt, a + b)

(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *)
and fib_cps_dfc_tags (m, cnt) =

fm=0
then apply_tag_list_cnt(cnt, 1)
elseifm=1

then apply_tag_list_cnt(cnt, 1)
else fib_cps_dfc_tags(m - 1, (SUB2 m) :: cnt)

(* fib_3:int-> int *)

let fib_3 m =fib_cps_dfc_tags(m, []) 170

Combine Mutually tail-recursive
functions into a single function

type state_type =

| SUB1 (* for right-hand-sides starting with fib_ *)
| APPL (* for right-hand-sides starting with apply _ *)

lype state = (state_type * int * tag_list_cnt) -> int

(* eval : state -> Iint A two-state transition function*)

let rec eval = function
(SUB1, O, cnt) -> eval (APPL, 1, cnt)
(SUBL, 1, cnt) -> eval (APPL, 1, cnt)
(SUB1, m, cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt)
(APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt)
(APPL, b, (PLUS a) :: cnt) -> eval (APPL, (athb), cnt)
(APPL, a, []) > a

(* fib_4:int -> int *)
let fib_4 m = eval (SUB1, m, [])

171

Eliminate tail recursion to obtain The Fibonacci Machine!

(* step : state -> state *)
let step = function

(SUBL, 0, cnt) -> (APPL, 1, cnt)
(SUB1, 1, cnt) -> (APPL, 1, cnt)
(SUB1, m, cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt)
(APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2), (PLUS a) :: cnt)
(APPL, b, (PLUS a) :: cnt) -> (APPL, (at+b), cnt)
__-> failwith "step : runtime error!”

In this version we have
simply made the
tail-recursive

structure very explicit.

(* clearly TAIL RECURSIVE! *)
let rec driver state = function
| (APPL, a,[]) -> a

| state -> driver (step state)

(* fib_5:int->int*)
let fib_5 m =driver (SUB1, m, []) 172

Here is a trace of fib 5 6.

1SsuBl|| 6]

2 SUBL || 5 || [SUB2 6]

3 SUBL || 4 || [SUB2 6, SUB2 5]

4 SUBL1 || 3 || [SUB2 6, SUB2 5, SUB2 4]

5 SUBL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

6 SUBL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]
7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]
8 SUBL || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]
9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]
10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]

14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]

15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]

20 APPL || 5 || [SUB2 6, SUB2 5]

21 SUB1 || 3 || [SUB2 6, PLUS 5]

22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]

23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

24 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]
27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3]

28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2]

29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2]

30 APPL || 3 || [SUB2 6, PLUS 5]

31 APPL || 8 || [SUB2 6]

32 SUB1 || 4 || [PLUS 8]

33 SUB1 || 3 || [PLUS 8, SUB2 4]

34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3]

35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]
36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]
37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]
38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]
39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3]

40 SUBL || 1|| [PLUS 8, SUB2 4, PLUS 2]

41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2]

42 APPL || 3 || [PLUS 8, SUB2 4]

43 SUBL || 2 || [PLUS 8, PLUS 3]

44 SUBL || 1|| [PLUS 8, PLUS 3, SUB2 2]

45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2]

46 SUBL || 0 || [PLUS 8, PLUS 3, PLUS 1]

47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1]

48 APPL || 2 || [PLUS 8, PLUS 3]

49 APPL || 5 || [PLUS 8]

50 APPL ||13| []

The OCaml file in basic_transformations/fibonacci_machine.ml
contains some code for pretty printing such traces....

173

Pause to reflect

What have we accomplished?

We have taken a recursive function and turned it
Into an iterative function that does not require
“stack space” for its evaluation (in OCaml)

However, this function now carries its own
evaluation stack as an extra argument!

We have derived this iterative function in a step-
by-step manner where each tiny step is easily
proved correct.

Wow!

174

That was fun! Let’s do it again!

lype expr = This time we will derive a
INT of int stack-machine AND
PLUS of expr * expr a “compiler” that translates
SUBT of expr * expr expressions into a list of
MULT of expr * expr Instructions for the machine.

(* eval : expr -> Int

a simple recusive evaluator for expressions *)
let rec eval = function
INT a ->a
PLUS(el, e2) -> (eval el) + (eval e2)
SUBT(el, e2) -> (eval el) - (eval e2)
MULT(el, e2) -> (eval el) * (eval e2)

175

Here we go again : CPS

type cnt_2 =int->int
type state_2 = expr * cnt_2

(* eval_aux 2 :state 2 ->int *)
let rec eval_aux_2 (e, cnt) =
match e with
| INT a ->cnta
| PLUS(el, e2) ->
eval_aux 2(el, fun vl -> eval_aux_ 2(e2, fun v2 -> cnt(v1l + v2)))
| SUBT(el, e2) ->
eval_aux_ 2(el, fun vl -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))
| MULT(el, e2) ->
eval_aux_ 2(el, fun vl -> eval_aux_2(e2, fun v2 -> cnt(vl * v2)))

(*id_cnt:cnt_2 %)
letid_cnt (x :int) =X

(* eval 2 :expr->int?¥)
let eval 2 e = eval _aux_2(e, id_cnt)
176

Defunctionalise!

typecnt_3 =

| ID

| OUTER_PLUS of expr * cnt_3
| OUTER_SUBT of expr * cnt_3
| OUTER_MULT of expr * cnt_3
| INNER_PLUS of int * cnt_3

| INNER_SUBT of int* cnt_3

| INNER_MULT of int * cnt_3

type state_3 = expr *cnt_3

(*apply_3:cnt_3*int->int*)

let rec apply_3 = function
| (ID, V) >V
| (OUTER_PLUS(e2, cnt), v1) -> eval _aux_3(e2, INNER_PLUS(v1, cnt))
| (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))
| (OUTER_MULT(e2, cnt), v1) -> eval _aux_3(e2, INNER_MULT(v1, cnt))
| INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2)
| INNER_SUBT(v1, cnt), v2) -> apply_3(cnt, v1 - v2)
| INNER_MULT(v1, cnt), v2) -> apply_3(cnt, v1 * v2)

177

Defunctionalise!

(* eval _aux_2 : state 3 ->int*)
and eval_aux_3 (e, cnt) =

match e with
INT a -> apply_3(cnt, a)
PLUS(el, e2) -> eval aux 3(el, OUTER_PLUS(e2, cnt))
SUBT(el, e2) -> eval aux_3(el, OUTER _SUBT(e2, cnt))
MULT(el, e2) -> eval _aux_3(el, OUTER_MULT(e2, cnt))

(* eval_3: expr->int*)
let eval 3 e = eval aux_3(e, ID)

178

Eureka! Again we have a stack!

type tag =
| O_PLUS of expr
| | PLUS of int
| O_SUBT of expr
| |_SUBT of int
| O_MULT of expr
| | MULT of int

type cnt_4 = tag list
type state 4 = expr *cnt_4

(* apply_4:cnt_4*int->int*)

let rec apply_4 = function
| ([, v) >V
| (O_PLUS e2) :: cnt, v1) -> eval _aux_4(e2, (I_PLUS v1) :: cnt)
| (O_SUBT e2) :: cnt, vl) -> eval _aux_4(e2, (I_SUBT vl) :: cnt)
| (O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT vl) :: cnt)
| ((I_PLUS V1) :: cnt, v2) -> apply_4(cnt, v1 + v2)
| (I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)
| ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)

179

Eureka! Again we have a stack!

(* eval _aux_4 : state 4 ->int*)
and eval _aux 4 (e, cnt) =

match e with
INT a -> apply _4(cnt, a)
PLUS(el, e2) -> eval _aux 4(el, O _PLUS(e2) :: cnt)
SUBT(el, e2) -> eval _aux_4(el, O_SUBT(e2) :: cnt)
MULT(el, e2) -> eval _aux 4(el, O MULT(e2) :: cnt)

(* eval_4 : expr -> int *)
let eval_4 e = eval_aux_4(e, [])

180

Eureka! Can combine apply_4 and
eval_aux 4

type acc = . i}
| A_INT of int Type of an “accumulator” that
| A_EXP of expr contains either an int

type cnt_5=cnt_4 or an expression.

type state_ 5 =cnt_5 * acc

val . step : state_5-> state 5

The driver will be

val driver : state_5 -> int _ _
clearly tail-recursive ...

val eval_5 : expr -> int

181

Rewrite to use driver, accumulator

let step_5 = function

(cnt, A _EXP (INT a)) -> (cnt, A_INT a)

(cnt, A _EXP (PLUS(el, e2))) -> (O_PLUS(e2) :: cnt, A_ EXP el)
(cnt, A _EXP (SUBT(el, e2))) -> (O_SUBT(e2) :: cnt, A_ EXP el)
(cnt, A _EXP (MULT(el, e2))) -> (O_MULT(e2) :: cnt, A_EXP el)
((O_PLUS €2) ::cnt, A INT vl) -> ((I_ PLUS vl1) s cnt, A EXP e2)
((O_SUBT e2) ::cnt, A INT vl) -> ((I_SUBT v1) :: cnt, A EXP e2)
((O_MULT e2) ::cnt, A INT v1) -> ((I_MULT vl) :: cnt, A EXP e2)

((_ PLUS V1) ::cnt, A INT v2) -> (cnt, A_INT (vl + v2))

((1_ SUBT vl) ::cnt, A _INT v2) ->(cnt, A_INT (v1 - v2))

((._ MULT vl) ::cnt, A _INT v2) -> (cnt, A_INT (v1 * v2))

(], A INT V) -> ([, A_INT v)

let rec driver_5 = function

| ([, A_INT v) ->v
| state -> driver_5 (step_5 state)

let eval_5 e =driver_5([], A_EXP e) 182

Eureka! There are really two
independent stacks here --- one for
“expressions” and one for values

type directive =
| E of expr
| DO_PLUS
| DO_SUBT
| DO_MULT

type directive stack = directive list
type value_stack = int list

type state 6 = directive_stack * value_stack

val step_6 : state_6 -> state_6 The state Is now
two stacks!

val driver_6 : state_6 -> int

val exp 6 :expr->int
P_ P 183

Split into two stacks

let step_6 = function

(E(INT v) :: ds, vs) -> (ds, v :: vS)

(E(PLUS(el, e2)) ::ds, vs)->((Eel): (Ee2) ::DO PLUS:ds,vVs)
(E(SUBT(el, e2)) ::ds, vs)->((Eel): (Ee2): DO_SUBT :ds,vs)
(E(MULT(el, e2)) ::ds, vs)->((Eel): (Ee2)::DO_MULT ::ds,vs)

(DO_PLUS ::ds, v2::vl:: vs)->(ds, (V1 +Vv2)::vs)
(DO_SUBT ::ds, v2 ::vl::vs)->(ds, (v1-Vv2)::vs)
(DO_MULT ::ds, v2 ::vl::vs)->(ds, (V1 *v2) ::vs)
__-> failwith "eval : runtime error!"

let rec driver_6 = function

| (I, V) > v

| state ->driver_6 (step 6 state)

let eval 6 e =driver_6 ([E €], [])

184

An eval 6 trace

e = PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4))

— state 1 DS = [E(PLUS(MULT(INT(89), INT(2)), SUBT(INT(10), INT(4))))]
VS =]
state 2 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); E(MULT(INT(89), INT(2)))]
VS =]
state 3 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2)); E(INT(89))]
VS =]
state 4 DS = [DO_PLUS; E(SUBT(INT(10), INT(4)));: DO_MULT; E(INT(2))]
VS = [89]
— state 5 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT]
VS = [89; 2]
— state 6 DS =[DO_PLUS; E(SUBT(INT(10), INT(4)))]
VS = [178]
— state 7 DS = [DO_PLUS; DO_SUBT; E(INT(4)); E(INT(10))]
VS = [178]
state 8 DS = [DO_PLUS; DO_SUBT; E(INT(4))]
VS = [178; 10]
— state 9 DS =[DO_PLUS; DO_SUBT]
VS = [178; 10; 4] Top of each

state 10DS = [DO_PLUS] :
VS = [178; 6] stack is on

state 11DS =[] the right
— VS = [184]

iInspect
A

compute

inspect
A

compute
A

Key insight

This evaluator is interleaving two distinct computations:

(1) decomposition of the input expression into sub-expressions
(2) the computation of +, -, and *.

ldea: why not do the decomposition BEFORE the computation?

Key insight: An interpreter can (usually) be refactored into a
translation (compilation!) followed by a lower-level interpreter.

Interpret_higher (e) = interpret_lower(compile(e))

Note : this can occur at many levels of abstraction: think of machine code 186
being interpreted in micro-code ...

Refactor --- compile!

(* low-level instructions *)

type instr =
lpush of int
Iplus
Isubt . .
mult Never put off till run-time what
you can do at compile-time.
type code = instr list -- David Gries

type state 7 = code * value_stack

(* compile : expr -> code *)

let rec compile = function

INT a -> [Ipush a]

PLUS(el, e2) ->(compile el) @ (compile e2) @ [Iplus]
SUBT(el, e2) -> (compile el) @ (compile e2) @ [Isubt]
MULT(el, e2) -> (compile el) @ (compile e2) @ [Imult]

187

Evaluate compiled code.

(* step 7 : state 7 -> state 7 *)

let step_7 = function

push v ::is, vs) -> (IS, V i VS)

plus ::is, v2::v1:ivs) -> (is, (V1 + v2) :: vS)
subt ::is, v2::v1:vs) -> (is, (V1 - v2) :: vs)
mult :: s, v2::v1::vs) -> (is, (V1 * v2) . vs)
__->faillwith "eval : runtime error!"

AN AN N N

let rec driver_7 = function

| (LI, [v]) ->v

| _->driver 7 (step 7 state)

let eval_7 e = driver_7 (compile e, []) 188

Inspect

compute

An eval 7 trace

compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4)))
= [push 89; push 2; mult; push 10; push 4; subt; plus]

state 1 IS = [add; sub; push 4; push 10; mul; push 2; push 89]
VS =]

state 2 IS = [add; sub; push 4; push 10; mul; push 2]
VS = [89]

state 3 IS =[add; sub; push 4; push 10; mul]
VS =[89; 2]

state 4 IS = [add; sub; push 4; push 10]
VS =[178]

state 5 IS =[add; sub; push 4]
VS =[178; 10]

state 6 1S = [add; sub]
VS =[178; 10; 4]

state 7 IS = [add]
VS = [178; 6] Top of each

state 8 IS =] stacl_< IS on
VS = [184] the right

interpret is implicitly using Ocamb’s runtime stack

let rec interpret (e, env, store) =
match e with
| Integer n -> (INT n, store)
| Op(el, op, e2) ->
let (v1, storel) = interpret(el, env, store) in
let (v2, store2) = interpret(e2, env, storel) in
(do_oper(op, v1, v2), store2)

« Every invocation of interpret is
building an activation record on
Ocaml’s runtime stack.

 We will now define interpreter 2
which makes this stack explicit

Interp_0.ml - interp_1.ml - interp_2.ml

The derivation from eval to compile+eval 7 can be used
as a guide to a derivation from Interpreter 0 to interpreter 2.

1.
2.
3.

o O1

Apply CPS to the code of Interpreter O
Defunctionalise

Arrive at interpreter 1, which has a single
continuation stack containing expressions,
values and environments (analogous to eval 6)

. Spit this stack into two stacks : one for

Instructions and the other for values and
environments

. Refactor into compiler + lower-level interpreter
. Arrive at interpreter 2. (analogous to eval 7)

191

Interpreter 0 - Interpreter 2

Interpreter 2: A high-level stack-oriented machine
1. Makes the Ocaml runtime stack explicit

Complex values pushed onto stacks

One stack for values and environments

One stack for instructions

Heap used only for references

Instructions have tree-like structure

O UAWN

(we will not look at the details of interpreter 1 ...)

192

Inpterp_2 data types

type address
type store = address -> value

and value =
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| FUN of ((value * store)
-> (value * store))

type env = Ast.var -> value

Interp_O

type address = int

type value =
| REF of address
| INT of int
| BOOL of bool
| UNIT
| PAIR of value * value
| INL of value
| INR of value
| CLOSURE of bool *
closure

and closure = code * env

Interp_2

and instruction =

| PUSH of value

| LOOKUP of var

| UNARY of unary_oper
| OPER of oper

| ASSIGN

| SWAP

| POP

| BIND of var

| FST

| SND

| DEREF

| APPLY

| MK_PAIR

| MK_INL

| MK_INR

| MK_REF

| MK_CLOSURE of code
| MK_REC of var * code
| TEST of code * code

| CASE of code * code

| WHILE of code * code

193

Interp_2.ml : The Abstract Machine

and code = instruction list

and binding = var * value
and env = binding list The state is actually
comprised of a

heap --- a global array
of values --- a pair

type env_or_value = EV of env | V of value

type env_value_ stack = env_or_value list

type state = code * env_value_stack Of th e f orm
val step : state -> state
val driver : state -> value (COde, evn_value_stack)

val compile : expr -> code

val interpret : expr -> value

194

Interpreter 2: The Abstract Machine

type state = code * env_value_stack

val step : state -> state

let step = function

-

{* {code stack, value/env stack) -> (code stack, wvaluefenv stack) *)
| {({PUSH v} :: ds, evs) -> (ds, (V v) :: evs)
| {POP :: ds, s :: evs) -> (ds, evs)
| {sWaP :: ds, sl :: 82 :: ewvsg) ->» {(ds, 82 :: 81 :: evs)
| {{BIND =)} :: ds, {(V v) :: evs) -» (ds, EV{([(x, w}]) :: ewvs)
| {{LOOEKUF x) :: ds, evs) -> {(ds, V{search{evs, x}) :: evs)
| {{UNARY op) :: ds, {V v) :: ews) -»> {ds, V{do_unarvyi{op, v}) :: evs)
| {{OPER op) :: ds, (Vv v2) :: (V vl) :: evs) -> (ds, V{do_operi{op, vl, v2})) :: evs)
| {MK_PAIR :: ds, {V v2) :: {(V vl) :: evs) -> {ds, V{PAIR{vl, v2}) :: evs)
| {FST :: ds, V{PAIR (v, _)) :: ews) -> {ds, {(V v} :: evs)
| {SND :: ds, V{PATIR {(_, v)})} :: evs) -> (ds, (V v) :: evs)
| ({ME_TIHNL :: ds, {V v) :: ewvs) -»> {ds, V{INL v} :: evs)
| {MKE_THR :: ds, {V) evs) -> (ds, V{INER v} :: evs)
| {CASE fel, _) :: ds, V{INL v} revg) -» (¢l @ ds, (V v} :: evs)
| (CASE { c2) :: ds, V{INE v} tevs) -»> {(c2 @ ds, (V v) :: evs)
| {{TEST{cl c2)) :: ds, V{BOOL true) : evs) -> (¢l @ ds, evs)
| {({TEST({ecl, c2}) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)
| {ASSIGHN :: ds, {V v} :: {V {(REF a})) :: evs) -> (heap.({a) <- w; {ds, V{UNIT) :: evs})
| {DEREF :: ds, {Vv (REF a})) :: evs) -> {ds, V{heap.(a)) :: evs)
| {MKE_REF :: ds, {V v) :: evs) -»> let a = allocate {}) in (heap.{a) <= wv;
{ds, V{REF a) :: evs)})
]l {({WHILE{cl, <2)}) :: ds,V{(BOOL false) :: evs) -> (ds, evs})
| {{WHILE{cl, c2}) :: ds, V{BOOL true) :: evs}) -> {cl @ [WHILE{(cl, c2})] @ ds, evs)
| {{ME_CLOSURE <) :: ds, evg) -> {ds, V{mk_fun{c, evs_to_env evs)) :: ewvs
| {ME_REC{f, ¢} :: ds, evsg) -> {ds, V{imk_rec{f, ¢, evs_to_env evs))
| {APPLY :: ds, ?{CLDSURE {_, (o, env})}) :: (V v} :: evs)

fc @ ds, (V v) :: (EV env) :: evs)

state -> complain {"step : bad state = " * {string_of_state state}) ~ "n")

The state transition function.

)

I oewvs)

The driver. Correctness

(* val driver : state -> value *)
let rec driver state =
match state with

I (. [Vv]) ->v

-> driver (step state)

val compile : expr -> code

The idea: If e passes the frond-end and
Interp_O.interprete = v

then
driver (compile g, []) =V’

where v’ (somehow) represents v.

In other words,
evaluating

compile e
should leave the
value of e on top
of the stack

196

Implement inter_0O in interp_2

let rec interpret (e, env, store) =
match e with
| Pair(el, e2) ->
let (v1, storel) = interpret(el, env, store) in
let (v2, store2) = interpret(e2, env, storel) in (PAIR(v1, v2), store2)
| Fst e ->
(match interpret(e, env, store) with
| (PAIR (v1,), store’) -> (v1, store’)
| (v, _) -> complain "runtime error. Expecting a pair!”)

iInterp_0.ml

let step = function

let rec compile = function
| Pair(el, e2) -> (compile el) @ (compile e2) @ [MK_PAIR]
| Fste -> (compile e) @ [FST]

| (MK_PAIR ::ds, (VVv2)::(VvVl):evs) -> (ds, V(PAIR(v1, v2)) :: evs)
| (FST :: ds, V(PAIR (v,)) ::evs) -> (ds, (Vv):: evs)

Interp_2.ml

197

Implement inter_0O in interp_2

let rec interpret (e, env, store) = interp_0.ml
match e with —
| If(el, e2, e3) ->
let (v, store') = interpret(el, env, store) in
(match v with
| BOOL true -> interpret(e2, env, store')
| BOOL false -> interpret(e3, env, store')
| v -> complain "runtime error. Expecting a boolean!”)

let step = function
| ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
| ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)

let rec compile = function
| If(el, e2, e3) -> (compile el) @ [TEST(compile e2, compile e3)]

Interp_2.m|

198

Tricky bits again!

let rec interpret (e, env, store) = interp_0.ml

match e with
| Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (X, v)), s)), store)

| App(el, e2) -> (* | chose to evaluate argument first! *)
let (v2, storel) = interpret(e2, env, store) in
let (v1, store2) = interpret(el, env, storel) in
(match v1 with

| FUN f -> f (v2, store2)
| v -> complain "runtime error. Expecting a function!”)

iInterp_2.ml

let step = function

| (POP :: ds, S .. evs) -> (ds, evs)

| (SWAP :: ds, sl: s2:evs)->(ds, s2::sl:: evs)

| (BIND x) :: ds, (Vv) s evs) -> (ds, EV([(x, V)] :: evs)

| (MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)

| (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V V) :: evs)
> (c@ds, (VvV):(EVenv)::evs)

let rec compile = function
| Lambda(x, €) ->[MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]

| App(el, e2) ->(compile e2) @ (compile el) @ [APPLY; SWAP; POP]
: 199

Example : Compiled code for rev_pair.slang

let rev_pair (p : int *int) : int * int = (snd p, fst p)
in

rev_pair (21, 17)
end

MK _CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]);
BIND rev_pair;

PUSH 21,

PUSH 17,

MK _PAIR;
LOOKUP rev_pair;
APPLY;

G DEMO TIME!!

SWAP;
POP

200

LECTURE 10
Derive Interpreter 3

1. “Flatten” code into linear array

2. Add “code pointer” (cp) to machine state

3. New instructions : LABEL, GOTO, RETURN
4. “Compile away” conditionals and while loops

201

Linearise code

Interpreter 2 copies code
on the code stack.

We want to introduce one

global array of instructions cp=—> insrt]reu)z:ttion
Indexed by a code pointer (cp).
At runtime the cp points at the
next instruction to be executed.

This will require two new instructions:

LABEL L : Associate label L with this location in the code array

GOTO L : Set the cp to the code address associated with L

(A y

Compile conditionals, loops

If(el, e2, e3) While(el, e2)
code for el m: code for el
TEST k TEST k

code for e2 code for e2
GOTO m GOTO m
k: code for e3 k:

m:

203

If 7=0Then 17 else 21 end

Interp_2

PUSH UNIT;

UNARY READ;

PUSH O;
OPER EQI;
TEST(

)

[PUSH 17],

[PUSH 21]

iInterp_3

PUSH UNIT;

UNARY READ;

PUSH O;
OPER EQI;
TEST LO;
PUSH 17;
GOTO L1;
LABEL LO;
PUSH 21;
LABEL L1;
HALT

Interp_3 (loaded)

: PUSH UNIT;

: UNARY READ;
: PUSH O;

. OPER EQI,

: TEST LO = 7;
: PUSH 17;

: GOTO L1 =9;
. LABEL LO;

: PUSH 21;

: LABEL L1;

10: HALT

OO ~NO Ok, WNEO

Symbolic code
locations

Numeric code

locations 204

Implement inter_2 in interp_3

let step = function
| ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)
| ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)

interp_2.ml
let step (cp, evs) =
match (get_instruction cp, evs) with
| (TEST (_, Some), V(BOOLtrue) :: evs) -> (cp + 1, evs)
| (TEST (_, Some i), V(BOOL false) :: evs) -> (i, evs)
| (LABELI, evs) -> (cp + 1, evs)
| (GOTO (_, Some i), evs) -> (i, evs)
: Interp_3.ml

Code locations are represented as
("L", None) : not yet loaded (assigned numeric address)

(“L”, Some i) : label “L" has been assigned numeric address i 205

Tricky bits again!

let step = function i

| (POP :: ds, s ::evs) -> (ds, evs) |nterp_2.ml
| (SWAP :: ds, sl: s2: evs)->(ds, s2:sl: evs)

| (BIND x) :: ds, (Vv) ::evs) -> (ds, EV([(x, V)]) :: evs)

| (MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)

| (APPLY ::ds, V(CLOSURE (_, (c, env))) :: (V V) :: evs)
> (c@ds, (VV)::(EVenv):: evs)

let step (cp, evs) = I
match (get_instruction cp, evs) with Intel’p_3) ml
| (POP, s evs)->(cp+1,evs)
| (SWAP, sl:s2:evs)->(cp+1,s2:sl::evs)
| (BIND x, (Vv):evs)->(cp+ 1, EV([(x, v)]) :: evs)
| (MK_CLOSURE loc, evs) > (cp + 1,
V(CLOSURE(loc, evs_to_env evs)) :: evs)
| RETURN, (Vv): _:(RAIi):evs) -> (i, (Vv)::evs)

| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V V) :: evs)
>

@, iV v) i (EV env) :: (RA(cp + 1)) :: evs)

Note that in interp_2 the body of a closure is consumed from
the code stack. But in interp_3 we need to save the return
address on the stack (here i is the location of the closure’s code).

Tricky bits again!

interp_2.ml

let rec compile = function
| Lambda(x, e) ->[MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]
| App(el, e2) ->(compile e2) @ (compile el) @ [APPLY; SWAP; POP]

let rec comp = function Interp_3.ml

| App(el, e2) ->
let (defsl, c1) =compelin
let (defs2, c2) = comp e2 in
(defsl @ defs2,c2 @ cl @ [APPLY])
| Lambda(x, e) ->
let (defs, ¢) = comp e in
let f = new_label () in
let def = [LABELf ; BIND x] @ ¢ @ [SWAP; POP; RETURN] in
(def @ defs, [MK_CLOSURE((f, None))])

let compile e = Interp_3.m|
let (defs, ¢) = comp e in
C (* body of program *)

@ [HALT] (* stop the interpreter *)

@ defs (* function definitions *) 207

Interpreter 3
(very similar to interpreter 2)

let step {(cp, evs) =
match {get_instruction cp, evs) with

| {PUSH w, evs) -> {cp + 1, (V v} :: evs)
| {POP, s :: evs) -»> {cp + 1, evs)
| {(SWAP, sl :: 82 :: evs) -» {ep + 1, 82 :: sl :: evs)
| {BIND =x, {V v) z: evs) -> {(ecp + 1, EV{[{x, ¥)]) :: evs)
| {LOOKUFP =x, evs) -»> {cp + 1, Vi{search{evs, x})} :: evs)
| {UNARY op, {V v) =: evs) -> {(ep + 1, Vi{do_unary{op, v}} :: evs)
| {OPER op, (Vv v2) :: (Vvl) :: evs) -» {cp + 1, V{do_oper{op, vl, v2)}) :: evs)
| (ME_PAIR, {V v2) : (Vvl) :: evs) -» {cp + 1, V{(PAIR{vl, v2)) :: evs)
| {FST, V{(PAIR (v, _})) :: evs) =->» {cp + 1, (V v} :: evs)
| (SHD, V{(PAIR {_, v}) :: evs) -> {cp + 1, (V v) :: evs)
| {ME_INL, {V v) :: evs) -» {cp + 1, V{INL v) :: evs)
| {ME_TIHE, {V v) evs) -> {cp + 1, V{INR v) :: evs)
| {CASE {_, Some _}, V{ INL v} tevs) -> {ep + 1, (V v) :: evs)
| {CASE {_, Some i}, V{INE v} revs) -> (i, (V v) :: evs)
| {TEST {_, Some _}, V{BOOL true) : evs) -> {(cp + 1, evs)
| {TEST {_, Some i}, V(BOOL false) :: ewvs) -> (i, evs)
| (ASSIGH, {V v) :: (V (REF a})) :: evs) -> (heap.{a) < w; {(cp + 1, V{UNIT) :: ewvs))
| {DEREF, {V (REF a})) :: evs) -> {cp + 1, V{heap.{a)) :: evs)
| {ME_REF, {V v) : evs) -» let a = new_address {) in (heap.{a) < wv;
fcp + 1, V{REF a) :: ewvs})
| {ME_CLOSURE loc, evs) -> {cp + 1, V{CLOSURE{loc, evs_to_env evs)) :: evs)
| {(APPLY, V{CLOSURE ({_, Some i}, enwv)})} :: (V ¥} :: evs)
== fi, (V¥ v) :: {EV env) :: (RA {cp + 1}) :: evs)
{* new intructions *)
| {RETURH, {V v) :: _ :: (RA i) :: ewvs) -=> (i, (V v} :: evs)
| {LABEL 1, evs) ->» {cp + 1, evs)
| {HALT, evs) -»> [cp, evs)
| {GOTO {_, Some i), evs) -» (i, evs)
|

_ =» complain {"step : bad state = " * ({string_of_state {(cp, evs)) =~ "\n")

208

Some observations

« Avery clean machine!

« But it still has a very inefficient treatment of
environments.

 Also, pushing complex values on the stack is
not what most virtual machines do. In fact, we
are still using OCaml’s runtime memory
management to manipulate complex values.

209

Example : Compiled code for rev_pair.slang

let rev_pair (p : int *int) : int * int = (snd p, fst p)
In
rev_pair (21, 17)

end
MK_CLOSURE(MK _CLOSURE(rev_pair) LABEL rev_pair
[BIND p; LOOKUP p; SND; BIND rev_pair BIND p -
LOOKUP p; FST; MK_PAIR; PUSH 21
SWAP; POPY); LOOKUP p
o PUSH 17 SND
BIND rev_pair;
PUSH 21; MK_PAIR | LOOKUP p
MK_PAIR; APPLY MK_PAIR
LOOKUP rev_pair; SWAP SWAP
APPLY; POP
POP
SWAP;
POP: HALT Interp_3! RETURN
SWAP;
POP

merp_2 DEMO TIME!N!

=

LECTURES 11
Deriving The Jargon VM
(interpreter 4)

. First change: Introduce an addressable stack.
. Replace variable lookup by a (relative) location on the stack

or heap determined at compile time.

. Relative to what? A frame pointer (fp) pointing into the stack

IS needed to keep track of the current activation record.

. Second change: Optimise the representation of closures so

that they contain only the values associated with the free
variables of the closure and a pointer to code.

. Third change: Restrict values on stack to be simple (ints,

bools, heap addresses, etc). Complex data is moved to the
heap, leaving pointers into the heap on the stack.

. How might things look different in a language without first-

class functions? In a language with multiple arguments to

function calls?
211

Jargon Virtual Machine

<= heap[heal_limit]
grows
Frame 2
stack s shrinks _—
pointer - D
frame 1 (array of heap values)
frame fp
Pointer
B cp
frame O Code
Need for Code
fp to be Stack e
explained really array) (array of instructions)
soon ...

212

The stack in interpreter 3

A stack
In Iinterpreter 3

(1, (2, 17))
Inl(inr(99))

“All problems in computer
science can be solved by
another level of indirection,
except of course for the
problem of too many
indirections.”

--- David Wheeler

Stack elements in interpreter 3
are not of fixed size.

Virtual machines (JVM, etc)
typically restrict stack elements
to be of a fixed size

We need to shift data from the
high-level stack of interpreter 3
to a lower-level stack with
fixed size elements.

Solution : put the data in the heap.
Place pointers to the heap on
the stack.

The
Jargon VM
stack

Stack

C
b

Some stack elements
represent pointers
Into the heap

a+l:

c+2:

d+1:
d+2 :

. | Header 2, INR

99

. | Header 2, INL
b+1 :

a

- | Header 3, PAIR
c+1l:

1

d

Header 3, PAIR

—Heap

Interp_3.mli

type instruction =
| PUSH of value
| LOOKUP of Ast.var
| UNARY of Ast.unary_oper
| OPER of Ast.oper
| ASSIGN
| SWAP
| POP
| BIND of Ast.var
| FST
| SND
| DEREF
| APPLY
| RETURN
| MK_PAIR
| MK_INL
| MK_INR
| MK_REF
| MK_CLOSURE of location
| TEST of location
| CASE of location
| GOTO of location
| LABEL of label
| HALT

Small change to iaraon.mii
instructions jargon.
type instruction =
| PUSH of stack_item (* modified *)

| LOOKUP of value_path (* modified *)
| UNARY of Ast.unary_oper

| OPER of Ast.oper

| ASSIGN

| SWAP

| POP

(* | BIND of var not needed *)
| FST

| SND

| DEREF

| APPLY

| RETURN

| MK_PAIR

| MK_INL

| MK_INR

| MK_REF

| MK_CLOSURE of location * int (* modified *)
| TEST of location

| CASE of location

| GOTO of location

| LABEL of label

| HALT

215

A word about implementation

Interpreter 3

type value = | REF of address | INT of int | BOOL of bool | UNIT

| PAIR of value * value | INL of value | INR of value | CLOSURE of location * env
type env_or_value = | EV of env | V of value | RA of address
type env_value_stack = env_or_value list

type stack_item = _
| STACK_INT of int Jargon VM type heap_type =
| STACK_BOOL of bool | HT_PAIR
| STACK_UNIT | HT INL
| STACK_HI of heap_index (* Heap Inde *) | HT_INR
| STACK_RA of code_index (* Return Address *) —
| STACK_FP of stack_index (* (saved) Frame Pointer *) | HT_CLOSURE

The headers will be essential for

type heap_item =

| HEAP_INT of int garbage collection!
| HEAP_BOOL of bool

| HEAP_UNIT

| HEAP_HI of heap_index (* Heap Index *)

| HEAP_CI of code_index (* Code pointer for closures *)

| HEAP_HEADER of int * heap_type (*intis number items in heap block *)

216

MK_INR (MK_INL is similar)

In interpreter 3

(MK_INR, (Vv) .. evs)
-> (cp + 1, V(INR(V)) :: evs)

Jargon VM
The stack The stack Newly allocated
before after locations in
the heap
v MK_INR > a =) g |Header 2, INR
a+l: Y

Note: The header types are not really required. We could
Instead add an extra field here (for example, O or 1).
However, header types aid in understanding the code and

traces of runtime execution.

CASE (TEST is similar)

(CASE (_, Some), V(INLv)::evs)->(cp+ 1, (VV): evs)
(CASE (_, Some i), V(INR v)::evs) -> (i,

cp =t

a

cp =t

a

INR

a+l:

INL

CASE i>

a+l :

CASE i>

(Vv) :: evs)

cp =1

Vv

cp=t+1

218

MK_PAIR

In interpreter 3:

(MK_PAIR, (Vv2)::(Vvl):evs) -> (cp+1, V(PAIR(V1, v2)) :: evs)

In Jargon VM.

The stack The stack Newly allocated
before after locations in
V2 the heap
vl MK_PAIR> . |Header 3, PAIR

: L vl
V2

219

FST (similar for SND)

In interpreter 3:

(FST, V (PAIR(V1, v2)) :: evs)
> (cp+1,vl::evs)

In Jargon VM:
Tr;je ?tack Somewhere The stack
efore in the heap after
Header 3, PAIR | vl
vl FST . .
v2

Note that v1 could be a simple value (int or bool), or aother heap address.

220

These require more care ...

In interpreter 3:

let step (cp, evs) =
match (get_instruction cp, evs) with
| (MK_CLOSURE loc, evs)
-> (cp + 1, V(CLOSURE(loc, evs_to_env evs)) :: evs)

| (APPLY, V(CLOSURE ((_, Somei), env)):: (VV) :: evs)
>, (Vv):(EVenv):(RA(cp+1)):evs)

| (RETURN, (VvVv): 1 (RAI): evs)
> (1, (VV)::evs)

MK_CLOSURE(c, n)

c = code location of start of instructions for closure,
n = number of free variables in the body of closure.

Put values associated with free variables on stack,
then construct the closure on the heap

Newly allocated
Trl]:)ee?;?ec ‘ The stack Iocgtions in
after the heap
vl .
V2 a : | closure header .
MK_CLOSURE(c, r> a+l: C .
vn a at2:| wvi

atn+1 : vN

A stack frame

r Return address
—!, fp’ Saved frame pointer

Pointer to closure

\ Argument value

Stack frame.
_ (Boundary
May vary in the

literature.)

Currently executing code for the closure at heap address “a

after it was applied to argument v.

(Pl

223

APPLY

Interpreter 3:

(APPLY, V(CLOSURE ((_, Somei), env)) :: (V V) :: evs)
i, (Vv):(EVenv): (RA(cp+1)): evs)

Jargon VM:

BEFORE AFTER
cp =Kk cp =1
fp=] fp=m

k+1
a —|—> a: |Header n+2, m: i |e=tp
CLOSURE '
Y
. a ‘\
Al e — APPLY Y
a+2 : vl
atn+1l: vn

Interpreter 3:

(RETURN, (Vv)::

BEFORE

cp =I

RETURN

Replace stack frame
with return value

_ 2 (RA1D :zevs) -=> (I, (Vv): evs)
Jargon VM: AFTER
cp=t

(return address)

RETURI>

V2

fp = j—p]

Finding a variable’s value at runtime

f L

P \ k+1
Suppose we are ;
executing code J
associated with this TI—» a . |Header n+2,
closure. Then every Vv CLOSURE
free variable in the — 4+1 - | code location i
body of the closure - o : 1
can be found from are . v

the frame pointer fp:

« Formal parameter: at stack location fp-2 vn

* Other free variables :
* Follow heap pointer found at fp -1
 Each free variable can be associated
with a fixed offset from this heap
address

LOOKUP (HEAP_OFFSET K)

Interpreter 3:

(LOOKUP x, evs) -> (cp + 1, V(search(evs, X)) :: evs)
Jargon VM: AFTER
BEFORE
LOOKUP Sp =» FREE
Sp =—pi FREE (HEAP_OFFET k) vk
k+1 k+1
fp] a: |Header fp]
a i a
V vl VvV
vk

LOOKUP (STACK OFFSET -2)

Interpreter 3:

(LOOKUP x, evs) -> (cp + 1, V(search(evs, X)) :: evs)
Jargon VM: push argument AETER
BEFORE | Vvalue onto the
stack Sp = FREE |
sp = FREE Vi
S LOOKUP kt1

fp j (STACK_OFFET -2) fp]
= =

Vv V

Oh, one problem

let rec comp = function

| LetFun(f, (x, el), e2) ->

let (defsl, cl) = compelin
let (defs2, c2) = comp e2 in

Interpreter 3

let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in

(def @ defsl @ defs2,

[MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])

ca-

Problem: Code c2 can be anything --- how are we going to
find the closure for f when we need it? It has to be a fixed offset
from a frame pointer --- we no longer scan the stack for bindings!

let rec comp vmap = function

Solution in Jargon VM

| LetFun(f, (x, el), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

Similar trick for LetRecFun

229

LOOKUP (STACK OFFSET -1)

For recursive function calls,
push current closure on to the stack.

Jargon VM: AFTER
BEFORE sp FREE
sp = FREE a
LOOKUP
(STACK_OFFET -1)
kK+1 k+1

fp J fp j
a closure a losure

Example : Compiled code for rev_pair.slang

let rev_pair (p :int *int) : int *int = (snd p, fst p)
In

rev_pair (21, 17)
end

After the front-end, compile treats this as follows.

App(
Lambda(

"rev_pair”,
App(Var "rev_pair”’, Pair (Integer 21, Integer 17))),
Lambda("p”, Pair(Snd (Var "p”), Fst (Var "p™))))

231

Example : Compiled code for rev_pair.slang

App(
Lambda(’rev_pair”,

App(Var "rev_pair’, Pair (Integer 21, Integer 17))),

Lambda(’p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))

“first lambda”

“second lambda”

MK_CLOSURE(L1, 0)
MK_CLOSURE(LO, 0)
APPLY
HALT
LO PUSH STACK_INT 21
PUSH STACK_INT 17
MK_PAIR
LOOKUP STACK_LOCATION -2
APPLY
RETURN
L1: LOOKUP STACK_LOCATION -2
SND
LOOKUP STACK_LOCATION -2
FST
MK_PAIR
RETURN

-- Make closure for second lambda

-- Make closure for first lambda

-- do application

-- the end!

-- code for first lambda, push 21

-- push 17

-- make the pair on the heap

-- push closure for second lambda on stack
-- apply first lambda

-- return from first lambda

-- code for second lambda, push arg on stack
-- extract second part of pair

-- push arg on stack again

-- extract first part of pair

-- construct a new pair

-- return from second lambda 2392

Example : trace of rev_pair.slang execution

Installed Code = ==========gtate 1 ==========
0: MK_CLOSURE(L1 =11, 0) cp = 0 -> MK_CLOSURE(L1 = 11, 0)
1: MK_CLOSURE(LO = 4, 0) fp=0

2: APPLY Stack =

3: HALT 1: STACK_RAO

4. LABELLO 0: STACK_FP O

5: PUSH STACK_INT 21

6: PUSH STACK_lNT 17 —===—=—=====gfate 2 ==========
7: MK_PAIR cp =1 -> MK_CLOSURE(LO = 4, 0)
8: LOOKUP STACK_LOCATION-2 fo=0

9: APPLY Stack =

10: RETURN 2: STACK_HI 0

11: LABEL L1 1: STACK_RAO

12: LOOKUP STACK_ LOCATION-2 0- STACK FPO

13: SND B

14: LOOKUP STACK_LOCATION-2 Heap =

15: FST 0 -> HEAP_HEADER(2, HT_CLOSURE)
16: MK_PAIR 1->HEAP_Cl 11

17: RETURN

Example : trace of rev_pair.slang execution

==========g{ate 15 ==========
cp = 16 -> MK_PAIR

fp=8

Stack =

11: STACK_INT 21
10: STACK_INT 17
: STACK_RA 10
STACK_FP 4
STACK_HI 0
STACK_HI 4
STACK_RA 3
STACK_FP 0
STACK_HI 2
STACK_HI 0
STACK_RA 0
STACK_FP 0

ORENWROON®O

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)
1->HEAP_Cl 11

2 -> HEAP_HEADER(2, HT_CLOSURE)
3 -> HEAP_ClI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5-> HEAP_INT 21

6 -> HEAP_INT 17

=====—=====gs{ate 19 ==========
cp =3 ->HALT

fp=0

Stack =

2: STACK_HI7

1. STACK_RAO

0: STACK_FP O

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)
1->HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)
3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5-> HEAP_INT 21

6 -> HEAP_INT 17

7 -> HEAP_HEADER(3, HT_PAIR)

8 -> HEAP_INT 17

9 -> HEAP_INT 21

Jargon VM :
output> (17, 21)

Example : closure_add.slang

let f(y : int) :int->int=letg(x:nt) :int=y+ X ingend

In let add21 : int -> int =f(21)

in let add17 : int ->int =f(17) Note : we really do need
in add17(3) + add21(10) < closures on the heap here —
end the values 21 and 17
end do not exist on the stack
end at this point in the execution.

|
After the front-end, this becomes represented as follows.

App(Lambda(f, App(Lambda(add21,
App(Lambda(add1?,
Op(App(Var(addl17), Integer(3)),
ADD,
App(Var(add2l), Integer(10)))),
App(Var(f), Integer(17))),
App(Var(f), Integer(21))))),
Lambda(y, App(Lambda(g, Var(g)),
Lambda(x, Op(Var(y), ADD, Var(x))))))

N
w
an

Can we make sense of this?

MK_CLOSURE(L3, 0)
MK_CLOSURE(LO, 0)

APPLY

HALT

LO : PUSH STACK_INT 21
LOOKUP STACK_LOCATION -2
APPLY

LOOKUP STACK_LOCATION -2
MK_CLOSURE(L1, 1)

APPLY

RETURN

L1: PUSH STACK_INT 17
LOOKUP HEAP_LOCATION 1
APPLY

LOOKUP STACK_LOCATION -2
MK_CLOSURE(L2, 1)

APPLY

RETURN

L2 : PUSH STACK_INT 3
LOOKUP STACK_LOCATION -2
APPLY

PUSH STACK_INT 10
LOOKUP HEAP_LOCATION 1

APPLY

OPER ADD

RETURN

L3: LOOKUP STACK_LOCATION -2
MK_CLOSURE(LS5, 1)
MK_CLOSURE(L4, 0)

APPLY

RETURN

L4 LOOKUP STACK_LOCATION -2
RETURN

L5 LOOKUP HEAP_LOCATION 1
LOOKUP STACK_LOCATION -2

OPER ADD

RETURN

236

The Gap, illustrated

MK_CLOSURE(fib, 0)
MK_CLOSURE(LO, 0)

fib.slang APPLY

’ HALT
LO: PUSH STACK_UNIT
let fib (m :int) : int = UNARY READ

. LOOKUP STACK_LOCATION -2
Tm=0 APPLY
RETURN

ﬂwenll fib: LOOKUP STACK_LOCATION -2
elseifm=1 PUSH STACK_INT 0

OPER EQI
then 1 TESTL1

ﬁb(n]_ 1).+f”)(n1_ 2) PUSH STACK_INT 1
GOTOL2
L1: LOOKUP STACK_LOCATION -2
PUSH STACK_INT 1
OPEREQI
fib (’?) TESTL3
PUSH STACK_INT 1
GOTOL4
L3: LOOKUP STACK_LOCATION -2
PUSH STACK_INT 1
OPER SUB
LOOKUP STACK_LOCATION -1
APPLY
LOOKUP STACK_LOCATION -2
PUSH STACK_INT 2
" " OPER SUB
Slang'byte c -4 flb'SIang LOOKUP STACK_LOCATION -1
APPLY
OPER ADD
L4 :
L2: RETURN

Jargon VM code

Taking stock

Starting from a direct implementation of Slang/L3 semantics,
we have DERIVED a Virtual Machine in a step-by-step manner.
The correctness of aach step is (more or less) easy to check.

Interpreter O

Explicit stack via CPS+DFS> Interpreter 1

Split stack into two, refactor> Interpreter 2

Linearise code > Interpreter 3

Low-level addressable stack> Jargon VM

238

Remarks

1. The semantic GAP between a Slang/L3 program
and a low-level translation (say x86/Unix) has been
significantly reduced.

2. Implementing the Jargon VM at a lower-level of
abstraction (in C?, JVM bytecodes? X86/Unix? ...)
looks like a relatively easy programming problem.

3. However, using a lower-level implementation (say
Xx86, exploiting fast registers) to generate very
efficient code is not so easy. See Part Il Optimising
Compilers.

Verification of compilers is an active area of research.
See CompCert, CakeML, and DeepSpec.

239

We could implement a Jargon byte code interpreter ...

void vsm_execute_instruction(vsm_state *state, bytecode instruction)
{
opcode code = instruction.code;
argument argl = instruction.argl;
switch (code) {
case PUSH: { state->stack[state->sp++] = argl; state->pc++; break; }
case POP : { state->sp--; state->pc++; break; }
case GOTO: { state->pc = argl; break; }
case STACK_LOOKUP: {
state->stack[state->sp++] =
state->stack[state->fp + argl];
state->pc++; break; }

» Generate compact byte code for
each Jargon instruction.
y « Compiler writes byte codes to a file.

} * Implement an interpreter in C or C++
for these byte codes.

« Execution is much faster than our
jargon.ml implementation.

* Or, we could generate assembly

code from Jargon instructions
240

Backend could target multiple platforms

Back end Assembly code
x86/Linux code gen -’—b x86/linux
Intermediate x86/Windows code gen H x86/windows
code
\ARMIAndroid code gen |===p | ARM/android
O O -
0 0 =

One of the great benefits of Virtual Machines is their
portability. However, for more efficient code we may want to
compile to assembler. Lost portability can be regained
through the extra effort of implementing code generation for

every desired target platform. 241

Lectures 12 --- 16
Assorted Topics

1.Separate compilation, linking

2.Interface with OS

3. Stacks vs registers

4.Calling conventions

5.Generating assembler code

6. Simple optimisations

/. The runtime system (automatic memory
management, ...)

8. Static links (for languages without nested
functions/procedures)

9.Implementing OOP with inheritance

10.Implementing exceptions

11.Compiling a compiler, “boot strapping”

Assembly and Linking

assembly assembly)
code file C R code file

Gssembie] mmm [assembie] -

object
code file

object
code file _

Object code h _linker |

libraries

From symbolic
names and
addresses to
numeric codes
and numeric
addresses

Name resolution,
create single
address space

relocation

1 } by address

single executable object code file

—1—

Operating System

243

The gcc manual (810 pages)
https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf

Chapter 9: Binary Compatibility 677

9 Binary Compatibility

Binary compatibility encompasses several related concepts:

application binary interface (ABI)
The set of runtime conventions followed by all of the tools that deal with bi-
nary representations of a program, including compilers, assemblers, linkers, and
language runtime support. Some ABIs are formal with a written specification,
possibly designed by multiple interested parties. Others are simply the way
things are actually done by a particular set of tools.

244

Applications Binary Interface (ABIl)

We will use x86/Unix as our running example.
Specifies many things, including the following.

 C calling conventions used for systems calls | Note: the conventions
or calls to compiled C code. are required for
« Register usage and stack frame layout portable interaction

 How parameters are passed, results with compiled C.
Your compiled
returned

o erens language does not
* Caller/callee responsibilities for placement| jave to follow the

and cleanup same conventions!

« Byte-level layout and semantics of object files.
« Executable and Linkable Format (ELF).
Formerly known as Extensible Linking

Format.

 Linking, loading, and hame mangling 245

Object files

Must contain at least

Program instructions

Symbols being exported

Symbols being imported

Constants used in the program (such as strings)

Executable and Linkable Format (ELF) is a common
format for both linker input and output.

ELF details (1)

Header information; positions and sizes of sections

.text segment (code segment): binary data

.data segment: binary data

.rela.text code segment relocation table: list of
(offset,symbol) pairs giving:

(i) offset within .text to be relocated; and

(i1%) by which symbol

.rela.data data segment relocation table: list of
(offset,symbol) pairs giving:

(i) offset within .data to be relocated; and

(i13) by which symbol

ELF details (2)

.symtab symbol table:
List of external symbols (as triples) used by the module.

Each is (attribute, offset, symname) with attribute:
1. undef: externally defined, offset is ignored;

2. defined in code segment (with offset of definition);
3. defined in data segment (with offset of definition).

Symbol names are given as oflsets within .strtab
to keep table entries of the same size.

.strtab string table:

the string form of all external names used in the module

The (Static) Linker

What does a linker do?
* takes some object files as input, notes all undefined symbols.
* recursively searches libraries adding ELF files which

define such symbols until all names defined (“library search”).
« whinges if any symbol is undefined or multiply defined.

Then what?

 concatenates all code segments (forming the output
code segment).

« concatenates all data segments.

 performs relocations (updates code/data segments
at specified offsets.

Dynamic vs. Static linking

Static linking (compile time)
Problem: a simple “hello world” program may give a 10MB
executable if it refers to a big graphics or other library.
Dynamic linking (run time)
For shared libraries, the object files contain stubs, not code,
and the operating system loads and links the code on demand.

Pros and Cons of dynamic linking:

(+) Executables are smaller

(+) Bug fixes to libraries don’t require re-linking.

(-) Non-compatible changes to a library can wreck previously
working programs (“dependency hell”).

A “runtime system?”

A library implementing functionality needed to run compiled
code on a given operating system. Normally tailored to the
language being compiled.

Implements interface between OS and language.

May implement memory management.

May implement “foreign function” interface (say we want
to call compiled C code from Slang code, or vice versa).
May include efficient implementations of primitive
operations defined in the compiled language.

For some languages, the runtime system may perform
runtime type checking, method lookup, security checks,

and so on.
251

Runtime system

Targeting a VM Targeting a platform
Generated
code
Generated Run-time system
v code

Virtual Machine g Q
Implementation Linker
Includes runtime

system

~o
Executable

In either case, implementers of the compiler and
the runtime system must agree on many low-level details of
memory layout and data representation.

2609
(e =

Typical (Low-Level) Memory Layout (UNIX)

: .. Dealing with Virtual Machines
Rough schematic of traditional a”OWS%S to ignore some of

layout in (virtual) memory. the low-level detalils....

high The heap is used for
memory Stack dynamically allocating
I memory. Typically either
for very large objects or
for those objects that are
I returned by functions/procedures
and must outlive
Heap the associated activation record.

Global vars and constants In languages like Java and ML,

the heap is managed
low program instructions automatically (“garbage collection”)
memory

253

Stack vs regsisters

V2

V1 V1+V2
add

r3:V2 r3:V2

add r8 r3 r>

r7: ... r7.V1+V2
18 : V1 r8 : V1
Stack-oriented: Register-oriented:
(+) argument locations is (+++) Execution MUCH faster
iImplicit, so instructions (-) argument location is
are smaller. explicit, so instructions
(---) Execution is slower are larger e

Main dilemma : registers are fast, but are fixed in
number. And that number is rather small.

Manipulating the stack involves RAM access, which can be
orders of magnitude slower than register access (the “von
Neumann Bottleneck”)
Fast registers are (today) a scarce resource, shared by many
code fragments
How can registers be used most effectively?
« Requires a careful examination of a program’s structure
* Analysis phase: building data structures (typically directed
graphs) that capture definition/use relationships
« Transformation phase : using this information to rewrite
code, attempting to most efficiently utilise registers
* Problem is NP-complete
* One of the central topics of Part Il Optimising Compilers.
Here we focus only on general issues : calling conventions and
reqgister spilling

Caller/callee conventions

« Caller and callee code may use overlapping sets of registers
« An agreement is needed concerning use of registers

« Are some arguments passed in specific registers?

* |s the result returned in a specific register?

« If the caller and callee are both using a set of registers for
“scratch space” then caller or callee must save and restore
these registers so that the caller’s registers are not
obliterated by the callee.

« Standard calling conventions identify specific subsets of
registers as “caller saved” or “callee saved”

« Caller saved: if caller cares about the value in a register,
then must save it before making any call

« Callee saved: The caller can be assured that the callee
will leave the register intact (perhaps by saving and
restoring it)

256

Another C example.
X86, 64 bit, with gcc

Int o _caller:

callee(int, int,int, pushq %rbp # save frame pointer
int,int,int,int); movq%rsp, %rbp # set new frame pointer

subq $16, %rsp # make room on stack

movl $7, (%rsp) # put 7th arg on stack

int caller(void) movl $1, %edi # put 1st arg on in edi
{ movl $2, %esi # put 2nd arg on in esi
int ret: movl $3, %edx # put 3rd arg on in edx
_ movl $4, %ecx # put 4th arg on in ecx
ret = movl $5, %r8d # put 5th arg on in r8d
callee(1,2,3,4,5,6,7); movl $6, %r9d # put 6th arg on in r9d
ret += 5; callg _callee #will put resut in eax
: addl $5, %eax #add5
return ret; addq $16, %rsp # adjust stack
} popq %rbp # restore frame pointer

ret # pop return address, go there

257

Regsiter spilling

What happens when all registers are in use?

Could use the stack for scratch space ...

... or (1) move some register values to the stack, (2)
use the registers for computation, (3) restore the
registers to their original value

This is called reqister spilling

258

A Crash Course in x86 assembler

A CISC architecture

There are 16, 32 and 64 bit versions

32 bit version :

« General purpose registers : EAX EBX ECX EDX
« Special purpose registers : ESI EDI EBP EIP ESP
« EBP : normally used as the frame pointer
« ESP : normally used as the stack pointer
« EDI : often used to pass (first) argument
« EIP :the code pointer
« Segment and flag registers that we will ignore ...

64 bit version:

« Rename 32-bit registers with “R” (RAX, RBX, RCX, ...)
 More general registers: R8 R9 R10 R11 R12 R13 R14 R15

Register
names can
indicate “width”
of a value.

rax : 64 bit version

eax : 32 bit version (or lower 32 bits of rax)
ax : 16 bit version (or lower 16 bits of eax)
al : lower 8 bits of ax
ah : upper 8 bits of ax

See https://en.wikibooks.org/wiki/X86_Assembly

The syntax of x86 assembler comes in several flavours.
Here are two examples of “put integer 4 into register eax”:

movl $4, %eax Il GAS (aka AT&T) notation
mov eax, 4 /[Intel notation

| will (mostly) use the GAS syntax, where a suffix is used
to indicate width of arguments:

* b (byte) = 8 bits

* w (word) = 16 bits

* | (long) = 32 bits

* (quad) = 64 bits

For example, we have movb, movw movl, and movq.

Examples (in GAS notation)

movl $4, %eax # put 32 bit integer 4 in register eax
movw $4, %eax # put 16 bit integer 4 in lower 16 bits of eax
movb $4, %eax # put 8 bit integer 4 in lowest 8 bits of eax
mov! %esp, Y%oebp # put the contents of esp into ebp
mov! (%esp), %oebp # interpret contents of esp as a memory
address. Copy the value at that address
into register ebp
movl %esp, (Yoebp) # interpret contents of ebp as a memory
address. Copy the value in esp to
that address.
movl %esp, 4(Y%ebp)# interpret contents of ebp as a memory
address. Add 4 to that address. Copy
the value in esp to this new address.

261

A few more examples

call label # push return address on stack and jump to label
ret # pop return address off stack and jump there
NOTE: managing other bits of the stack frame
such as stack and frame pointer must be done
explicitly
subl $4, %esp # subtract 4 from esp. That is, adjust the
stack pointer to make room for one 32-bit
(4 byte) value. (stack grows downward!)

Assume that we have implemented a procedure in C called
allocate that will manage heap memory. We will compile and
link this in with code generated by the slang compiler. At the x86

level, allocate will expect a header in edi and return a heap

pointer in eax. 062

Some Jargon VM instructions are “easy” to transiate

Remember: X86 is CISC, so RISC architectures may require more instructions ...

GOTO Ioc jmp loc

POP addl $4, %esp // move stack pointer 1 word = 4 bytes

PUSH v subl $4, %esp // make room on top of stack
movl $i, (%esp) // where iis an integer representing v

FST mov! (%esp), Yoedx //store "a" into edx
movl 4(%edx), %edx //load vl, 4 bytes, 1 word, after header
movl %edx, (%esp) // replace “a” with “v1” at top of stack

SND movl (%esp), %edx //store "a" into edx
movl 8(%edx), %edx // vload v2, 8 bytes, 2 words, after header
movl %edx, (Yoesp) // replace “a” with “v2” at top of stack

header vl [€=—sSp
V1 FST

sp

V2

... While others require more work

V2

vl MK_PAIR Header 3, PAIR
vl
V2

One possible x86 (32 bit) implementation of MK _PAIR:

movl $3, %edi /I construct header in edi

shr $16, %edi, /I ... put size in upper 16 bits (shift right)
movw $PAIR, %di /Il ... put type in lower 16 bits of edi

call allocate I/ input: header in ebi, output: “a” in eax

movl (%esp), %edx // move “v2” to the heap,

movl %edx, 8(%eax) // ... using temporary register edx
addl $4, %esp // adjust stack pointer (pop “v2”)
movl (%esp), %edx // move “v1” to the heap

movl %edx, 4(%eax) // ... using temporary register edx

movl %eax, (%esp) // copy value “a” to top of stack 264

call function computed at runtime?

For things you don’t understand, just experiment!
OK, you need to pull an address out of a closure and call it. Hmm,
how does something similar get compiled from C?

int func (int (*f)(int)) { return (*f)(17); } /* pass a function pointer and apply it /*

func:
pushq %rbp # save frame pointer X86
movqg %rsp, %rbp # set frame pointer to stack pointer 64 b’it
subg $16, %rsp # make some room on stack
movl $17, Y%eax # put 17 in argument register eax _
movqg %rdi, -8(%rbp) # rdi contains the argument f without
movl %eax, %edi # put 17 in register edi, so f will get it -02

callgq *-8(%rbp) # WOW, a computed address for call!

addg $16, %rsp # restore stack pointer

popq %rbp # restore old frame pointer

ret # restore stack 265

What about arithmetic?

Houston, we have a problem....

* |t may not be obvious now, but if we want to have
automated memory management we need to be
able to distinguish between values (say integers)
and pointers at runtime.

« Have you ever noticed that integers in SML or
Ocaml are either 31 (or 63) bits rather than the
native 32 (or 64) bits?

« That is because these compilers use a the
least significant bit to distinguish integers (bit =
1) from pointers (bit = 0).

« OK, this works. But it may complicate every
arithmetic operation!

* This is another exercise left for you to ponder

New topic: Memory Management

« Many programming languages allow programmers to
(implicitly) allocate new storage dynamically, with no
need to worry about reclaiming space no longer used.

— New records, arrays, tuples, objects, closures, etc.

— Java, SML, OCaml, Python, JavaScript, Python,
Ruby, Go, Swift, SmallTalk, ...

 Memory could easily be exhausted without some method
of reclaiming and recycling the storage that will no longer
be used.

— Often called “garbage collection”

— Is really "automated memory management” since it
deals with allocation, de-allocation, compaction, and
memory-related interactions with the OS.

267

Explicit (manual) memory management

« User library manages memory; programmer
decides when and where to allocate and de-
allocate
— void* malloc(long n)

— void free(void *addr)
— Library calls OS for more pages when necessary
— Advantage: Gives programmer a lot of control.

— Disadvantage: people too clever and make mistakes.
Getting it right can be costly. And don’ t we want to
automate-away tedium?

— Advantage: With these procedures we can implement
memory management for “higher level” languages ;-)

268

Automation is based on an approximation : if data can be
reached from a root set, then it is not “garbage”

HEAP
ROOT SET
stack
and
registers
rl
r2 Type information required (pointer or not),

some kind of “tagging” needed. 269

... ldentify Cells Reachable From Root Set...

—

stack

rl

r2
registers 270

== Feclaim unreachable cells

ﬁ
stack
rl
r2

registers 27

But How? Two basic techniques,
and many variations

* Reference counting : Keep a reference count
with each object that represents the number of
pointers to it. Is garbage when count is 0.

 Tracing : find all objects reachable from root set.
Basically transitive close of pointer graph.

For a very interesting (non-examinable) treatment of this subject see

A Unified Theory of Garbage Collection.
David F. Bacon, Perry Cheng, V.T. Rajan.
OOPSLA 2004.

In that paper reference counting and tracing are presented as “dual”
approaches, and other techniques are hybrids of the two. -

Reference Counting, basic idea:

Keep track of the number of pointers to each object (the
reference count).

When Object is created, set count to 1.

Every time a new pointer to the object is created,
Increment the count.

Every time an existing pointer to an object is destroyed,
decrement the count

When the reference count goes to 0, the object is
unreachable garbage

273

Reference counting can’ t detect cycles!

stack

rl—

Cons

Pros

» Space/time overhead to maintain count.
* Memory leakage when have cycles in data.

* Incremental (no long pauses to collect...)

r2

274

Mark and Sweep

* Atwo-phase algorithm

— Mark phase: Depth first traversal of object
graph from the roots to mark live data

— Sweep phase: Iiterate over entire heap,
adding the unmarked data back onto the free
list

275

Copying Collection

« Basic idea: use 2 heaps
— One used by program
— The other unused until GC time

e GC:
— Start at the roots & traverse the reachable data

— Copy reachable data from the active heap (from-
space) to the other heap (to-space)

— Dead objects are left behind in from space
— Heaps switch roles

276

Copying Collection

from-space to-space

roots

277

Copying GC

* Pros
— Simple & collects cycles
— Run-time proportional to # live objects
— Automatic compaction eliminates fragmentation

e Cons

— Twice as much memory used as program requires

« Usually, we anticipate live data will only be a small fragment
of store

* Allocate until 70% full
* From-space = 70% heap; to-space = 30%
— Long GC pauses = bad for interactive, real-time apps

278

OBSERVATION: for a copying garbage

collector

80% to 98% new objects die very quickly.

An object that has survived several collections has a bigger

chance to become a long-lived one.

It’ s a inefficient that long-lived objects be copied over and over.

ROOT
e SET
"_F -‘)
g 04!
(R o
-!-' "'ll..
. .
]
T--F'-"I ?--'
A B L
r..
a
T IT1
FROMSPACE TOsSPACE

Diagram from Andrew Appel’'s Modern Compiler Implementation

279

IDEA: Generational garbage collection

Segregate objects into multiple areas by age, and collect areas
containing older objects less often than the younger ones.

S YWounger Generation
’ -
L .‘\.
W ~ ROOT
ST
I."._l_t..: hE
R B
. : L_
Yo ¥o 4 L7
1 1 1
" ' il
L - - L - - !
v L T]
L

Fd

8

Diagram from Andrew Appel’'s Modern Compiler Implementation

280

Other issues...

When do we promote objects from young generation to old
generation

« Usually after an object survives a collection, it will be
promoted

Need to keep track of older objects pointing to newer ones!
How big should the generations be?

 When do we collect the old generation?

 After several minor collections, we do a major collection

Sometimes different GC algorithms are used for the new and
older generations.

« Why? Because the have different characteristics
« Copying collection for the new

— Less than 10% of the new data is usually live

— Copying collection cost is proportional to the live data
« Mark-sweep for the old

281

New topic : Simple optimisations.
Inline expansion

fun fO) = x + 1
fun g(x) = x -1
fun h() = £0O + g0
1 Inline f and g
fun fOO) = x + 1
fun g(x) = x -1
fun hOO = (x+1) + (x-1)

(+) Avoid building activation
records at runtime

(+) May allow further
optimisations

(-) May lead to “code bloat”
(apply only to functions
with “small” bodies?)

Question: if we inline all
occurrences of a function,

can we delete its definition from
the code?

What If it is needed at link time?

282

Be careful with variable scope

Inline g in h

letval x =1
fung(y) =x+y
funh(X) =g(x) +1

in
h(17)

end

xw)

=)

What kind of care might be needed will
depend on the representation level of the

Intermediate code involved.

letval x =1
fung(y) =x+y
funh(x)=x+y+1
N
h(17)
end

letval x =1
fung(y) =x+y
funh(z)=x+z+1
in
h(17)
end

(b) Constant propagation, constant folding

let x
let
let

N <

sk

let x
let
let

N <<

let
let
let

17

let
let
let

N X ||NX X

R RN RERNIISNN I XN

17

let x
let y
let z

R RN
~N

Propagate
constants and
evaluate simple
expressions at
compile-time

Note : opportunities
are often exposed
by inline expansion!

David Gries :

“Never put off till

run-time what you can do
at compile-time.”

But be careful

How about this?

Replace

OOPS, not if x has type
float!

NAN*O = NAN,

284

(c) peephole optimisation

Peephole Optimization
Communications of the ACM,

W. M. McKEEMAN Julv 1965
Stanford University, Stanford, California y

Example 1. Source code:
X = Y:
Z =X+ Z
Compiled code:
LDAY load the accumulator from Y
STA X store the accumulator in X
LDA X load the accumulator from X Eliminate!
ADD Z add the contents of Z
STA 7Z store the accumulator in Z

Results for syntax-directed code generation. 285

peephole optimisation

=)

... code sequence ... D

Sweep a window over the code

sequence looking for instances of simple code
patterns that can be rewritten to better code ...
(might be combined with constant folding, etc,
and employ multiple passes)

Examples
-- eliminate useless combinations (push 0; pop)
-- iIntroduce machine-specific instructions
-- improve control flow. For example: rewrite
‘GOTO L1 ... L1: GOTO L?”
to
‘GOTO L2 ... L1: GOTO L2

286

gcc example.
-O<m> turns on optimisation to level m

g.c

inth(intn) {return (O<n)?n:101;}

intg(intn) {return 12 *h(n +17); }

g.s (fragment)

gcc -02 -S —-cg.c >

Wait. What happened to
the call to h???

GNU AS (GAS) Syntax
x86, 64 bit

_9:
.cfl_startproc
pushq %rbp

movg %rsp, %rbp

addl $17, %edi

imull $12, %edi, %ecx
testl %edi, %edi

movl $1212, %eax
cmovgl %ecx, %eax
popg %rbp

ret

.cfi_endproc

gcc example (-O<m> turns on optimisation)
g.C

Int h(intn) {return (0O<n)?n:101;}

int g(int n) {return 12 * h(n + 17); }

The compiler must have done something similar to this:

iInt g(int n) {return 12 * h(n + 17); }
->
int g(intn) {intt:=n+ 17; return 12 * h(t); }

2

iIntg(intn) {intt:=n+17;return 12 *((0<t)?t:.101);}

2

intg(intn) {intt:=n+17;return (0<t)?12*t:1212;}

2

New topic : static links on the call stack.

« Many textbooks on compilers treat only languages with
first-order functions --- that is, functions cannot be passes
as an argument or returned as a result. In this case, we
can avoid allocating environments on the heap since all
values associated with free variables will be somewhere
on the stack!

* But how do we find these values? We optimise stack
search by following a chain of static links. Static links are
added to every stack frame and points to the stack frame
of the last invocation of the defining function.

* One other thing: most languages take multiple arguments
for a function/procedure call.

Terminology: Caller and Callee

funt(x,y) =el For this invocation of

the function f, we say
that g is the caller
while f is the callee

fun g(w, v) =
w + f(v, V)

Recursive functions can play
both roles at the same time ...

Nesting depth

Pseudo-code

funb(z) = e

fun g(x1) =

fun h(x2) =
fun f(x3) = e3(x1, x2, x3, b, g h, f)
In

e2(x1, x2, b, g, h, f)

end

in
el(x1, b, g, h)

end

b(g(17))

291

Nesting depth

‘Code In big box is at nesting depth k \

fun b(z) =|e nesting depth k + 1

fun g(x1) =
fun h(x2) =
fun f(x3) =|e3(x1, x2, x3, b, g h, f) nesting depth k + 3
in
e2(x1, x2, b, g, h, f)
end nesting depth k + 2
n
e1(x1, b, g, h)
end nesting depth k + 1
b(g(17))

292
Function g is the definer of h. Functions g and b must
share a definer defined at depth k-1

Stack with static links and variable number of
arguments

sp_:F

stack frame for
callee defined <
at nesting
depthi<=k +1

The static link points
down to the closest
fp) P SEWE0 frame of definer

4 at nesting
stack frame for caller depthi-1

defined at nesting depth
k used to evaluate code <

at depth k + 1. 293
| SL{k -1}

caller and callee at same nesting depth k

CP = j:callf j:callf
| - cp —)‘ | R
Code Code
callf 0
SP—»| FREE
SL{k - 1}
j+1
SP=> FRrREE fp =
/’
caller’'s
frame
SL{k — 1} SL{k-1
] ﬁ
fo —» _

caller at depth k and callee at depthi < k

CP | j:callf j:callf
| - cp = U H oo
Code Code
call f (k -1i) > sp —» |_FREE
SL{i - 1}
j+1
SP=> FRrREE fp =
p :=1(fp + 2);
for c =1 to k - 1
{
p i=1!(p + 2);
SL{k - 1} } SL{k - 1}
B |s1{i-1} := p; .
fp - |

caller at depth k and callee at depth k + 1

Cp —>

cp —>

Sp—>

FREE

SL{k - 1}

FREE

call f (-1) > sp—

fp =

FP-saved

il

FP-saved

SL{k - 1}

Access to argument values at static
distance 0

sp—> FREE

Sp—» | FREE arg 0 j> V
SL SL

fp = o fp = o

fp-) —»

Access to argument values at static
distance d, 0 < d

sp—} FREE
Sp—> FREE arg d j> V

SL
ra

fp —

let

in

end

New Topic:
OOP Objects (single inheritance)

start := 10

class Vehicle extends Object {

var position := start

method move(int x) = {position := position + x}
}
class Car extends Vehicle {

var passengers := 0

method await(v : Vehicle) =
if (v.position < position)
then v.move(position - v.position)
else self.move(10)

}

class Truck extends Vehicle {

methOd move(int X) — S .
if X <= 55 then position := position +x method override

}

var t := new Truck
var ¢ := new Car

var v : Vehicle = c

subtyping allows a
Truck or Car to be viewed and
used as a Vehicle

Cc.passengers :=
c.move(60);
v.move(70);

c.await(t) 299

Object Implementation?

— how do we access object fields?
e both inherited fields and fields for the current
object?
- how do we access method code?

e if the current class does not define a particular
method, where do we go to get the inherited
method code?

e how do we handle method override?
- How do we implement subtyping (“object
polymorphism)?
e If B is derived from A, then need to be able to

treat a pointer to a B-object as if it were an A-
object.

300

Another OO0 Feature

 Protection mechanisms

—to encapsulate local state within an object,
Java has “private” “protected” and “public”
gualifiers

« private methods/fields can’t be called/used outside
of the class in which they are defined
— This is really a scope/visiblility issue! Front-
end during semantic analysis (type checking
and so on), the compiler maintains this
iInformation in the symbol table for each class
and enforces visiblility rules.

301

Object representation

class A { C++
public:

int al, a2;
virtial void ml (int i) {

al = i;

virtual void m2 (int i) {
a2 al + i;

/ An A object

al
a2

object data

ml A
mZ;A

vtable for class A

NB: a compiler typically generates methods with an extra argument
representing the object (self) and used to access object data.

302

Inheritance (“pointer polymorphism?”)

class B : public A {

ublic: / a B object

int bl;

al

a2 object data
bl

virtual void m3 (void) {
bl = al + a2;

ml;A

m2_A vtable for class B

m3;B

Note that a pointer to a B object can

be treated as if it were a pointer to an A object! | *”

Method overriding

/ a C object

class C : public A {
public: al
int cl; I a2 | Objectdata
cl

virtual void m3 (void) {
bl = al + a2;

} ml;A;A
virtual void m2 (int i) {

m2 A C
a2 =cl + i; —

w3 c c | vtable for class C

declared defined
304

Static vs. Dynamic

 which method to invoke on overloaded
polymorphic types?

class C *c R m2 A A(a, 3); static
class A *a = c; ﬁ<
m2 A C(a, 3); dynamic

a->m2 (3) ; \

305

Dynamic dispatch implemented
with vtables

A pointer to a class C object can be treated
as a pointer to a class A object

> ml_A_A
al mZ_A;C
a2 m3_C_C

bl

class C *c I

class A *a

I
Q

a->m2 (3) ; |:> * (a->vtable[1]) (2, 3);

306

New Topic : Exceptions (informal description)

e handle f

If expression e evaluates
“normally” to value v,
then v is the result of the
entire expression.

Otherwise, an exceptional
value V' is “raised” in the
evaluation of e, then
result is (f v')

raise e

Evaluate expression e to
value v, and then raise v
as an exceptional value,
which can only be
“handled”.

Implementation of exceptions

may require a lot of language-specific
consideration and care. Exceptions
can interact in powerful and unexpected
ways with other language features.
Think of C++ and class destructors,

for example.

Call stack just
before evaluating
code for

e handle f

Viewed from the call stack

handle
frame

Push a special
frame for the
handle

current
frame

handle
frame

“raise v’ is
encountered
while evaluating
a function body
associated with
top-most frame

frame
for f

“Unwind” call stack.
Depending on language,
this may involve some
“clean up” to free resources.

Possible pseudo-code implementation

e handle f

raise e

let fun _h27 () =
build special “handle frame”
save address of f in frame;
... code fore ...
return value of e

In _h27 () end

See 2019
Paper 4
Question 4

... code fore ...

save Vv, the value of e;

unwind stack until first

fp found pointing at a handle frame;
Replace handle frame with frame
for call to (extracted) f using

VvV as argument.

New topic : Bootstrapping a compiler

« Compilers compiling themselves!
* Read Chapter 13 Of
 Basics of Compiler Design
* by Torben Mogensen
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

310
http://mythologian.net/ouroboros-symbol-of-infinity/

Bootstrapping. We need some notation ...

app

\mch ,

An application
called app written
In language A

An interpreter or
VM for language A
Written in language B

A machine called
mch running
language

A natively.

Simple Examples

(hello)

x86
x86

(hello)

JBC
JBC
jvm
x86

x86

\ M1

Tombstones

trans
-> B

This is an application called trans

that translates programs in language

A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

- Hello
javac

Java JB JBC

JBC
JBC
jvm
x86

Java

x86

\ M1 ,

Thanks to David Greaves
for the example.

Of course translators can be translated

foo.A

- E

foo.B

- E

A

trans

C

-B ||B

Translator foo.B is produced
as output from trans when
given foo.A as input.

Our seemingly impossible task

comp.L B We have just invented a really great
-

new language L (in fact we claim that

“L is far superior to C++"). To prove how
great L is we write a compiler

L for L in L (of course!). This

compiler produces machine code B

for a widely used instruction set

(say B = x86).

comp.B B Furthermore, we want to compile our
=)

compiler so that it can run

on a machine running B.
B Our compiler is written in L!
How can we compiler our compiler?

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

Step 1
Write a small interpreter (VM) for
a small language of byte codes

MBC = My Byte Codes

zoom|| 9 [zoom
—
c++ || C** B B
B B

The zoom machine!

Step 2
Pick a small subset S of L and
write a translator from S to MBC

1. comp 1.B
§ S°MP-T-°PP MBC S P . MBC

C++|C++ - B B

Write comp_1.cpp by hand. (It sure would be nice if we
could hide the fact that this is written is C++.)

Compiler comp_1.B is produced
as output from gcc when comp_1.cpp Is given as input.

Step 3
Write a compilerforLin S

comp 2.8
L P . B

L

comp_2.mbc

4>

comp_1.B

- MBC

MBC

Write a compiler comp_2.S for the full language L, but written only

In the sub-language S.

Compile comp_2.S using comp_1.B to produce comp_2.mbc

Step 4
Write a compiler for L in L, and then compile it!

L .
L comp . B L comp.B . B
comp_2.mbc
L L P > B

Rewrite/extend compiler |[MBG
comp_2.S to produce VIBC We have achieved
comp.L using the full zoom our goal!
power of language L. B

B

\ M1

Putting it all together

We wrote these compilers

and the MBC VM.
m %‘ L comp-l-4B ‘ L comp.EAB .
‘ L colnp_z..'j‘p> B ‘ L L comp_Z.mbc>B “ B ‘
' S comp—"'cPP’MBc‘ M‘ S ¢:¢)mp_1.B4MB—‘c : @
E++ HC.H. gcc B ‘ B

Step 5 : Cover our tracks and leave the world

mystified and amazed!

Our L compiler download site contains only three components:

:"c:?n comp_2.mhc comp.L
C++ L - B L - B
MBC L

comp_2.mbc is a just file of bytes.
We give it the mysterious name
such as mr-e

Our Instructions:

1. Use gcc to compile the zoom interpreter

Shhhh! Don’t tell
anyone that

we wrote the first
compiler in C++

2. Use zoom to run mr-e with input comp.L to output the

compiler comp.B. MAGIC!

Another example (Mogensen, Page 285)

Solving a different problem.
You have:
(1) An ML compiler on ARM. Who knows where it came from.
(2) An ML compiler written in ML, generating x86 code.
You want:
An ML compiler generating x86 and running on an x86 platform.

ML x86 ML x86

ML x86 | ML | ML x86 | x86

ML ML ARMIARM

