
1

Compiler Construction

Lent Term 2022

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

int main(int argc, char *argv[])

{

printf("hello world\n");

return 0;

}

.LC0:

.string "hello world"

.text

.globl main

.type main, @function

main:

.LFB0:

.cfi_startproc

pushq %rbp

.cfi_def_cfa_offset 16

.cfi_offset 6, -16

movq %rsp, %rbp

.cfi_def_cfa_register 6

subq $16, %rsp

movl %edi, -4(%rbp)

movq %rsi, -16(%rbp)

movl $.LC0, %edi

call puts

movl $0, %eax

leave

.cfi_def_cfa 7, 8

ret

.cfi_endproc

2

Why Study Compilers?

• Although many of the basic ideas were

developed over 60 years ago, compiler

construction is still an evolving and active

area of research and development.

• Compilers are intimately related to

programming language design and evolution.

• Compilers are a Computer Science success

story illustrating the hallmarks of our field ---

higher-level abstractions implemented with

lower-level abstractions.

• Every Computer Scientist should have a basic

understanding of how compilers work.

Compilation is a special kind of translation

Source

Program

Text

The compiler
program for

target

“machine”

Just text – no way to

run program!

We have a “machine”

to run this!

• be correct in the sense that meaning is preserved

• produce usable error messages

• generate efficient code

• itself be efficient

• be well-structured and maintainable

A good compiler should …

This course!

OptComp,

Part II
Pick any 2?

Just 1?

4

Mind The Gap

• Machine independent

• Complex syntax

• Complex type system

• Variables

• Nested scope

• Procedures, functions

• Objects

• Modules

• …

• Machine specific

• Simple syntax

• Simple types

• memory, registers, words

• Single flat scope

High Level Language Typical Target Language

Help!!! Where do we begin???

5

The Gap, illustrated

public class Fibonacci {

public Fibonacci();

Code:

0: aload_0

1: invokespecial #1

4: return

public static long fib(int);

Code:

0: iload_0

1: ifne 6

4: lconst_1

5: lreturn

6: iload_0

7: iconst_1

8: if_icmpne 13

11: lconst_1

12: lreturn

13: iload_0

14: iconst_1

15: isub

16: invokestatic #2

19: iload_0

20: iconst_2

21: isub

22: invokestatic #2

25: ladd

26: lreturn

public static void

main(java.lang.String[]);

Code:

0: aload_0

1: iconst_0

2: aaload

3: invokestatic #3

6: istore_1

7: getstatic #4

10: new #5

13: dup

14: invokespecial #6

17: iload_1

18: invokestatic #2

21: invokevirtual #7

24: ldc #8

26: invokevirtual #9

29: invokevirtual #10

32: invokevirtual #11

35: return

}

public class Fibonacci {

public static long fib(int m) {

if (m == 0) return 1;

else if (m == 1) return 1;

else return

fib(m - 1) + fib(m - 2);

}

public static void

main(String[] args) {

int m =

Integer.parseInt(args[0]);

System.out.println(

fib(m) + "\n");

}

}

javac Fibonacci.java

javap –c Fibonacci.class

JVM bytecodes

6

The Gap, illustrated

(* fib : int -> int *)

let rec fib m =

if m = 0

then 1

else if m = 1

then 1

else fib(m - 1) + fib (m - 2)

ocamlc –dinstr fib.ml

branch L2

L1: acc 0

push

const 0

eqint

branchifnot L4

const 1

return 1

L4: acc 0

push

const 1

eqint

branchifnot L3

const 1

return 1

L3: acc 0

offsetint -2

push

offsetclosure 0

apply 1

push

acc 1

offsetint -1

push

offsetclosure 0

apply 1

addint

return 1

L2: closurerec 1, 0

acc 0

makeblock 1, 0

pop 1

setglobal Fib!

OCaml VM bytecodes

fib.ml

7

The Gap, illustrated

#include<stdio.h>

int Fibonacci(int);

int main()

{

int n;

scanf("%d",&n);

printf("%d\n", Fibonacci(n));

return 0;

}

int Fibonacci(int n)

{

if (n == 0) return 0;

else if (n == 1) return 1;

else return (Fibonacci(n-1) + Fibonacci(n-2));

}

gcc –S fib.c

fib.c

8

The Gap, illustrated

.section __TEXT,__text,regular,pure_instructions

.globl _main

.align 4, 0x90

_main: ## @main

.cfi_startproc

BB#0:

pushq %rbp

Ltmp2:

.cfi_def_cfa_offset 16

Ltmp3:

.cfi_offset %rbp, -16

movq %rsp, %rbp

Ltmp4:

.cfi_def_cfa_register %rbp

subq $16, %rsp

leaq L_.str(%rip), %rdi

leaq -8(%rbp), %rsi

movl $0, -4(%rbp)

movb $0, %al

callq _scanf

movl -8(%rbp), %edi

movl %eax, -12(%rbp) ## 4-byte Spill

callq _Fibonacci

leaq L_.str1(%rip), %rdi

movl %eax, %esi

movb $0, %al

callq _printf

movl $0, %esi

movl %eax, -16(%rbp) ## 4-byte Spill

movl %esi, %eax

addq $16, %rsp

popq %rbp

ret

.cfi_endproc

.globl _Fibonacci

.align 4, 0x90

_Fibonacci: ## @Fibonacci

.cfi_startproc

BB#0:

pushq %rbp

Ltmp7:

.cfi_def_cfa_offset 16

Ltmp8:

.cfi_offset %rbp, -16

movq %rsp, %rbp

Ltmp9:
x86/Mac OS

.cfi_def_cfa_register %rbp

subq $16, %rsp

movl %edi, -8(%rbp)

cmpl $0, -8(%rbp)

jne LBB1_2

BB#1:

movl $0, -4(%rbp)

jmp LBB1_5

LBB1_2:

cmpl $1, -8(%rbp)

jne LBB1_4

BB#3:

movl $1, -4(%rbp)

jmp LBB1_5

LBB1_4:

movl -8(%rbp), %eax

subl $1, %eax

movl %eax, %edi

callq _Fibonacci

movl -8(%rbp), %edi

subl $2, %edi

movl %eax, -12(%rbp) ## 4-byte Spill

callq _Fibonacci

movl -12(%rbp), %edi ## 4-byte Reload

addl %eax, %edi

movl %edi, -4(%rbp)

LBB1_5:

movl -4(%rbp), %eax

addq $16, %rsp

popq %rbp

ret

.cfi_endproc

.section __TEXT,__cstring,cstring_literals

L_.str: ## @.str

.asciz "%d"

L_.str1: ## @.str1

.asciz "%d\n"

.subsections_via_symbols

9

Conceptual view of a typical compiler

Front End Back End

ISA/OS

targeted code

(x86/unix, …)

Source

Program

Text

The compiler

Operating System (OS)

Virtual Machine (VM)

examples: JVM, Dalvik, .NET CLR

ISA/OS

independent

“byte code”
errors,

warnings

ISA = Instruction Set Architecture

Middle

Key to bridging The Gap : divide and conquer.

The gap is broken into small steps.

Each step broken into yet smaller steps …

10

The shape of a typical “front end”

Source

Program

Text

Lexical

analysis
lexical

tokens

Parsing

Lexical theory

based on finite

automaton

and regular

expressions

Parsing Theory

based on

push-down

automaton and

context-free

grammars

AST +

other

info

AST

= Abstract

Syntax Tree

Semantic

analysis

Enforce

“static sematics”

of language:

type checking,

def/use rules,

and so on (SPL!)

report

errors
report

errors

report

errors

The AST output from the front-end should represent a legal program in the source language.

(“Legal” of course does not mean “bug-free”!)

SPL = Semantics of Programming Languages, Part 1B

The middle

AST +

other

info

Low-level

retargetable

representation

--High-level to

low-level

--Optimisations

Trade-off: with more optimisations the generated code

is (normally) faster, but the compiler is slower

The back-end

Low-level

retargetable

representation
Back-end

 Requires intimate knowledge of instruction set and

details of target machine

 When generating assembler, need to understand

details of OS interface

 Target-dependent optimisations happen here!

 JVM bytecodes

 x86/Linux

 x86/MacOS

 x86/FreeBSD

 x86/Windows

 ARM/Android

 ….

 ….

Compilers must be compiled

Source

Program

Text

The compiler

A program in

language A

A program in

language B

Something to ponder:

A compiler is just a program.

But how did it get compiled?

The OCaml compiler is written in

OCaml.

How was the compiler compiled?

A program in

language C

The Shape of this Course

• Part I (Lectures 2 – 6) :Lexical analysis

and parsing

• Part II (Lectures 7 – 16) : Development of

the SLANG (Simple LANGuage) compiler.

SLANG is based on L3 from 1B

Semantics.

• A compiler for SLANG, written in Ocaml,

with link posted on the course web page.

15

Compiler Construction

Lent Term 2022

Lecture 2 : Lexical analysis

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

• Recall regular expressions

• Recall Finite Automata

• Recall NFA to DFA transformation

• What is the “lexing problem”?

• How DFAs are used to solve the lexing

problem?

1

What problem are we solving?

if m = 0 then 1 else if m = 1 then 1 else fib (m - 1) + fib (m -2)

Translate a sequence of characters

into a sequence of tokens

type token =

| INT of int| IDENT of string | LPAREN | RPAREN

| ADD | SUB | EQUAL | IF | THEN | ELSE

| …

IF, IDENT “m”, EQUAL, INT 0, THEN, INT 1, ELSE, IF,

IDENT “m”, EQUAL, INT 1, THEN, INT 1, ELSE, IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 1,

RPAREN, ADD,

IDENT “fib”, LPAREN, IDENT “m”, SUB, INT 2, RPAREN

implemented with some data type

2

)(||||| *  aeeeeeae 

)()(

)()(

}{)(

)}(),(|{)(

)()()(

}{)(

}{)(

{})(

)(

0

*

1

0

22112121

2121

*
























n

n

nn

eMeM

eeMeM

eM

eMweMwwweeM

eMeMeeM

aaM

M

M

eM







alphabet over sexpressionRegular e

3

Regular Expression (RE) Examples

},,,

,,,,,{

))((*

aaaabbbbabbbaabb

ababbaaabbbaabbaabbabb

abbbaM 

},,

,,,

,,,{

))((*







M

4

Review of Finite Automata (FA)

),,,,(0 FqQM 

states :Q alphabet :

statestart : Q0 q states final :QF

(DFA)FA ticdeterminisfor

 Qa)(q,,,  aQq

(NFA)FA nisticnondetermifor

 Qa)(q,}),{(,  aQq

5

NFA Example

)cbbcaabM(a ** **

 acceptingNFA An



c

c

a

b

a

b




start

6

A bit of notation

},|{)(

 and),(if

0

322131

qqFqwML

qqqaqqq

qq

w

waw

ε









For deterministic FA.

For nondeterministic FA.

},|{)(

 and),(q if

 and),(if

0

321231

321231

qqFqwML

qqaqqq

qqqqqq

qq

w

waw

ww

ε













7

Review of RE -> NFA

e startq
finalq

A regular

expression.

A nondeterministic

FA accepting M(e) with

a single final state.

The construction is done by induction on

the structure of e.

)(eN



8

Review of RE -> NFA

0q 1q)(N

0q 1q)(N


0q 1q)(aN
a

9

Review of RE -> NFA

)(21 eeN

)(1eN

)(2eN









10

Review of RE -> NFA

)(21eeN

)(2eN)(1eN

11

Review of RE -> NFA

)(*eN

)(eN








12

))((*abbbaN 





a

b 






a
b b





0 1

2 3

6

54

10 9 8

7

start

13

Review of NFA -> DFA

),,,,(0 FqQM 

),,,,(''

0

''' FqQM 

}|{

}{

})|),('({),(

}',|'{)(

}|{

'

0

'

0

'

'




















FSQSF

qclosureq

SqaqqclosureaS

qqSqQqSclosure

QSSQ

14

?)(compute wedo How Sclosure

resultreturn

stackon u push

result :result then

result if

each for

stack theoff pop

empty not stack while

 :result

stack a onto of elements allpush

:)(











{u}

u

)(q,u

q

S

S

Sclosure





Look familiar?

It’s just a version of

transitive closure!

15

)))(((*abbbaNDFA 

10,7,6

,5,4,2,1

7,4

,2,1,0

8,7,6

,4,3,2,1

9,7,6

5,4,2,1
b

a

ba

start
b

b

b

a
a

a

7,6

5,4,2,1

16

31

Traditional Regular Language Problem

?)(is , and Given eLwwe 

Solution : construct NFA from e, then DFA, then run

the DFA on w.

But is this a solution to the “lexing problem?

No!

17

Something closer to the “lexing problem”

.

The expressions are ordered by priority. Why?

Is “if” a variable or a keyword? Need priority to

resolve ambiguity (so “if” matched keyword RE

before identifier RE.

We need to do a longest match. Why?

Is “ifif” a variable or two “if” keywords?

w

)w(i),w,(i),w,(i nn,21 ...21

keee ,, 21  and

find

Given

so that

n1 www=w ...2)L(ewji
jii 

and what else?

and

18

33

Define Tokens with Regular Expressions (Finite

Automata)

Keyword: if

1
i

2
f

3

1
i

2
f

3

0

-{f}

-{i} 

This FA is really shorthand for:

“dead state” 19

34

Define Tokens with Regular Expressions (Finite

Automata)

Keyword:

if
1

i
2

f
3 KEY(IF)

Keyword:

then
1

t
2

h
3

KEY(then)

5

e

n
4

Regular Expression Finite Automata Token

Identifier:

[a-zA-Z][a-zA-Z0-9]*
1 2

[a-zA-Z]

[a-zA-Z0-9]

ID(s)

20

35

Define Tokens with Regular Expressions (Finite

Automata)

Regular Expression Finite Automata Token

number:

[0-9][0-9]*
1 2

[0-9]

[0-9]

NUM(n)

real:

([0-9]+ ‘.’ [0-9]*)

| ([0-9]* ‘.’ [0-9]+)

1

3

[0-9] NUM(n)
2

[0-9]

[0-9]

.

4

.

[0-9]
5

[0-9]
21

36

No Tokens for “White-Space”

White-space with one line

comments starting with %

1

3

%
2

[A-za-z0-9’ ‘]

4

\n

\t

\n‘ ‘

22

Constructing a Lexer

an ordered list of regular expressions

Highest priority first, lowest last

INPUT: keee ,, 21 

keeee  21for NFA

23

priority.highest

of with theassociated

 state finaleach DFA with

ie

Constructing a Lexer

(1) Keyword : then

(2) Ident : [a-z][a-z]*

(2) White-space: ‘ ‘

24

1
t

2:ID
h

3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID

State 5 could accept

either an ID or

the keyword “then”.

The priority rules

eliminates this

ambiguity and

associates state 5

with the keyword.

39

What about longest match?

1
t

2:ID
h

3:ID

5:THEN

e

n

4:ID

7:W

‘ ‘

6:ID

|then thenx$ 1 0

t|hen thenx$ 2 2

th|en thenx$ 3 3

the|n thenx$ 4 4

then| thenx$ 5 5

then |thenx$ 0 5 EMIT KEY(THEN)

then| thenx$ 1 0 RESET

then |thenx$ 7 7

then t|henx$ 0 7 EMIT WHITE(‘ ‘)

then |thenx$ 1 0 RESET

then t|henx$ 2 2

then th|enx$ 3 3

then the|nx$ 4 4

then then|x$ 5 5

then thenx|$ 6 6

then thenx$| 0 6 EMIT ID(thenx)

Start in initial state,

Repeat:

(1) read input until dead state is

reached. Emit token associated

with last accepting state.

(2) reset state to start state

| = current position, $ = EOF

Input

current state

last accepting state

40

Compiler Construction

Lent Term 2022

Lecture 3: Context-Free Grammars

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

• Context-Free Grammars (CFGs)

• Each CFG generates a Context-Free

Language (CFL)

• Push-down automata (PDAs)

• PDAs recognize CFLs

• Ambiguity is the central problem

1

Programming Language Syntax

A small fragment of the C standard. How can we turn this

specification into a parser that reads a text file and produces a

syntax tree?

Context-Free Grammars (CFGs)

),,,(SPTNG 

lsnontermina ofset :N

 terminalsofset :T

  AP)(A as written is ,Each

symbolstart :NS

 sproduction ofset a :)(*TNNP 

3

Example CFG

),,,(1111 EPTNG 

{E}1 N id}),(,,*,{1 T

 id |(E) |E*E|EEE

:1



P

 id)}(E,(E)),(E,E),*E(E,E),E{(E,

for shorthand is This

1 P

4

44

Derivations

NCBA

TN









,,,

)(,,,

 :sconventionNotation

*

 steps derivation moreor zero means

 and steps derivation moreor one means

 as written is step derivation a

 production a and :Given

*













A

AA

5

45

Example derivations

)(*)(

)(*)(

)(*)(

)(*)(

*)(

*)(

*)(

*)(

E*EE

xzyx

Ezyx

EEyx

Eyx

Eyx

EEx

EEE

EE



















)(*)(

)(*)(

)(*)(

)(*)(

)(*

)(*

)(*

)(*

E*EE

xzyx

xzyE

xzEE

xzE

xzE

xEE

EEE

EE



















A leftmost derivation A rightmost derivation

46

Derivation Trees

E

E E

E

*

()

x y z x

E()

E E E E
+ +

The derivation tree for (x + y) * (z + x).

All derivations of this expression will

produce the same derivation tree.

7

47

Concrete vs. Abstract Syntax Trees

E

E E

E

*

()

x y z x

E()

E E E E
+ +

parse tree =

derivation tree =

concrete syntax tree

Times

Plus

x y z x

Plus

id id id id

An AST contains only the

information needed to

generate an intermediate

representation

8

48

L(G) = The Language Generated by Grammar G

 wS|Tw=L(G)  *

 

languages!regular

 thanmore capturecan CFGs So

.0

then

|aSbS

 sproduction has if example,For





n|ba=L(G)

G

nn



9

Pushdown Automata (PDAs)

Regular languages are accepted by Finite Automata.

Context-free languages are accepted by Pushdown Automata,

a finite automata augmented with a stack.

Illustration from https://en.wikipedea.org/wiki/Pushdown_automaton

10

Pushdown Automata (PDAs)

),,,,,(0 ZqQM 

states :Q alphabet :

statestart : Q0 q

symbolstack initial :Z 

* QX)a,(q,

,}),{(,:







 XaQq

symbolsstack :

11

Pushdown Automata (PDAs)

stack). of topis symbol(leftmost pushes""

 and pops""it is,That .with replace

 and state tomovecan it stack, theof top

on with reading statein is machine

 the that whenmeans X)a,(q,),'(







XX

q'

Xaq

q 

12

Pushdown Automata (PDAs)

 left).at (topstack on the with , of

 symbolfirst at the looking statein

PDA thedenotesIt (ID).n descriptio

 ousinstantanean called is

),,(

,,For **







w

q

wq

wQq 

13

Language accepted by a PDA

),,'(),,(

as),,(),(for and

),,'(),,(

 as IDson relation the

define),,,(),(For









wqXwq

Xqq

wqXawq

aXaqq











)},,(),,(,|{

)(

0

* qZwqQqw

ML





14

,

,

Exercise : work out the details of this PDA

),,(

),,(

),,(

),,(

),,(

),,(

),(,0

b

b

b

a

a

a

q

Abq

AAbbq

AAAbbbq

AAabbbq

Aaabbbq

Zaaabbbq













 0



n|ba

L(M)

nn

15

PDAs and CFGs Facts
(we will not prove them)

tic!determinis be toM

 want welanguages gprogramminFor

fast! soNot ?PDA theconstruct just

CFG aGiven solved? problem Parsing

.such that

 CFG a is therePDA every For 2)

.such that

 PDA a is thereCFG every For 1)

M

G

L(M)L(G)

GM

L(M)L(G)

 MG





16

56

Origins of nondeterminism?

Ambiguity!

E

EE
*

x y

E E
+ z

E

E
+

x

E

y z

E E
*

Both derivation trees correspond “x + y * z”.

But (x+y) * z is not the same as x + (y * z).

This type of ambiguity will cause problems

when we try to go from program texts to

derivation trees! Semantic ambiguity!

We can often modify the grammar in order to eliminate ambiguity

),,,(2122 EPTNG 

F}T,{E,2 N id}),(,,*,{1 T

? that proveyou Can

(factors) id|(E)F

(terms)F|F*TT

ns)(expressioT|TEE

:

21

2

)L(G)L(G

P









18

58

The modified grammar eliminates

ambiguity

E

E +

1

T

2

3

T F
*

F

This is now

the unique

derivation

tree for

x + y * z

S

19

59

Fun Fun Facts

 
 11,

11,





nm|dcba

nm|dcba=L

nmmn

mmnn

See Hopcroft and Ullman, “Introduction to Automata

Theory, Languages, and Computation”

(1) Some context-free languages are

inherently ambiguous --- every context-free

grammar for them will be ambiguous. For example:

(2) Checking for ambiguity in an arbitrary context-free

grammar is not decidable! Ouch!

(3) Given two grammars G1 and G2, checking

L(G1) = L(G2) is not decidable! Ouch!

20

Two approaches to building stack-

based parsing machines: top-down and

bottom-up

• Top Down : attempts a left-most derivation. We will
look at two techniques:

• Recursive decent (hand coded)

• Predictive parsing (table driven)

• Bottom-up : attempts a right-most derivation
backwards. We will look at two techniques:

• SLR(1) : Simple LR(1)

• LR(1)

Bottom-up techniques are strictly more powerful.

That is, they can parse more grammars. 21

Recursive Descent Parsing

(G5)

S :: = if E then S else S

| begin S L

| print E

E ::= NUM = NUM

L ::= end

| ; S L

int tok = getToken();

void advance() {tok = getToken();}
void eat (int t) {if (tok == t) advance(); else
error();}

void S() {switch(tok) {
case IF: eat(IF); E(); eat(THEN);

S(); eat(ELSE); S(); break;
case BEGIN: eat(BEGIN); S(); L(); break;
case PRINT: eat(PRINT); E(); break;
default: error();

}}

void L() {switch(tok) {
case END: eat(END); break;
case SEMI: eat(SEMI); S(); L(); break;
default: error();

}}

void E() {eat(NUM) ; eat(EQ); eat(NUM); }

Example From Andrew Appel, “Modern Compiler

Implementation in Java” page 46

Parse corresponds to

a left-most derivation

constructed in

a “top-down” manner

22

62

A -> A1 | A2 | . . . | Ak |

1 | 2 | . . . | n

Eliminate left recursion!

A -> 1 A’ | 2 A’ | . . . | n A’

A’ -> 1 A’ | 2 A’| . . . | k A’ | 

For eliminating left-recursion in general, see Aho and Ullman.

A

A

A







A

A’







A’

A’



loop! infinitean tolead

 willin recursion"left "But 2GTEE 

Eliminate left recursion

),,,(3133 EPTNG 

F},T'T,,E'{E,2 N id}),(,,*,{1 T

? that proveyou Can

 id|(E)F

|'*'

T'FT

E'TE

:

32

2

)L(G)L(G

TFT

ε|E'TE'

P















24

Recursive descent pseudocode

))"eat(" ();get);("eat(" else

)eat(then

 token()ifgetF()

()get();get);*"eat(" then "*" token()if()get

()getT'();getF)getT(

()get();get);"eat(" then "" token()if()get

()getE'getT();getE()

E

id

id

T'FT'

E'TE'











25

Where’s the stack machine?

It’s implicit in the call stack!

Parsing (x+y)*(z+x) using a call to getE()

getE() getE()

getT()

getE()

getT()

getF()

getE()

getT()

getF()

eat(“(“)

getE()

getT()

getF()

getE()

…

call stack over time …
26

66

Compiler Construction

Lent Term 2022

Lecture 4: Table-driven top-down (LL) parsing

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

1. LL(k) vs LR(k) parsing

2. Automating left-most derivations?

3. FIRST, FOLLOW, and the LL(1)
parsing table.

4. LL(1) table-based parsing

5. Computing FIRST and FOLLOW

1

67

LL(k) and LR(k)

• LL(k) : (L)eft-to-right parse, (L)eft-most
derivation, k-symbol lookahead. Based on
looking at the next k tokens, an LL(k) parser
must predict the next production. We have been
looking at LL(1).

• LR(k) : (L)eft-to-right parse, (R)ight-most
derivation, k-symbol lookahead. Postpone
production selection until the entire right-hand-
side has been seen (and as many as k symbols
beyond). LR parsers perform a rightmost
derivation backwards!

2

68

LL(k) vs. LR(k) reductions (SLR(1) as well)

** TwN)(TβwβA  

LL(k) LR(k)

k token look ahead

Stack

A β (left-most

symbol at

top)

k token look

ahead

Stack

DFAβ(right-most

symbol at

top)

A

w w

3

For LL(1), augment Grammar with end-of-input

),,,('

33

'

3

'

3 SPTNG 

S}F,,T'T,,E'{E,'

3 N id,$}),(,,*,{3 T

 id|(E)F

|'*'

T'FT

E'TE

)markerinput of end is ($$

:'

3













TFT

ε|E'TE'

ES

P

4

Leftmost derivations







wwA

AwA

TNTw

lm





 as written is step derivationleftmost a

 production a and :Given

)(, **

5

A left-most derivation of (x+y)

)$(

'$)(

'$')(

'$')'(

'$')''(

'$')''(

'$')'(

'$')'(

'$')''(

'$')''(

'$')'(

'$')(

'$'

'$

$

yx

Eyx

ETyx

ETyEx

ETEyTx

ETEFTx

ETTEx

ETxE

ETExT

ETEFT

ETTE

ETE

EFT

TE

ES

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm

lm































 stack. on theon is andinput

 thefrom readbeen has

 then $ If : workwill

 thisPerhaps PDA)? (a machine

stack a into sderivation

most-left turn Can we :Idea





w

wS lm



6

This looks promising. But can we make

it work?





















''$')'')$

match'$')'')$

'$')'')$

''$')')$

''$'))$

match'$')()$(

)('$')$(

''$)$(

'$)$(

$)$(

TETETy

ETEidTyx

idFETEFTyx

FTTETTEyx

TEEETEyx

ETEyx

EFEFTyx

FTTTEyx

TEEEyx

ESSyx

production viastackinput

7

But how do we automate selection of

the production to use at each step?

accept!$$

''$$

''$'$

match'$'))$

''$')')$

''$')'')$

match'$')'')$

'$')'')$

''$')')$

match'$')')$

'''$')')$

























EE

TET

ET

EETE

TETET

ETEidTy

idFETEFTy

FTTETTEy

ETTEy

TEEETEy

production viastackinput

8

FIRST (we will see how to compute later)

  aTN|Ta= **,)()FIRST(

}(,{)(FIRST id|(E)F

}*,{)'(FIRST|'*'

}(,{)(FIRSTT'FT

},{)'(FIRST

}(,{)(FIRSTE'TE

}(,{)(FIRST$

idT

TTFT

idT

Eε|E'TE'

idE

idSES

















9

  AaS|a=A  ,)FOLLOW(

FOLLOW (we will see how to compute later)

$}),*,,{)(FOLLOW id|(E)F

}$),,{)'(FOLLOW|'*'

}$),,{)(FOLLOWT'FT

}$),{)'(FOLLOW

}$),{)(FOLLOWE'TE

$













F

TTFT

T

Eε|E'TE'

E

ES



'$')('$''$$

?)FOLLOW()""

ETEEFTTEES

E





10

 

 ],[],M[

FOLLOWeach for then

 FIRST if else

],[],M[then

 a and FIRST if

 productioneach for

each for

 allfor



























AbAM=bA

(A) b

)(

AaAM=aA

)(a

A

N A

 {} T, M[A, a]N, aA

The LL(1) Parsing table M

11

'

3grammar for Table GM

F

'T
T

'E

E

$)(*id

'TEE 

'FTT 

idF 

'' TEE 

'T '*' FTT 

'TEE 

'FTT 

)(EF 

'E 'E

'T 'T

12

The LL(1) Parsing Algorithm

()TopOfStack:

on top) symbol(leftmost push pop;then

 if else

 pop;then

)match a (if

)(while















X

α}{XM[X,a]

ken() LexNextToa :

aX

$X

()TopOfStackX:

en()LexNextToka:



13

Now use M to parse (x+y) …

}'{],'['$')'')$

'$')'')$

}{],['$')'')$

}'{],['$')')$

}'{],['$'))$

'$')()$(

)}({](,['$')$(

}'{](,['$)$(

}'{](,[$)$(

$}{](,[)$(





















TTMETETy

matchETEidTyx

idFidFMETEFTyx

FTTidTMETTEyx

TEEidEMETEyx

matchETEyx

EFFMEFTyx

FTTTMTEyx

TEEEMEyx

ESSMSyx

actionstackinput

14

… kachunk, kachunk, kachunk …

accept

EEME

TTMET

matchET

EEMETE

TTMETET

matchETEidTy

idFidFMETEFTy

FTTidTMETTEy

matchETTEy

TEEEMETEy

$$

}'{,$]'['$$

}'{,$]'['$'$

'$'))$

}'{)],'['$')')$

}'{)],'['$')'')$

'$')'')$

}{],['$')'')$

}'{],['$')')$

'$')')$

}''{],'['$')')$

























actionstackinput

15

NULLABLE

)(NULLABLE)(NULLABLE

)()(NULLABLE

)(NULLABLE

)()(NULLABLE

)()(BLENULLA

)(BLENULLA

























X

NTXX

NAA

Tcfalsec

true

A

16

. ifonly and if

 true)NULLABLE(

* 





=

Computing FIRST

}{FIRST(A):FIRST(A) then 1k j if

:done else

1j:jthen

)NULLABLE(X if

}){-)FIRST(X(FIRST(A):FIRST(A)

k j and donenot while

 false : done 1; jthen

production a is XXX if

}{FIRST(A):FIRST(A)then

 production a is if

changes FIRST while

{}: FIRST(A) , allfor

}{: FIRST(a) , allfor

j

j

k21































true

A

A

NA

aTa



17

)FOLLOW(FOLLOW(B):FOLLOW(B)then

)(production a is if

)FOLLOW(FOLLOW(B):FOLLOW(B)then

)FIRST(and production a is if

}){-)FIRST((FOLLOW(B):FOLLOW(B)then

),(production a is if

changesFOLLOW while

symbol)start theis (S {$}: FOLLOW(S)

{}:FOLLOW , allfor

A

NBBA

A

BA

NBBA

(A)NA

























Computing FOLLOW

18

Many grammars cannot be parsed LL(1)

aYX

cY

XYSdS

|

|

|








Y
S

X

FIRST FOLLOW

},,{ dca {}

},,{ dca
},,{ dca},{ ca

}{c

 LL(1)!not isGrammar

ambiguity! is This

},{],[XYSSdSdSM 

19

Bottom-up (LR) parsing to the rescue!

grammar!

 thefromrecursion left

eliminate tohavelonger

 no weparsing LRWith

),,,(2122 EPTNG 

F}T,{E,2 N id}),(,,*,{1 T

id|(E)FF|F*TTT|TEE 

20

86

Compiler Construction

Lent Term 2022

Lecture 5 : Theoretical foundations of

Bottom-up (LR) parsing

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

1. This lecture develops a general theory for
non-deterministic bottom-up parsing

2. Next lecture will present two techniques for
imposing determinism --- SLR(1) parsing and
LR(1) parsing.

This grammar will be our running example

)',,,(2122 EPTNG 

F}T,E,,{E'2 N id}),(,,*,{1 T

(factors) id|(E)F

(terms)F|F*TT

ns)(expressioT|TEE

EE' :2







P

2
Note: E’ was added for convenience to ensure

that there is a single starting production.

Rightmost derivations

wAw

AAw

TNTw

rm 











 as written is step derivationrightmost a

 production a and :Given

)(, **

3

A rightmost derivation of (x+y)

)(

)(

)(

)(

)(

)(

)(

'

yx

yF

yT

yE

FE

TE

E

F

T

EE

rm

rm

rm

rm

rm

rm

rm

rm

rm

rm





















4

Top-down (LL) parsing is

based on

left-most derivations.

Bottom-up (LR) parsing is

based on

right-most derivations.

But Bottom-up parsers perform the

derivation in reverse!

'

)(

)(

)(

)(

)(

)(

)(

EE

T

F

E

TE

FE

yE

yT

yF

yx





















FLIP!

5)(

)(

)(

)(

)(

)(

)(

yx

yF

yT

yE

FE

TE

E

F

T

ES

rm

rm

rm

rm

rm

rm

rm

rm

rm

rm



















 Start parse

Finish

Can we transform a backwards

derivation into

an execution of a stack machine?

$'$

$$

$$

$$

$)$(

)$$(

)$$(

)$$(

)$$(

)$$(

)$($

E

E

T

F

E

TE

FE

yE

yT

yF

yx













 work?this

 make Can we

 input).-of-end and

 bottomstack as $

(use machinestack

 a as derivation

reversed theView

inputstack

'

)(

)(

)(

)(

)(

)(

)(

EE

T

F

E

TE

FE

yE

yT

yF

yx





















Let’s try to formalize such a parser

7

input) remaining the stack, theis (

$,$

x

x





An LR parser configuration has the form

The configuration is valid when there exists

a right-most derivation of the form

xS rm 
*

Let’s try to formalize our (non-

deterministic) parser

8
BzA

xAxBz

BzxAx

reduce

rm









 



 production using

reduction a called isaction This

$,$$,$

 :so likeanother ion toconfigurat one from

 move MIGHTparser backwards""Our

 Suppose

Are reduction actions sufficient?

9 stack! theof on top want We

???

$,$

$,$

???

Bz

zxB

zx

reduce









 

 :stuck getsparser our reverse,in thisSimulating

. then and using

derivation thehave weSuppose









BBzA

zxBzxAx rmrm

We need an action that shifts a terminal

onto the stack!

10
$,$

$,$

$,$

$,$

)(

xA

xBz

zxB

zx

reduce

sshift

reduce









 

 

 

zxBzxAx rmrm  

How do we

know when to

stop shifting?

Here we don’t

want to gobble

up x!

Sanity check.

11$,$

$,$

$,$

$,$

)(

zBxA

zBxy

xyzB

xyz

reduce

sshift

reduce









 

 

 

:actions possible sparser'Our

. then, production using

,production s' of side hand-right in theappear not

does hen can work w that thissure make sLet'









ByA

xyzBxyzBxAz

A

B

rmrm

All good! But

again, how do

we know when to

reduce and when

to stop shifting?

Shift and reduce are sufficient.

12 holds! future the

 whatGUESS and ticdeterminis-non be lparser wil

our So replay! toderivation a toaccess have

t won' we a parsing are when weHowever,

.sufficient are reduce andshift that us tellsThis

$,$$$,

 actions ceshift/redu

 using reversein it"replay " alwayscan Then we

S

derivation a have we

if that edemonstrat slides twoprevious The

*

*

rm

w

Sw

w





Replay parsing of (x+y) using shift/reduce actions.

X=top-of-stack, a = next input token

shift)$$(

shift)$$(

 reduce)$$(

 reduce)$$(

 reduce)$$(

shift)$$(

shift)$($

 a]action[X,inputstack

yE

yE

TEyT

FTyF

idFyx

yx

yx















13

… informal shift/reduce parse continued

accept!$'$

ES reduce$$

 reduce$$

 reduce$$

)(reduce$)$(

shift)$$(

 reduce)$$(

 reduce)$$(

 reduce)$$(

 a]action[X,inputstack

E

E

EFT

FTF

EFE

E

TEETE

FTFE

idFyE















14

How do we decide when to shift and

when to reduce?

 . toreducecan then that we

 sostack theof on top getting eventually of

 hope with theparsing continue want toMIGHT we

,

 have weif However,

. with reduce want toMIGHT we

,

ion configurat in the isparser our

 When.production a is Suppose

A

x$$

A

x$$

A















15

LR(0) items record how much of a

production’s right-hand side we have

already parsed

. from derivableinput some seenext MIGHT we

 and from derivable input some parsed

already have we: oftion Interpreta

A

 item LR(0) theproduce

))(,(A

productiongrammar every For

*

*











x)(x

A

TN

rm







16

2grammar for items)0(GLR













TE

TE

TEE

TEE

TEE

TEE













FT

FT

F*TT

F*TT

F*TT

T*TT













idF

idF

(E)F

)(EF

E)(F

(E)F

 EE'EE'

17

Valid LR(0) items

xAxS

A

rmrm 







*

 derivation a exists thereif

 for validis Item .Definition

18

$.,$

ion configuratin when guide a as

 item theuse couldparser our then

 for validis item If

z

A



 

uzx

zx

Bzx

xB

Ax

S

rm

irm

rm

rm

rm











*

*

*











$,$

$,$

$,$

$,$

$,$

$,$

*

*

*

*

uzx

zx

zxB

xB

xA

S

i





















i

i

BBA

B

BA

BA

















,

Derivation Parse Possible guides

guides. parsing as used bemight sproduction

 for these itemsin which waysheConsider t

 .||| and Suppose 21 kBBA  

$,$$,$

 :reduction a perform MIGHT Then we

 .for validis and

$,$

 config in the isparser our Suppose

$,$$,$

 :stack theonto cshift MIGHT Then we

 .for validis and

$,$

 config in the isparser our Suppose

zAz

A

z

zccz

cA

cz

reduce

shift













 







20

Using items as parsing guides

 z.input remaining theofprefix a

derive will that guess couldparser our is,That

$.,$$,$$,$$,$

 :so like proceed MIGHTparser our so, If

 that be MIGHTit is,That).derivation that ofpast

 (the parseour of future thecapture MIGHT Then

 .for validis Suppose

. so valid,is assume willwhich we

$,$

 config in the isparser our Suppose

*

**















xAxyxz

zyxxAxS

A

zS

z

reduce

rmrmrm

*

rm

 







21

Using items as parsing guides

The KEY idea in LR parsing

22

 stack.current theof contents

 for the validitems all ofset thederive

can it ion configuratevery in way that a

such in parser ceshift/reduour Augment

 guide. a as use set to thisfrom

 iteman select tically)determinis-(non

can parser thestepeach at Then

Defined a NFA with LR(0) items as

states!

 cA   cA
c

 BA iB


23 NFA. thisoffunction n transitio thebe Let

 state. final a is (state) itemevery and

 example)(for EE'

 production starting unique thefrom

dconstructe item thisis state initial The

G

0





q

 BA   BAB

Main LR parsing theorem

.for validis

ifonly and if),(Theorem. 0









A

qA G

regular! is

stack theof language

 the:fact Amazing

24
See proof (not examinable) in Introduction to Automata Theory, Languages, and

Computation. Hopcroft and Ullman.

2grammar for tionsNFA transi fewA G

FT (E)F 

TEE 


TEE 



idF 





E)(F 

(

25

A non-deterministic LR parsing

algorithm

ERROR then above theof none if

input; more no ifexit andaccept then

),(S if

stack; theonto push then and

stack theoff pop :reducethen

),(A if

n;input tokenext : c

stack theonto shift then

),(if

stack the:

)while(true

input w$ of symbolfirst : c

0

0

0











q

A

q

c

qcA

G

G

G













26

This is non-deterministic

since multiple conditions

can be true and multiple

items can match any

condition.

How can we make the algorithm

deterministic?

27

1. The easy part: convert the NFA to a DFA
2. When there are shift/reduce or

reduce/reduce conflicts, find some way of
making a deterministic choice.

3. For (2), peek into the input buffer.
4. For (3), use FIRST and/or FOLLOW!

Note : no matter how we do this there will be

non-ambiguous grammars for which our deterministic

parser will fail.

Next lecture : we will look at two popular approaches,

SLR(1) and LR(1).

113

Compiler Construction

Lent Term 2022

Lecture 6: Deterministic SLR(1) and LR(1)

parsing

Timothy G. Griffin

tgg22@cam.ac.uk

Computer Laboratory

University of Cambridge

1. SLR(1) parsing
2. LR(1) parsing.

Our goal: impose deterministic choices on

this non-deterministic LR parsing algorithm

ERROR then above theof none if

input; more no ifexit andaccept then

),(S if

stack; theonto push then and

stack theoff pop :reducethen

),(A if

n;input tokenext : c

stack theonto shift then

),(if

stack the:

)while(true

input w$ of symbolfirst : c

0

0

0











q

A

q

c

qcA

G

G

G













2

This is non-deterministic

since multiple conditions

can be true and multiple

items can match any

condition.

The easy part: NFA  DFA

idF

)(F

FT

F*TT

TE

TEE

EE'















E







})EE'({closure

 thenis statestart DFA The

EE'

 statestart NFA theproduceswhich

EE'

 production add ,grammar

 termsimple For the symbol.start original theis S

 whereS,S' production new add general,In

0

2



q

G

3

 function tion DFA transi The 

 lecture). Lexing (seeNFA an from

DFA a build tohow knowalready wesince this

do reason to no see I CLOSURE). calledfunction

(using items LR(0) todspecialise

DFA ofon constructi repeat the and

 X).GOTO(I, thiscalls booksMany

})XA| Xclosure({A-X)(I,

DFA For this

I 

4

2grammar for tionsDFA transi fewA G

idF

)(F

FT

F*TT

TE

TEE

E)(F















E (

 FT

 idF
*FTT

TE





E

id

F

T

TEE

)E(F





5

2 of languagestack for theDFA Full G

F
ro

m
 C

o
m

p
il
e

r
s
 b

y
 A

h
o
,
L

a
m

,
S

e
th

i,
 U

ll
m

a
n

6

As usual, the

ERROR state

and

transitions to

it are not

included in

the diagram.

(enlarged to improve readability)

(enlarged to improve readability)

How can we avoid shift/reduce conflicts?

*FTT

TE

I2



2IConsider

$}.,{(, FOLLOW(E)

in is next token ifonly TE with Reduce 2)

 .next token theis * if usingShift 1)

 :LR(1)) (Simple

SLR(1) calledapproach one inspires This





9

Now we can do a DETERMINISTIC SLR(1) parse of

(x+y)





























A production with reducethen

FOLLOW(A),c and I,A c, is

 next token theI, is statecurrent When the3)

stack ontoshift t then I,A and c, is

 next token theI, is statecurrent When the2)

ERROR)T*E,(I

I)*(T,(I

I)TE,(I

example,For).,(I statein isparser

 the, containsstack When the1)

0

70

90

0

c

10

Replay parsing of (x+y) using SLR(1) actions

(FW(X) abbreviates FOLLOW(X))

66

88

2

3

5

44

00

IidFshift I)$,$(

ITEEshift I)$,$(

FW(E)"" reduce I)$,$(

FW(T)"" reduce I)$,$(

FW(F)"" reduce I)$,$(

 IidFshift I)$$(,

I(E)Fshift I)$($,

reason action Stateinput,stack















yE

yE

TEyT

FTyF

idFyx

yx

yx

11

accept!$,'$

)FW(E'"$"EE' reduce I$,$

 FW(F)"$" reduce I$,$

 FW(T)"$" reduce I$,$

 FW(F)"$")(reduce I$),$(

I)(EEshift I)$,$(

 FW(E))"" reduce I)$,$(

 FW(T))"" reduce I)$,$(

 FW(F))"" reduce I)$,$(

reason action Stateinput,stack

1

2

3

11

88

9

3

5

E

E

EFT

FTF

EFE

E

TEETE

FTFE

idFyE

















12

Better idea: Replace the stack contents with state

numbers!

E

E

T

F

id

(

(

(

(

(

(

E

T

F

E

E

TE

FE

idE

)(

(

(

(

(







0486

048

042

043

045

04

0

01

02

03

1104

048

04869

04863

04865

stack on the statesDFA with parsing LR

ERROR else

exit andaccept then

accept a]ACTION[s, if else

stack theonto A]GOTO[t,push

stack of at top state :t

stack theoff states || popthen

A reducea]ACTION[s, if else

ninput tokenext : a

stack on push t then

shift t a]ACTION[s, if

stack of at top state : s

)while(true

input w$ of symbolfirst : a



















14

SLR(1)for GOTO and ACTION

GOTO()?)n rather tha use prefer to I why seeyou do (Now

 j A] GOTO[i, then IA),(I If

accept]ACTION[i,$ then I]S[S' If

A reducea]ACTION[i,

 FOLLOW(A), allfor then

 S'A and I][A If

jshift a]ACTION[i, then I),I(and I][A If

ji

i

i

jii























a

aa

15

Note: there

may still be

shift/reduce or

reduce/reduce

conflicts!

SLR(1)for GOTO and ACTION

F
ro

m
 C

o
m

p
il
e

r
s
 b

y
 A

h
o
,
L

a
m

,
S

e
th

i,
 U

ll
m

a
n

16

parse Example

F
ro

m
 C

o
m

p
il
e

r
s
 b

y
 A

h
o
,
L

a
m

,
S

e
th

i,
 U

ll
m

a
n

17

SLR(1)? Beyond

18

)',,,(3333 SPTNG 

R}L, S, ,{S'3 N

id} , ,*{3 T

 L R

id|*R L

R|RL S

S$ S':3







P

3grammar for DFA LR(0) G

 LRRLS and

betweenconflict ceshift/redu

 a is there4 stateIn

19

 conflict. thisresolvecannot SLR(1)

20

L

L

RL











R reduce]""ACTION[4, so

 ,$},"{"FOLLOW(R)"" and

 I][R However,

6shift]""ACTION[4, so and

 I)"",I(so I][S

4

644 

 LR(1)! SLR(1)? Beyond

21

 token.ahead-lookexplicit an is a where

 a],[A

 form theof items with starts parsing LR(1)

 . techniquepowerful more a useor grammar fix theEither

 defined.uniquely not are

GOTO and ACTION when conflicts reduce-reduceor

 reduce-shift bemay thereSLR(1) with : Problems

 

states as items)1(NFA with an Define LR

ac ,A   ac ,A  
c

aB ,A   b,B 


22

:)(FIRSTeach For ab 

aB ,A   aB ,A  B

3grammar for DFA LR(1) G

 . is next token ifshift Otherwise $. is next token if

only LR Reduce ambiguity. No





LR(1)for GOTO and ACTION

 j A] GOTO[i, then IA),(I If

accept]ACTION[i,$ then I$],S[S' If

A reduceb]ACTION[i,

 then ,S'A and I],[A If

jshift a]ACTION[i, then I),I(and I],[A If

ji

i

i

jii



















b

aaa

24

LR(1) vsSLR(1)











A reducea]ACTION[i,

 FOLLOW(A), allfor then

 S'A and I][A If

:SLR(1)

i

a

25









A reduceb]ACTION[i,

 then ,S'A and I],[A If

:LR(1)

ib

shifts.for not ,reductionsfor ONLY used

is symbol ahead-look that theNote b

LR(1) vsSLR(1)

26

1. LR(1) is more powerful than SLR(1)
2. The DFA associated with a LR(1) parser may

have a very large number of states
3. This inspired an optimisation (collapsing

states) resulting in a the class of LALR
papers normally implemented as YACC.
These parsers have fewer states but can
produce very strange error messages.

4. Ocaml’s Menhir is based on LR(1) and claims
to overcome many YACC problems.

5. We will not cover LALR parsing.

139

LECTURE 7

Slang front end and interpreter 0

• Slang (= Simple LANGuage)
– A subset of L3 from Semantics …

– … with very ugly concrete syntax

– You are invited to experiment with improvements to this
concrete syntax.

• Slang : concrete syntax, types

• Abstract Syntax Trees (ASTs)

• The Front End

• Interpreter 0 : The high-level “definitional” interpreter
1. Slang/L3 values represented directly as OCaml values

2. Recursive interpreter implements a denotational semantics

3. The interpreter implicitly uses OCaml’s runtime stack and
heap

140

The Slang compiler

• The compiler is available from the course web site.

• It is written in Ocaml

• Slang = Simple Language. Based on L3 from
Semantics of Programming Languages, Part 1B.

• The best way to learn about compilers is to modify
one.

• There are several suggested improvements listed
on the course web site. I hope that some of you will
implement these. If they work, I’ll let you commit
your changes to the repository. Fame! Fortune!

Bridging the Gap?

Slang

Program

Text

The Slang

compiler

Low-level,

stack-based

code for the

Jargon Virtual

Machine

Question : How do we leap from the mathematical

semantics of L3 to a low-level stack machine?

Answer : We will start with a high-level interpreter

based on semantics, and then derive the stack

machine by a sequence of semantics preserving

transformations!

142

Lectures 7 – 11 : the derivation

Interpreter 0

Interpreter 1

Interpreter 2

Interpreter 3

Jargon VM

Split stack into two, refactor

Linearise code

Low-level addressable stack

Note : this is not the traditional way of teaching compilers! Many

textbooks will start with a stack machine and bridge the gap

informally. We will develop a deeper understanding!

Explicit stack via CPS+DFS

Clunky Slang Syntax (informal)

uop := - | ~

bop ::= + | - | * | < | = | && | ||

t ::= bool | int | unit | (t) | t * t | t + t | t -> t | t ref

e ::= () | n | true | false | x | (e) | ? |

e bop e | uop e |

if e then else e end |

e e | fun (x : t) -> e end |

let x : t = e in e end |

let f(x : t) : t = e in e end |

!e | ref e | e := e | while e do e end |

begin e; e; … e end |

(e, e) | snd e | fst e |

inl t e | inr t e |

case e of inl(x : t) -> e | inr(x:t) -> e end

(~ is boolean negation)

(? requests an integer

input from terminal)

(notice type annotation

on inl and inr constructs)

144

From slang/examples

let fib(m : int) : int =

if m = 0

then 1

else if m = 1

then 1

else fib (m - 1) +

fib (m -2)

end

end

in

fib(?)

end

let gcd(p : int * int) : int =

let m : int = fst p

in let n : int = snd p

in if m = n

then m

else if m < n

then gcd(m, n - m)

else gcd(m - n, n)

end

end

end

end

in gcd(?, ?) end

The ? requests an integer input from the terminal

Slang Front End

Input file foo.slang

Remove “syntactic sugar”, file location information,

and most type information

Parsed AST (Past.expr)

Static analysis : check types, and context-

sensitive rules, resolve overloaded operators

Parse (we use Ocaml versions of LEX and YACC,

covered in Lectures 3 --- 6)

Intermediate AST (Ast.expr)

Parsed AST (Past.expr)

Parsed AST

(past.ml)

type var = string

type loc = Lexing.position

type type_expr =

| TEint

| TEbool

| TEunit

| TEref of type_expr

| TEarrow of type_expr * type_expr

| TEproduct of type_expr * type_expr

| TEunion of type_expr * type_expr

type oper = ADD | MUL | SUB | LT |

AND | OR | EQ | EQB | EQI

type unary_oper = NEG | NOT

type expr =

| Unit of loc

| What of loc

| Var of loc * var

| Integer of loc * int

| Boolean of loc * bool

| UnaryOp of loc * unary_oper * expr

| Op of loc * expr * oper * expr

| If of loc * expr * expr * expr

| Pair of loc * expr * expr

| Fst of loc * expr

| Snd of loc * expr

| Inl of loc * type_expr * expr

| Inr of loc * type_expr * expr

| Case of loc * expr * lambda * lambda

| While of loc * expr * expr

| Seq of loc * (expr list)

| Ref of loc * expr

| Deref of loc * expr

| Assign of loc * expr * expr

| Lambda of loc * lambda

| App of loc * expr * expr

| Let of loc * var * type_expr * expr * expr

| LetFun of loc * var * lambda

* type_expr * expr

| LetRecFun of loc * var * lambda

* type_expr * expr

Locations (loc) are used in

generating error messages.

147

static.mli, static.ml

val infer : (Past.var * Past.type_expr) list

-> (Past.expr * Past.type_expr)

val check : Past.expr -> Past.expr (* infer on empty environment *)

• Check type correctness

• Rewrite expressions to resolve EQ to EQI (for integers)

or EQB (for bools).

• Only LetFun is returned by parser. Rewrite to

LetRecFun when function is actually recursive.

Lesson : while enforcing “context-sensitive rules” we can resolve

ambiguities that cannot be specified in context-free grammars.

148

Internal AST

(ast.ml)

type var = string

type oper = ADD | MUL | SUB | LT |

AND | OR | EQB | EQI

type unary_oper = NEG | NOT | READ

type expr =

| Unit

| Var of var

| Integer of int

| Boolean of bool

| UnaryOp of unary_oper * expr

| Op of expr * oper * expr

| If of expr * expr * expr

| Pair of expr * expr

| Fst of expr

| Snd of expr

| Inl of expr

| Inr of expr

| Case of expr * lambda * lambda

| While of expr * expr

| Seq of (expr list)

| Ref of expr

| Deref of expr

| Assign of expr * expr

| Lambda of lambda

| App of expr * expr

| LetFun of var * lambda * expr

| LetRecFun of var * lambda * expr

and lambda = var * expr

No locations, types.

No Let, EQ.

Is getting rid of types

a bad idea? Perhaps

a full answer would be

language-dependent…

149

past_to_ast.ml

let x : t = e1 in e2 end

(fun (x: t) -> e2 end) e1

This is done to simplify some of our code.

Is it a good idea? Perhaps not!

See 2021 paper 4 question 3.

val translate_expr : Past.expr -> Ast.expr

150

Approaches to Mathematical Semantics

• Axiomatic: Meaning defined through logical

specifications of behaviour.

• Hoare Logic (Part II)

• Separation Logic

• Operational: Meaning defined in terms of transition

relations on states in an abstract machine.

• Semantics (Part 1B)

• Denotational: Meaning is defined in terms of

mathematical objects such as functions.

• Denotational Semantics (Part II)

151

A denotational semantics for L3?

A = set of addresses

S = set of stores = A V

V = set of value

≈ A

+ N

+ B

+ { () }

+ V× V

+ (V + V)

+ (V× S)  (V× S)

N = set of integers B = set of booleans

I = set of identifiers

E = set of environments = I V

Set of values V solves this

“domain equation” (here +

means disjoint union).

Solving such equations is

where some difficult maths

is required …

M = the meaning function

M : (Expr × E× S)  (V× S)

Expr = set of L3 expressions

152

Interpreter 0 : An OCaml approximation

A = set of addresses

S = set of stores = A V

V = set of value

≈ A

+ N

+ B

+ { () }

+ V× V

+ (V + V)

+ (V× S)  (V× S)

E = set of environments = A V

M = the meaning function

M : (Expr × E× S)  (V× S)

type address

type store = address -> value

and value =

| REF of address

| INT of int

| BOOL of bool

| UNIT

| PAIR of value * value

| INL of value

| INR of value

| FUN of ((value * store)

-> (value * store))

type env = Ast.var -> value

val interpret :

Ast.expr * env * store

-> (value * store)

153

Most of the code is obvious!
let rec interpret (e, env, store) =

match e with

| If(e1, e2, e3) ->

let (v, store') = interpret(e1, env, store) in

(match v with

| BOOL true -> interpret(e2, env, store')

| BOOL false -> interpret(e3, env, store')

| v -> complain "runtime error. Expecting a boolean!”)

| Pair(e1, e2) ->

let (v1, store1) = interpret(e1, env, store) in

let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)

| Fst e ->

(match interpret(e, env, store) with

| (PAIR (v1, _), store') -> (v1, store')

| (v, _) -> complain "runtime error. Expecting a pair!”)

| Snd e ->

(match interpret(e, env, store) with

| (PAIR (_, v2), store') -> (v2, store')

| (v, _) -> complain "runtime error. Expecting a pair!”)

| Inl e -> let (v, store') = interpret(e, env, store) in (INL v, store')

| Inr e -> let (v, store') = interpret(e, env, store) in (INR v, store')

:

:

154

Tricky bits : Slang functions mapped to OCaml functions!

let rec interpret (e, env, store) =

match e with

:

:

| Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)

| App(e1, e2) -> (* I chose to evaluate argument first! *)

let (v2, store1) = interpret(e2, env, store) in

let (v1, store2) = interpret(e1, env, store1) in

(match v1 with

| FUN f -> f (v2, store2)

| v -> complain "runtime error. Expecting a function!”)

| LetFun(f, (x, body), e) ->

let new_env =

update(env, (f, FUN (fun (v, s) -> interpret(body, update(env, (x, v)), s))))

in interpret(e, new_env, store)

| LetRecFun(f, (x, body), e) ->

let rec new_env g = (* a recursive environment!!! *)

if g = f then FUN (fun (v, s) -> interpret(body, update(new_env, (x, v)), s))

else env g

in interpret(e, new_env, store)

update : env * (var * value) -> env

155

Interpreter 0 is using OCaml’s runtime stack.

How can we move toward the Jargon VM?

let fun f (x) = x + 1

fun g(y) = f(y+2)+2

fun h(w) = g(w+1)+3

in

h(h(17))

end

h h

g

h

g

f

h

g

h h h

g

h

g

f

h

g

h

Execution

The run-time data structure is

the call stack containing an

activation record for each function

invocation.

156

Recall tail recursion : fold_left vs

fold_right

(* fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

fold_left f a [b1; ...; bn]] = f (... (f (f a b1) b2) ...) bn

*)

let rec fold_left f a l =

match l with

| [] -> a

| b :: rest -> fold_left f (f a b) rest

(* fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b

fold_right f [a1; ...; an] b = f a1 (f a2 (... (f an b) ...))

*)

let rec fold_right f l b =

match l with

| [] -> b

| a::rest -> f a (fold_right f rest b)

From ocaml-4.01.0/stdlib/list.ml :

This is tail

recursive

This is NOT

tail

recursive

Convert tail-recursion to iteration

(* gcd : int * int -> int *)

let rec gcd(m, n) =

if m = n

then m

else if m < n

then gcd(m, n - m)

else gcd(m - n, n)

(* gcd_iter : int * int -> int *)

let gcd_iter (m, n) =

let rm = ref m

in let rn = ref n

in let result = ref 0

in let not_done = ref true

in let _ =

while !not_done

do

if !rm = !rn

then (not_done := false;

result := !rm)

else if !rm < !rn

then rn := !rn - !rm

else rm := !rm - !rn

done

in !result

Here we have illustrated

tail-recursion elimination

as a source-to-source

transformation. However, the

OCaml compiler will do something

similar to a lower-level intermediate

representation. Upshot : we will

consider all tail-recursive OCaml

functions as representing iterative

programs.

158

Question: can we transform any

recursive function (such as

interpreter 0) into a tail recursive

function?
The answer is YES!

• We add an extra argument, called a continuation,
that represents “the rest of the computation”

• This is called the Continuation Passing Style
(CPS) transformation.

• We will then “defunctionalize” (DFC) these
continuations and represent them with a stack.

• Finally, we obtain a tail recursive function that
carries its own stack as an extra argument!

We will apply this kind of

transformation to the code of interpreter 0 as

the first steps towards deriving interpreter 1.

159

LECTURES 8 & 9

Derivation of Interpreters 1 & 2

• Continuation Passing Style (CPS) : transform
any recursive function to a tail-recursive
function

• “Defunctionalisation” (DFC) : replace higher-
order functions with a data structure

• Putting it all together:
– Derive the Fibonacci Machine
– Derive the Expression Machine, and

“compiler”!
• This provides a roadmap for the interp_0 

interp_1  interp_2 derivations.

160

(CPS) transformation of fib

(* fib : int -> int *)

let rec fib m =

if m = 0

then 1

else if m = 1

then 1

else fib(m - 1) + fib (m - 2)

(* fib_cps : int * (int -> int) -> int *)

let rec fib_cps (m, cnt) =

if m = 0

then cnt 1

else if m = 1

then cnt 1

else fib_cps(m -1,

fun a -> fib_cps(m - 2 ,

fun b -> cnt (a + b)))

161

A closer look

let rec fib_cps (m, cnt) =

if m = 0

then cnt 1

else if m = 1

then cnt 1

else fib_cps(m -1, fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)))

The rest of the computation after computing “fib(m)”. That is, cnt is a

function expecting the result of “fib(m)” as its argument.

The computation waiting

for the result of “fib(m-2)”

The computation waiting

for the result of “fib(m-1)”

This makes explicit the order of

evaluation that is implicit in the

original “fib(m-1) + fib(m-2)” :

-- first compute fib(m-1)

-- then compute fib(m-2)

-- then add results together

-- then return

162

Expressed with “let” rather than “fun”

(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

if m = 0

then cnt 1

else if m = 1

then cnt 1

else let cnt2 a b = cnt (a + b)

in let cnt1 a = fib_cps_v2(m - 2, cnt2 a)

in fib_cps_v2(m - 1, cnt1)

Some prefer writing CPS forms without explicit funs ….

163

Use the identity continuation …

(* fib_cps : int * (int -> int) -> int *)

let rec fib_cps (m, cnt) =

if m = 0

then cnt 1

else if m = 1

then cnt 1

else fib_cps(m -1, fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)))

let id (x : int) = x

let fib_1 x = fib_cps(x, id)

List.map fib_1 [0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10];;

= [1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89]

164

Correctness?

For all c : int -> int, for all m, 0 <= m,

we have, c(fib m) = fib_cps(m, c).

Proof: assume c : int -> int. By Induction

on m. Base case : m = 0:

fib_cps(0, c) = c(1) = c(fib(0).

Induction step: Assume for all n < m, c(fib n) = fib_cps(n, c).

(That is, we need course-of-values induction!)

fib_cps(m + 1, c)

= if m + 1 = 1

then c 1

else fib_cps((m+1) -1, fun a -> fib_cps((m+1) -2, fun b -> c (a + b)))

= if m + 1 = 1

then c 1

else fib_cps(m, fun a -> fib_cps(m-1, fun b -> c (a + b)))

= (by induction)

if m + 1 = 1

then c 1

else (fun a -> fib_cps(m -1, fun b -> c (a + b))) (fib m)

NB: This proof pretends that we can

treat OCaml functions as ideal

mathematical functions, which of course

we cannot. OCaml functions might raise

exceptions like "stack overflow” or

"you burned my toast", and so on. But

this is a convenient fiction as long as

we remember to be careful.

165

Correctness?

= if m + 1 = 1

then c 1

else fib_cps(m-1, fun b -> c ((fib m) + b))

= (by induction)

if m + 1 = 1

then c 1

else (fun b -> c ((fib m) + b)) (fib (m-1))

= if m + 1 = 1

then c 1

else c ((fib m) + (fib (m-1)))

= c (if m + 1 = 1

then 1

else ((fib m) + (fib (m-1))))

= c(if m +1 = 1

then 1

else fib((m + 1) - 1) + fib ((m + 1) - 2))

= c (fib(m + 1))

QED.

166

Can with express fib_cps without a

functional argument ?
(* fib_cps_v2 : (int -> int) * int -> int *)

let rec fib_cps_v2 (m, cnt) =

if m = 0

then cnt 1

else if m = 1

then cnt 1

else let cnt2 a b = cnt (a + b)

in let cnt1 a =

fib_cps_v2(m - 2, cnt2 a)

in fib_cps_v2(m - 1, cnt1)

Idea of “defunctonalisation” (DFC): replace id, cnt1 and cnt2 with

instances of a new data type:

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt

Now we need an “apply” function of type cnt * int -> int

167

“Defunctionalised” version of fib_cps

(* datatype to represent continuations *)

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt

(* apply_cnt : cnt * int -> int *)

let rec apply_cnt = function

| (ID, a) -> a

| (CNT1 (m, cnt), a) -> fib_cps_dfc(m - 2, CNT2 (a, cnt))

| (CNT2 (a, cnt), b) -> apply_cnt (cnt, a + b)

(* fib_cps_dfc : (cnt * int) -> int *)

and fib_cps_dfc (m, cnt) =

if m = 0

then apply_cnt(cnt, 1)

else if m = 1

then apply_cnt(cnt, 1)

else fib_cps_dfc(m -1, CNT1(m, cnt))

(* fib_2 : int -> int *)

let fib_2 m = fib_cps_dfc(m, ID)

168

Correctness?

Let < c > be of type cnt representing

a continuation c : int -> int constructed by fib_cps.

Then

apply_cnt(< c >, m) = c(m)

and

fib_cps(n, c) = fib_cps_dfc(n, < c >).

fun b -> cnt (a + b) CNT2(a, < cnt >)

fun a -> fib_cps(m - 2 , fun b -> cnt (a + b)) CNT1(m, < cnt >)

Proof left

as an

exercise!

fun x -> x ID

Functional continuation c Representation < c >

169

Eureka! Continuations are just lists

(used like a stack)

type tag = SUB2 of int | PLUS of int

type tag_list_cnt = tag list

type cnt = ID | CNT1 of int * cnt | CNT2 of int * cnt

Replace the above continuations with lists! (I’ve selected

more suggestive names for the constructors.)

Think

nil

Think

cons

type1

type int_list = NIL | CONS of int * int_list

Think

cons

type2

170

The continuation lists are used like a stack!

type tag = SUB2 of int | PLUS of int

type tag_list_cnt = tag list

(* apply_tag_list_cnt : tag_list_cnt * int -> int *)

let rec apply_tag_list_cnt = function

| ([], a) -> a

| ((SUB2 m) :: cnt, a) -> fib_cps_dfc_tags(m - 2, (PLUS a):: cnt)

| ((PLUS a) :: cnt, b) -> apply_tag_list_cnt (cnt, a + b)

(* fib_cps_dfc_tags : (tag_list_cnt * int) -> int *)

and fib_cps_dfc_tags (m, cnt) =

if m = 0

then apply_tag_list_cnt(cnt, 1)

else if m = 1

then apply_tag_list_cnt(cnt, 1)

else fib_cps_dfc_tags(m - 1, (SUB2 m) :: cnt)

(* fib_3 : int -> int *)

let fib_3 m = fib_cps_dfc_tags(m, [])

171

Combine Mutually tail-recursive

functions into a single function

type state_type =

| SUB1 (* for right-hand-sides starting with fib_ *)

| APPL (* for right-hand-sides starting with apply_ *)

type state = (state_type * int * tag_list_cnt) -> int

(* eval : state -> int A two-state transition function*)

let rec eval = function

| (SUB1, 0, cnt) -> eval (APPL, 1, cnt)

| (SUB1, 1, cnt) -> eval (APPL, 1, cnt)

| (SUB1, m, cnt) -> eval (SUB1, (m-1), (SUB2 m) :: cnt)

| (APPL, a, (SUB2 m) :: cnt) -> eval (SUB1, (m-2), (PLUS a) :: cnt)

| (APPL, b, (PLUS a) :: cnt) -> eval (APPL, (a+b), cnt)

| (APPL, a, []) -> a

(* fib_4 : int -> int *)

let fib_4 m = eval (SUB1, m, [])

172

Eliminate tail recursion to obtain The Fibonacci Machine!

(* step : state -> state *)

let step = function

| (SUB1, 0, cnt) -> (APPL, 1, cnt)

| (SUB1, 1, cnt) -> (APPL, 1, cnt)

| (SUB1, m, cnt) -> (SUB1, (m-1), (SUB2 m) :: cnt)

| (APPL, a, (SUB2 m) :: cnt) -> (SUB1, (m-2), (PLUS a) :: cnt)

| (APPL, b, (PLUS a) :: cnt) -> (APPL, (a+b), cnt)

| _ -> failwith "step : runtime error!”

(* clearly TAIL RECURSIVE! *)

let rec driver state = function

| (APPL, a, []) -> a

| state -> driver (step state)

(* fib_5 : int -> int *)

let fib_5 m = driver (SUB1, m, [])

In this version we have

simply made the

tail-recursive

structure very explicit.

173

Here is a trace of fib_5 6.

1 SUB1 || 6 || []

2 SUB1 || 5 || [SUB2 6]

3 SUB1 || 4 || [SUB2 6, SUB2 5]

4 SUB1 || 3 || [SUB2 6, SUB2 5, SUB2 4]

5 SUB1 || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

6 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

7 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, SUB2 2]

8 SUB1 || 0 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

9 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3, PLUS 1]

10 APPL || 2 || [SUB2 6, SUB2 5, SUB2 4, SUB2 3]

11 SUB1 || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

12 APPL || 1 || [SUB2 6, SUB2 5, SUB2 4, PLUS 2]

13 APPL || 3 || [SUB2 6, SUB2 5, SUB2 4]

14 SUB1 || 2 || [SUB2 6, SUB2 5, PLUS 3]

15 SUB1 || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

16 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, SUB2 2]

17 SUB1 || 0 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

18 APPL || 1 || [SUB2 6, SUB2 5, PLUS 3, PLUS 1]

19 APPL || 2 || [SUB2 6, SUB2 5, PLUS 3]

20 APPL || 5 || [SUB2 6, SUB2 5]

21 SUB1 || 3 || [SUB2 6, PLUS 5]

22 SUB1 || 2 || [SUB2 6, PLUS 5, SUB2 3]

23 SUB1 || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

24 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, SUB2 2]

25 SUB1 || 0 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

26 APPL || 1 || [SUB2 6, PLUS 5, SUB2 3, PLUS 1]

27 APPL || 2 || [SUB2 6, PLUS 5, SUB2 3]

28 SUB1 || 1 || [SUB2 6, PLUS 5, PLUS 2]

29 APPL || 1 || [SUB2 6, PLUS 5, PLUS 2]

30 APPL || 3 || [SUB2 6, PLUS 5]

31 APPL || 8 || [SUB2 6]

32 SUB1 || 4 || [PLUS 8]

33 SUB1 || 3 || [PLUS 8, SUB2 4]

34 SUB1 || 2 || [PLUS 8, SUB2 4, SUB2 3]

35 SUB1 || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

36 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, SUB2 2]

37 SUB1 || 0 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

38 APPL || 1 || [PLUS 8, SUB2 4, SUB2 3, PLUS 1]

39 APPL || 2 || [PLUS 8, SUB2 4, SUB2 3]

40 SUB1 || 1 || [PLUS 8, SUB2 4, PLUS 2]

41 APPL || 1 || [PLUS 8, SUB2 4, PLUS 2]

42 APPL || 3 || [PLUS 8, SUB2 4]

43 SUB1 || 2 || [PLUS 8, PLUS 3]

44 SUB1 || 1 || [PLUS 8, PLUS 3, SUB2 2]

45 APPL || 1 || [PLUS 8, PLUS 3, SUB2 2]

46 SUB1 || 0 || [PLUS 8, PLUS 3, PLUS 1]

47 APPL || 1 || [PLUS 8, PLUS 3, PLUS 1]

48 APPL || 2 || [PLUS 8, PLUS 3]

49 APPL || 5 || [PLUS 8]

50 APPL ||13|| []

The OCaml file in basic_transformations/fibonacci_machine.ml

contains some code for pretty printing such traces….

174

Pause to reflect

• What have we accomplished?

• We have taken a recursive function and turned it
into an iterative function that does not require
“stack space” for its evaluation (in OCaml)

• However, this function now carries its own
evaluation stack as an extra argument!

• We have derived this iterative function in a step-
by-step manner where each tiny step is easily
proved correct.

• Wow!

175

That was fun! Let’s do it again!

type expr =

| INT of int

| PLUS of expr * expr

| SUBT of expr * expr

| MULT of expr * expr

(* eval : expr -> int

a simple recusive evaluator for expressions *)

let rec eval = function

| INT a -> a

| PLUS(e1, e2) -> (eval e1) + (eval e2)

| SUBT(e1, e2) -> (eval e1) - (eval e2)

| MULT(e1, e2) -> (eval e1) * (eval e2)

This time we will derive a

stack-machine AND

a “compiler” that translates

expressions into a list of

instructions for the machine.

176

Here we go again : CPS

type cnt_2 = int -> int

type state_2 = expr * cnt_2

(* eval_aux_2 : state_2 -> int *)

let rec eval_aux_2 (e, cnt) =

match e with

| INT a -> cnt a

| PLUS(e1, e2) ->

eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 + v2)))

| SUBT(e1, e2) ->

eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 - v2)))

| MULT(e1, e2) ->

eval_aux_2(e1, fun v1 -> eval_aux_2(e2, fun v2 -> cnt(v1 * v2)))

(* id_cnt : cnt_2 *)

let id_cnt (x : int) = x

(* eval_2 : expr -> int *)

let eval_2 e = eval_aux_2(e, id_cnt)

177

Defunctionalise!

type cnt_3 =

| ID

| OUTER_PLUS of expr * cnt_3

| OUTER_SUBT of expr * cnt_3

| OUTER_MULT of expr * cnt_3

| INNER_PLUS of int * cnt_3

| INNER_SUBT of int * cnt_3

| INNER_MULT of int * cnt_3

type state_3 = expr * cnt_3

(* apply_3 : cnt_3 * int -> int *)

let rec apply_3 = function

| (ID, v) -> v

| (OUTER_PLUS(e2, cnt), v1) -> eval_aux_3(e2, INNER_PLUS(v1, cnt))

| (OUTER_SUBT(e2, cnt), v1) -> eval_aux_3(e2, INNER_SUBT(v1, cnt))

| (OUTER_MULT(e2, cnt), v1) -> eval_aux_3(e2, INNER_MULT(v1, cnt))

| (INNER_PLUS(v1, cnt), v2) -> apply_3(cnt, v1 + v2)

| (INNER_SUBT(v1, cnt), v2) -> apply_3(cnt, v1 - v2)

| (INNER_MULT(v1, cnt), v2) -> apply_3(cnt, v1 * v2)

178

Defunctionalise!

(* eval_aux_2 : state_3 -> int *)

and eval_aux_3 (e, cnt) =

match e with

| INT a -> apply_3(cnt, a)

| PLUS(e1, e2) -> eval_aux_3(e1, OUTER_PLUS(e2, cnt))

| SUBT(e1, e2) -> eval_aux_3(e1, OUTER_SUBT(e2, cnt))

| MULT(e1, e2) -> eval_aux_3(e1, OUTER_MULT(e2, cnt))

(* eval_3 : expr -> int *)

let eval_3 e = eval_aux_3(e, ID)

179

Eureka! Again we have a stack!

type tag =

| O_PLUS of expr

| I_PLUS of int

| O_SUBT of expr

| I_SUBT of int

| O_MULT of expr

| I_MULT of int

type cnt_4 = tag list

type state_4 = expr * cnt_4

(* apply_4 : cnt_4 * int -> int *)

let rec apply_4 = function

| ([], v) -> v

| ((O_PLUS e2) :: cnt, v1) -> eval_aux_4(e2, (I_PLUS v1) :: cnt)

| ((O_SUBT e2) :: cnt, v1) -> eval_aux_4(e2, (I_SUBT v1) :: cnt)

| ((O_MULT e2) :: cnt, v1) -> eval_aux_4(e2, (I_MULT v1) :: cnt)

| ((I_PLUS v1) :: cnt, v2) -> apply_4(cnt, v1 + v2)

| ((I_SUBT v1) :: cnt, v2) -> apply_4(cnt, v1 - v2)

| ((I_MULT v1) :: cnt, v2) -> apply_4(cnt, v1 * v2)

180

Eureka! Again we have a stack!

(* eval_aux_4 : state_4 -> int *)

and eval_aux_4 (e, cnt) =

match e with

| INT a -> apply_4(cnt, a)

| PLUS(e1, e2) -> eval_aux_4(e1, O_PLUS(e2) :: cnt)

| SUBT(e1, e2) -> eval_aux_4(e1, O_SUBT(e2) :: cnt)

| MULT(e1, e2) -> eval_aux_4(e1, O_MULT(e2) :: cnt)

(* eval_4 : expr -> int *)

let eval_4 e = eval_aux_4(e, [])

181

Eureka! Can combine apply_4 and

eval_aux_4

type acc =

| A_INT of int

| A_EXP of expr

type cnt_5 = cnt_4

type state_5 = cnt_5 * acc

val : step : state_5 -> state_5

val driver : state_5 -> int

val eval_5 : expr -> int

Type of an “accumulator” that

contains either an int

or an expression.

The driver will be

clearly tail-recursive …

182

Rewrite to use driver, accumulator

let step_5 = function

| (cnt, A_EXP (INT a)) -> (cnt, A_INT a)

| (cnt, A_EXP (PLUS(e1, e2))) -> (O_PLUS(e2) :: cnt, A_EXP e1)

| (cnt, A_EXP (SUBT(e1, e2))) -> (O_SUBT(e2) :: cnt, A_EXP e1)

| (cnt, A_EXP (MULT(e1, e2))) -> (O_MULT(e2) :: cnt, A_EXP e1)

| ((O_PLUS e2) :: cnt, A_INT v1) -> ((I_PLUS v1) :: cnt, A_EXP e2)

| ((O_SUBT e2) :: cnt, A_INT v1) -> ((I_SUBT v1) :: cnt, A_EXP e2)

| ((O_MULT e2) :: cnt, A_INT v1) -> ((I_MULT v1) :: cnt, A_EXP e2)

| ((I_PLUS v1) :: cnt, A_INT v2) -> (cnt, A_INT (v1 + v2))

| ((I_SUBT v1) :: cnt, A_INT v2) -> (cnt, A_INT (v1 - v2))

| ((I_MULT v1) :: cnt, A_INT v2) -> (cnt, A_INT (v1 * v2))

| ([], A_INT v) -> ([], A_INT v)

let rec driver_5 = function

| ([], A_INT v) -> v

| state -> driver_5 (step_5 state)

let eval_5 e = driver_5([], A_EXP e)

183

Eureka! There are really two

independent stacks here --- one for

“expressions” and one for values

type directive =

| E of expr

| DO_PLUS

| DO_SUBT

| DO_MULT

type directive_stack = directive list

type value_stack = int list

type state_6 = directive_stack * value_stack

val step_6 : state_6 -> state_6

val driver_6 : state_6 -> int

val exp_6 : expr -> int

The state is now

two stacks!

184

Split into two stacks

let step_6 = function

| (E(INT v) :: ds, vs) -> (ds, v :: vs)

| (E(PLUS(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_PLUS :: ds, vs)

| (E(SUBT(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_SUBT :: ds, vs)

| (E(MULT(e1, e2)) :: ds, vs) -> ((E e1) :: (E e2) :: DO_MULT :: ds, vs)

| (DO_PLUS :: ds, v2 :: v1 :: vs) -> (ds, (v1 + v2) :: vs)

| (DO_SUBT :: ds, v2 :: v1 :: vs) -> (ds, (v1 - v2) :: vs)

| (DO_MULT :: ds, v2 :: v1 :: vs) -> (ds, (v1 * v2) :: vs)

| _ -> failwith "eval : runtime error!"

let rec driver_6 = function

| ([], [v]) -> v

| state -> driver_6 (step_6 state)

let eval_6 e = driver_6 ([E e], [])

185

An eval_6 trace

e = PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4))

Top of each

stack is on

the right

state 1 DS = [E(PLUS(MULT(INT(89), INT(2)), SUBT(INT(10), INT(4))))]

VS = []

state 2 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); E(MULT(INT(89), INT(2)))]

VS = []

state 3 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2)); E(INT(89))]

VS = []

state 4 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT; E(INT(2))]

VS = [89]

state 5 DS = [DO_PLUS; E(SUBT(INT(10), INT(4))); DO_MULT]

VS = [89; 2]

state 6 DS = [DO_PLUS; E(SUBT(INT(10), INT(4)))]

VS = [178]

state 7 DS = [DO_PLUS; DO_SUBT; E(INT(4)); E(INT(10))]

VS = [178]

state 8 DS = [DO_PLUS; DO_SUBT; E(INT(4))]

VS = [178; 10]

state 9 DS = [DO_PLUS; DO_SUBT]

VS = [178; 10; 4]

state 10DS = [DO_PLUS]

VS = [178; 6]

state 11DS = []

VS = [184]

in
s
p
e
c
t

in
s
p
e
c
t

c
o
m

p
u
te

c
o
m

p
u
te

186

Key insight

This evaluator is interleaving two distinct computations:

(1) decomposition of the input expression into sub-expressions

(2) the computation of +, -, and *.

Idea: why not do the decomposition BEFORE the computation?

Key insight: An interpreter can (usually) be refactored into a

translation (compilation!) followed by a lower-level interpreter.

Interpret_higher (e) = interpret_lower(compile(e))

Note : this can occur at many levels of abstraction: think of machine code

being interpreted in micro-code …

187

Refactor --- compile!

(* low-level instructions *)

type instr =

| Ipush of int

| Iplus

| Isubt

| Imult

type code = instr list

type state_7 = code * value_stack

(* compile : expr -> code *)

let rec compile = function

| INT a -> [Ipush a]

| PLUS(e1, e2) -> (compile e1) @ (compile e2) @ [Iplus]

| SUBT(e1, e2) -> (compile e1) @ (compile e2) @ [Isubt]

| MULT(e1, e2) -> (compile e1) @ (compile e2) @ [Imult]

Never put off till run-time what

you can do at compile-time.

-- David Gries

188

Evaluate compiled code.

(* step_7 : state_7 -> state_7 *)

let step_7 = function

| (Ipush v :: is, vs) -> (is, v :: vs)

| (Iplus :: is, v2::v1::vs) -> (is, (v1 + v2) :: vs)

| (Isubt :: is, v2::v1::vs) -> (is, (v1 - v2) :: vs)

| (Imult :: is, v2::v1::vs) -> (is, (v1 * v2) :: vs)

| _ -> failwith "eval : runtime error!"

let rec driver_7 = function

| ([], [v]) -> v

| _ -> driver_7 (step_7 state)

let eval_7 e = driver_7 (compile e, [])

189

An eval_7 trace

compile (PLUS(MULT(INT 89, INT 2), SUBT(INT 10, INT 4)))

= [push 89; push 2; mult; push 10; push 4; subt; plus]

Top of each

stack is on

the right

state 1 IS = [add; sub; push 4; push 10; mul; push 2; push 89]

VS = []

state 2 IS = [add; sub; push 4; push 10; mul; push 2]

VS = [89]

state 3 IS = [add; sub; push 4; push 10; mul]

VS = [89; 2]

state 4 IS = [add; sub; push 4; push 10]

VS = [178]

state 5 IS = [add; sub; push 4]

VS = [178; 10]

state 6 IS = [add; sub]

VS = [178; 10; 4]

state 7 IS = [add]

VS = [178; 6]

state 8 IS = []

VS = [184]

c
o

m
p

u
te

in
s
p

e
c
t

interpret is implicitly using Ocaml’s runtime stack

let rec interpret (e, env, store) =

match e with

| Integer n -> (INT n, store)

| Op(e1, op, e2) ->

let (v1, store1) = interpret(e1, env, store) in

let (v2, store2) = interpret(e2, env, store1) in

(do_oper(op, v1, v2), store2)

:

:

• Every invocation of interpret is

building an activation record on

Ocaml’s runtime stack.

• We will now define interpreter 2

which makes this stack explicit

191

Interp_0.ml  interp_1.ml  interp_2.ml

The derivation from eval to compile+eval_7 can be used

as a guide to a derivation from Interpreter 0 to interpreter 2.

1. Apply CPS to the code of Interpreter 0

2. Defunctionalise

3. Arrive at interpreter 1, which has a single

continuation stack containing expressions,

values and environments (analogous to eval_6)

4. Spit this stack into two stacks : one for

instructions and the other for values and

environments

5. Refactor into compiler + lower-level interpreter

6. Arrive at interpreter 2. (analogous to eval_7)

192

Interpreter 0  Interpreter 2

Interpreter 2: A high-level stack-oriented machine
1. Makes the Ocaml runtime stack explicit

2. Complex values pushed onto stacks

3. One stack for values and environments

4. One stack for instructions

5. Heap used only for references

6. Instructions have tree-like structure

(we will not look at the details of interpreter 1 …)

193

Inpterp_2 data types

type address = int

type value =

| REF of address

| INT of int

| BOOL of bool

| UNIT

| PAIR of value * value

| INL of value

| INR of value

| CLOSURE of bool *

closure

and closure = code * env

and instruction =

| PUSH of value

| LOOKUP of var

| UNARY of unary_oper

| OPER of oper

| ASSIGN

| SWAP

| POP

| BIND of var

| FST

| SND

| DEREF

| APPLY

| MK_PAIR

| MK_INL

| MK_INR

| MK_REF

| MK_CLOSURE of code

| MK_REC of var * code

| TEST of code * code

| CASE of code * code

| WHILE of code * code

type address

type store = address -> value

and value =

| REF of address

| INT of int

| BOOL of bool

| UNIT

| PAIR of value * value

| INL of value

| INR of value

| FUN of ((value * store)

-> (value * store))

type env = Ast.var -> value

Interp_0 Interp_2

194

and code = instruction list

and binding = var * value

and env = binding list

type env_or_value = EV of env | V of value

type env_value_stack = env_or_value list

type state = code * env_value_stack

val step : state -> state

val driver : state -> value

val compile : expr -> code

val interpret : expr -> value

Interp_2.ml : The Abstract Machine

The state is actually

comprised of a

heap --- a global array

of values --- a pair

of the form

(code, evn_value_stack)

195

Interpreter 2: The Abstract Machine

type state = code * env_value_stack

val step : state -> state
The state transition function.

196

The driver. Correctness

(* val driver : state -> value *)

let rec driver state =

match state with

| ([], [V v]) -> v

| _

-> driver (step state)

val compile : expr -> code

The idea: if e passes the frond-end and

Interp_0.interpret e = v

then

driver (compile e, []) = v’

where v’ (somehow) represents v.

In other words,

evaluating

compile e

should leave the

value of e on top

of the stack

197

Implement inter_0 in interp_2

let step = function

| (MK_PAIR :: ds, (V v2) :: (V v1) :: evs) -> (ds, V(PAIR(v1, v2)) :: evs)

| (FST :: ds, V(PAIR (v, _)) :: evs) -> (ds, (V v) :: evs)

:

let rec compile = function

| Pair(e1, e2) -> (compile e1) @ (compile e2) @ [MK_PAIR]

| Fst e -> (compile e) @ [FST]

:

let rec interpret (e, env, store) =

match e with

| Pair(e1, e2) ->

let (v1, store1) = interpret(e1, env, store) in

let (v2, store2) = interpret(e2, env, store1) in (PAIR(v1, v2), store2)

| Fst e ->

(match interpret(e, env, store) with

| (PAIR (v1, _), store') -> (v1, store')

| (v, _) -> complain "runtime error. Expecting a pair!”)

:

interp_0.ml

interp_2.ml

198

Implement inter_0 in interp_2

let step = function

| ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)

| ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)

:

let rec compile = function

| If(e1, e2, e3) -> (compile e1) @ [TEST(compile e2, compile e3)]

:

let rec interpret (e, env, store) =

match e with

| If(e1, e2, e3) ->

let (v, store') = interpret(e1, env, store) in

(match v with

| BOOL true -> interpret(e2, env, store')

| BOOL false -> interpret(e3, env, store')

| v -> complain "runtime error. Expecting a boolean!”)

:

interp_0.ml

interp_2.ml

199

Tricky bits again!

let rec interpret (e, env, store) =

match e with

| Lambda(x, e) -> (FUN (fun (v, s) -> interpret(e, update(env, (x, v)), s)), store)

| App(e1, e2) -> (* I chose to evaluate argument first! *)

let (v2, store1) = interpret(e2, env, store) in

let (v1, store2) = interpret(e1, env, store1) in

(match v1 with

| FUN f -> f (v2, store2)

| v -> complain "runtime error. Expecting a function!”)

:

let step = function

| (POP :: ds, s :: evs) -> (ds, evs)

| (SWAP :: ds, s1 :: s2 :: evs) -> (ds, s2 :: s1 :: evs)

| ((BIND x) :: ds, (V v) :: evs) -> (ds, EV([(x, v)]) :: evs)

| ((MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)

| (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)

-> (c @ ds, (V v) :: (EV env) :: evs)

let rec compile = function

| Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]

| App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]

:

interp_0.ml

interp_2.ml

200

Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int = (snd p, fst p)

in

rev_pair (21, 17)

end

MK_CLOSURE([BIND p; LOOKUP p; SND; LOOKUP p; FST; MK_PAIR; SWAP; POP]);

BIND rev_pair;

PUSH 21;

PUSH 17;

MK_PAIR;

LOOKUP rev_pair;

APPLY;

SWAP;

POP;

SWAP;

POP

DEMO TIME!!!

201

LECTURE 10

Derive Interpreter 3

1. “Flatten” code into linear array

2. Add “code pointer” (cp) to machine state

3. New instructions : LABEL, GOTO, RETURN

4. “Compile away” conditionals and while loops

202

Linearise code

Interpreter 2 copies code

on the code stack.

We want to introduce one

global array of instructions

indexed by a code pointer (cp).

At runtime the cp points at the

next instruction to be executed.

cp next

instruction

: :

: :

: :

: :

This will require two new instructions:

LABEL L : Associate label L with this location in the code array

GOTO L : Set the cp to the code address associated with L

203

Compile conditionals, loops

If(e1, e2, e3)

code for e1

TEST k

code for e2

GOTO m

k: code for e3

m:

m: code for e1

TEST k

code for e2

GOTO m

k:

While(e1, e2)

204

If ? = 0 Then 17 else 21 end

PUSH UNIT;

UNARY READ;

PUSH 0;

OPER EQI;

TEST(

[PUSH 17],

[PUSH 21]

)

PUSH UNIT;

UNARY READ;

PUSH 0;

OPER EQI;

TEST L0;

PUSH 17;

GOTO L1;

LABEL L0;

PUSH 21;

LABEL L1;

HALT

0: PUSH UNIT;

1: UNARY READ;

2: PUSH 0;

3: OPER EQI;

4: TEST L0 = 7;

5: PUSH 17;

6: GOTO L1 = 9;

7: LABEL L0;

8: PUSH 21;

9: LABEL L1;

10: HALT

interp_2 interp_3 interp_3 (loaded)

Symbolic code

locations

Numeric code

locations

205

Implement inter_2 in interp_3

let step = function

| ((TEST(c1, c2)) :: ds, V(BOOL true) :: evs) -> (c1 @ ds, evs)

| ((TEST(c1, c2)) :: ds, V(BOOL false) :: evs) -> (c2 @ ds, evs)

:

interp_2.ml

let step (cp, evs) =

match (get_instruction cp, evs) with

| (TEST (_, Some _), V(BOOL true) :: evs) -> (cp + 1, evs)

| (TEST (_, Some i), V(BOOL false) :: evs) -> (i, evs)

| (LABEL l, evs) -> (cp + 1, evs)

| (GOTO (_, Some i), evs) -> (i, evs)

:

Code locations are represented as

(“L”, None) : not yet loaded (assigned numeric address)

(“L”, Some i) : label “L” has been assigned numeric address i

Interp_3.ml

206

Tricky bits again!

let step = function

| (POP :: ds, s :: evs) -> (ds, evs)

| (SWAP :: ds, s1 :: s2 :: evs) -> (ds, s2 :: s1 :: evs)

| ((BIND x) :: ds, (V v) :: evs) -> (ds, EV([(x, v)]) :: evs)

| ((MK_CLOSURE c) :: ds, evs) -> (ds, V(mk_fun(c, evs_to_env evs)) :: evs)

| (APPLY :: ds, V(CLOSURE (_, (c, env))) :: (V v) :: evs)

-> (c @ ds, (V v) :: (EV env) :: evs)

interp_2.ml

let step (cp, evs) =

match (get_instruction cp, evs) with

| (POP, s :: evs) -> (cp + 1, evs)

| (SWAP, s1 :: s2 :: evs) -> (cp + 1, s2 :: s1 :: evs)

| (BIND x, (V v) :: evs) -> (cp + 1, EV([(x, v)]) :: evs)

| (MK_CLOSURE loc, evs) -> (cp + 1,

V(CLOSURE(loc, evs_to_env evs)) :: evs)

| (RETURN, (V v) :: _ :: (RA i) :: evs) -> (i, (V v) :: evs)

| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

->

(i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

interp_3.ml

Note that in interp_2 the body of a closure is consumed from

the code stack. But in interp_3 we need to save the return

address on the stack (here i is the location of the closure’s code).

207

Tricky bits again!

let rec compile = function

| Lambda(x, e) -> [MK_CLOSURE((BIND x) :: (compile e) @ [SWAP; POP])]

| App(e1, e2) -> (compile e2) @ (compile e1) @ [APPLY; SWAP; POP]

:

interp_2.ml

let rec comp = function

| App(e1, e2) ->

let (defs1, c1) = comp e1 in

let (defs2, c2) = comp e2 in

(defs1 @ defs2, c2 @ c1 @ [APPLY])

| Lambda(x, e) ->

let (defs, c) = comp e in

let f = new_label () in

let def = [LABEL f ; BIND x] @ c @ [SWAP; POP; RETURN] in

(def @ defs, [MK_CLOSURE((f, None))])

Interp_3.ml

let compile e =

let (defs, c) = comp e in

c (* body of program *)

@ [HALT] (* stop the interpreter *)

@ defs (* function definitions *)

Interp_3.ml

208

Interpreter 3

(very similar to interpreter 2)

209

Some observations

• A very clean machine!

• But it still has a very inefficient treatment of

environments.

• Also, pushing complex values on the stack is

not what most virtual machines do. In fact, we

are still using OCaml’s runtime memory

management to manipulate complex values.

210

Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int = (snd p, fst p)

in

rev_pair (21, 17)

end

MK_CLOSURE(

[BIND p; LOOKUP p; SND;

LOOKUP p; FST; MK_PAIR;

SWAP; POP]);

BIND rev_pair;

PUSH 21;

PUSH 17;

MK_PAIR;

LOOKUP rev_pair;

APPLY;

SWAP;

POP;

SWAP;

POP

DEMO TIME!!! Interp_2

MK_CLOSURE(rev_pair)

BIND rev_pair

PUSH 21

PUSH 17

MK_PAIR

LOOKUP rev_pair

APPLY

SWAP

POP

HALT

LABEL rev_pair

BIND p

LOOKUP p

SND

LOOKUP p

FST

MK_PAIR

SWAP

POP

RETURNInterp_3

211

LECTURES 11

Deriving The Jargon VM

(interpreter 4)

1. First change: Introduce an addressable stack.

2. Replace variable lookup by a (relative) location on the stack
or heap determined at compile time.

3. Relative to what? A frame pointer (fp) pointing into the stack
is needed to keep track of the current activation record.

4. Second change: Optimise the representation of closures so
that they contain only the values associated with the free
variables of the closure and a pointer to code.

5. Third change: Restrict values on stack to be simple (ints,
bools, heap addresses, etc). Complex data is moved to the
heap, leaving pointers into the heap on the stack.

6. How might things look different in a language without first-
class functions? In a language with multiple arguments to
function calls?

212

Jargon Virtual Machine

frame 0

Stack

(really array)

frame 1

stack sp

pointer

frame fp

Pointer

Frame 2

grows

shrinks

Code

(array of instructions)

heap

(array of heap values)

heap[0]

heap[heal_limit]

cp

Code

pointerNeed for

fp to be

explained

soon …

The stack in interpreter 3

(1, (2, 17))

Inl(inr(99))

: :

: :

A stack

in interpreter 3

Stack elements in interpreter 3

are not of fixed size.

Virtual machines (JVM, etc)

typically restrict stack elements

to be of a fixed size

We need to shift data from the

high-level stack of interpreter 3

to a lower-level stack with

fixed size elements.

Solution : put the data in the heap.

Place pointers to the heap on

the stack.

“All problems in computer

science can be solved by

another level of indirection,

except of course for the

problem of too many

indirections.”

--- David Wheeler

214

The

Jargon VM

stack

c : Header 3, PAIR

1 c+1 :

d c+2 :

d : Header 3, PAIR

2 d+1 :

17 d+2 :

b : Header 2, INL

ab+1 :

a : Header 2, INR

99a+1 :

: :

: :

: :

: :

Heap

Some stack elements

represent pointers

into the heap

Stack

c
b

: :

: :

c

215

type instruction =

| PUSH of value

| LOOKUP of Ast.var

| UNARY of Ast.unary_oper

| OPER of Ast.oper

| ASSIGN

| SWAP

| POP

| BIND of Ast.var

| FST

| SND

| DEREF

| APPLY

| RETURN

| MK_PAIR

| MK_INL

| MK_INR

| MK_REF

| MK_CLOSURE of location

| TEST of location

| CASE of location

| GOTO of location

| LABEL of label

| HALT

type instruction =

| PUSH of stack_item (* modified *)

| LOOKUP of value_path (* modified *)

| UNARY of Ast.unary_oper

| OPER of Ast.oper

| ASSIGN

| SWAP

| POP

(* | BIND of var not needed *)

| FST

| SND

| DEREF

| APPLY

| RETURN

| MK_PAIR

| MK_INL

| MK_INR

| MK_REF

| MK_CLOSURE of location * int (* modified *)

| TEST of location

| CASE of location

| GOTO of location

| LABEL of label

| HALT

interp_3.mli jargon.mli
Small change to

instructions

216

type value = | REF of address | INT of int | BOOL of bool | UNIT

| PAIR of value * value | INL of value | INR of value | CLOSURE of location * env

type env_or_value = | EV of env | V of value | RA of address

type env_value_stack = env_or_value list

type stack_item =

| STACK_INT of int

| STACK_BOOL of bool

| STACK_UNIT

| STACK_HI of heap_index (* Heap Inde *)

| STACK_RA of code_index (* Return Address *)

| STACK_FP of stack_index (* (saved) Frame Pointer *)

A word about implementation

type heap_item =

| HEAP_INT of int

| HEAP_BOOL of bool

| HEAP_UNIT

| HEAP_HI of heap_index (* Heap Index *)

| HEAP_CI of code_index (* Code pointer for closures *)

| HEAP_HEADER of int * heap_type (* int is number items in heap block *)

type heap_type =

| HT_PAIR

| HT_INL

| HT_INR

| HT_CLOSURE

Interpreter 3

Jargon VM

The headers will be essential for

garbage collection!

217

MK_INR (MK_INL is similar)

(MK_INR, (V v) :: evs)

-> (cp + 1, V(INR(v)) :: evs)

c

v

: :

: :

MK_INR

c

a

: :

: :

a : Header 2, INR

v a+1 :

Newly allocated

locations in

the heap

The stack

before
The stack

after

Jargon VM

In interpreter 3

Note: The header types are not really required. We could

instead add an extra field here (for example, 0 or 1).

However, header types aid in understanding the code and

traces of runtime execution.

218

CASE (TEST is similar)

(CASE (_, Some _), V(INL v)::evs) -> (cp + 1, (V v) :: evs)

(CASE (_, Some i), V(INR v)::evs) -> (i, (V v) :: evs)

CASE i
c

a

: :

: :

a : INR

v a+1 :

cp = t

c

v

: :

: :

cp = i

CASE i
c

a

: :

: :

a : INL

v a+1 :

cp = t

c

v

: :

: :

cp = t + 1

219

MK_PAIR

(MK_PAIR, (V v2) :: (V v1) :: evs) -> (cp + 1, V(PAIR(v1, v2)) :: evs)

c
v1

: :

: :

v2

MK_PAIR

c

a

: :

: :

a : Header 3, PAIR

v1 a+1 :

a+2 : v2

Newly allocated

locations in

the heap

The stack

before
The stack

after

In Jargon VM:

In interpreter 3:

220

FST (similar for SND)

(FST, V (PAIR(v1, v2)) :: evs)

-> (cp + 1, v1 :: evs)

c

v1

: :

: :

FSTc

a

: :

: :

a : Header 3, PAIR

v1 a+1 :

a+2 : v2

Somewhere

in the heap

The stack

after

The stack

before

In Jargon VM:

In interpreter 3:

Note that v1 could be a simple value (int or bool), or aother heap address.

These require more care …

let step (cp, evs) =

match (get_instruction cp, evs) with

| (MK_CLOSURE loc, evs)

-> (cp + 1, V(CLOSURE(loc, evs_to_env evs)) :: evs)

| (APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

-> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

| (RETURN, (V v) :: _ :: (RA i) :: evs)

-> (i, (V v) :: evs)

In interpreter 3:

MK_CLOSURE(c, n)

c
:

v2
MK_CLOSURE(c, n)

a : closure header

c a+1 :

a+2 : v1

Newly allocated

locations in

the heap

The stack

before
The stack

after

c = code location of start of instructions for closure,

n = number of free variables in the body of closure.

Put values associated with free variables on stack,

then construct the closure on the heap

v1

vn

:

:

c

a

:

:
a+n+1 : vn

c

: :

223

A stack frame

c

a

: :

: :

v

r

fp’fp

: :

: :

Return address

Saved frame pointer

Pointer to closure

Argument value

Stack frame.

(Boundary

May vary in the

literature.)

Currently executing code for the closure at heap address “a”

after it was applied to argument v.

APPLY

(APPLY, V(CLOSURE ((_, Some i), env)) :: (V v) :: evs)

-> (i, (V v) :: (EV env) :: (RA (cp + 1)) :: evs)

APPLY

c

a

: :

: :

a : Header n+2,

CLOSURE

v1

a+n+1 :

a+1 :

vn

AFTER
Jargon VM:

v

i

: :

a+2 :

BEFORE

c

a

: :

: :

v

k+1

j

cp = k

fp = j
cp = i

fp = m

m : fp

Interpreter 3:

RETURN

(RETURN, (V v) :: _ :: (RA i) :: evs) -> (i, (V v) :: evs)

RETURN

AFTER Jargon VM:

Interpreter 3:

BEFORE

ca

: :

: :

v1

t

j

cp = i

fp

v2

c: :

: :

cp = t

(return address)

fp = j

v2

Replace stack frame

with return value

Finding a variable’s value at runtime

c
a

: :

: :

a : Header n+2,

CLOSURE

v1

a+1 :

vn

v

code location i

: :

a+2 :

k+1

j

fp

: :

: :

sp

Suppose we are

executing code

associated with this

closure. Then every

free variable in the

body of the closure

can be found from

the frame pointer fp:

• Formal parameter: at stack location fp-2

• Other free variables :

• Follow heap pointer found at fp -1

• Each free variable can be associated

with a fixed offset from this heap

address

LOOKUP (HEAP_OFFSET k)

(LOOKUP x, evs) -> (cp + 1, V(search(evs, x)) :: evs)

LOOKUP

(HEAP_OFFET k)

AFTER Jargon VM:

Interpreter 3:

BEFORE

c

a

: :

: :

v

k+1

j

: :

FREE sp

fp
c

a

: :

: :

v

k+1

j

: :

FREE sp

fp

vk

a : Header

v1

vk

i

: :

: :

LOOKUP (STACK_OFFSET -2)

(LOOKUP x, evs) -> (cp + 1, V(search(evs, x)) :: evs)

LOOKUP

(STACK_OFFET -2)

AFTER Jargon VM:

Interpreter 3:

BEFORE

c

a

: :

: :

v

k+1

j

: :

FREE sp

fp
c

a

: :

: :

v

k+1

j

: :

FREE sp

fp

v

push argument

value onto the

stack

229

Oh, one problem

Solution in Jargon VM

interpreter 3 let rec comp = function

:

| LetFun(f, (x, e1), e2) ->

let (defs1, c1) = comp e1 in

let (defs2, c2) = comp e2 in

let def = [LABEL f; BIND x] @ c1 @ [SWAP; POP; RETURN] in

(def @ defs1 @ defs2,

[MK_CLOSURE((f, None)); BIND f] @ c2 @ [SWAP; POP])

:

Problem: Code c2 can be anything --- how are we going to

find the closure for f when we need it? It has to be a fixed offset

from a frame pointer --- we no longer scan the stack for bindings!

let rec comp vmap = function

:

| LetFun(f, (x, e1), e2) -> comp vmap (App(Lambda(f, e2), Lambda(x, e1)))

:

Similar trick for LetRecFun

LOOKUP (STACK_OFFSET -1)

AFTER Jargon VM:

BEFORE

c

a

: :

: :

v

k+1

j

: :

FREE sp

fp
c

a

: :

: :

v

k+1

j

: :

FREE sp

fp

a

For recursive function calls,

push current closure on to the stack.

LOOKUP

(STACK_OFFET -1)

closure closure

231

Example : Compiled code for rev_pair.slang

let rev_pair (p : int * int) : int * int = (snd p, fst p)

in

rev_pair (21, 17)

end

After the front-end, compile treats this as follows.

App(

Lambda(

”rev_pair”,

App(Var ”rev_pair”, Pair (Integer 21, Integer 17))),

Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))

232

Example : Compiled code for rev_pair.slang

MK_CLOSURE(L1, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 : PUSH STACK_INT 21

PUSH STACK_INT 17

MK_PAIR

LOOKUP STACK_LOCATION -2

APPLY

RETURN

L1 : LOOKUP STACK_LOCATION -2

SND

LOOKUP STACK_LOCATION -2

FST

MK_PAIR

RETURN

App(

Lambda(”rev_pair”,

App(Var ”rev_pair”, Pair (Integer 21, Integer 17))),

Lambda(”p”, Pair(Snd (Var ”p”), Fst (Var ”p”))))

-- Make closure for second lambda

-- Make closure for first lambda

-- do application

-- the end!

-- code for first lambda, push 21

-- push 17

-- make the pair on the heap

-- push closure for second lambda on stack

-- apply first lambda

-- return from first lambda

-- code for second lambda, push arg on stack

-- extract second part of pair

-- push arg on stack again

-- extract first part of pair

-- construct a new pair

-- return from second lambda

“first lambda”

“second lambda”

Example : trace of rev_pair.slang execution

Installed Code =

0: MK_CLOSURE(L1 = 11, 0)

1: MK_CLOSURE(L0 = 4, 0)

2: APPLY

3: HALT

4: LABEL L0

5: PUSH STACK_INT 21

6: PUSH STACK_INT 17

7: MK_PAIR

8: LOOKUP STACK_LOCATION-2

9: APPLY

10: RETURN

11: LABEL L1

12: LOOKUP STACK_LOCATION-2

13: SND

14: LOOKUP STACK_LOCATION-2

15: FST

16: MK_PAIR

17: RETURN

========== state 1 ==========

cp = 0 -> MK_CLOSURE(L1 = 11, 0)

fp = 0

Stack =

1: STACK_RA 0

0: STACK_FP 0

========== state 2 ==========

cp = 1 -> MK_CLOSURE(L0 = 4, 0)

fp = 0

Stack =

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

……

Example : trace of rev_pair.slang execution

========== state 15 ==========

cp = 16 -> MK_PAIR

fp = 8

Stack =

11: STACK_INT 21

10: STACK_INT 17

9: STACK_RA 10

8: STACK_FP 4

7: STACK_HI 0

6: STACK_HI 4

5: STACK_RA 3

4: STACK_FP 0

3: STACK_HI 2

2: STACK_HI 0

1: STACK_RA 0

0: STACK_FP 0

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

========== state 19 ==========

cp = 3 -> HALT

fp = 0

Stack =

2: STACK_HI 7

1: STACK_RA 0

0: STACK_FP 0

Heap =

0 -> HEAP_HEADER(2, HT_CLOSURE)

1 -> HEAP_CI 11

2 -> HEAP_HEADER(2, HT_CLOSURE)

3 -> HEAP_CI 4

4 -> HEAP_HEADER(3, HT_PAIR)

5 -> HEAP_INT 21

6 -> HEAP_INT 17

7 -> HEAP_HEADER(3, HT_PAIR)

8 -> HEAP_INT 17

9 -> HEAP_INT 21

Jargon VM :

output> (17, 21)

235

Example : closure_add.slang

let f(y : int) : int -> int = let g(x :int) : int = y + x in g end

in let add21 : int -> int = f(21)

in let add17 : int -> int = f(17)

in add17(3) + add21(10)

end

end

end

App(Lambda(f, App(Lambda(add21,

App(Lambda(add17,

Op(App(Var(add17), Integer(3)),

ADD,

App(Var(add21), Integer(10)))),

App(Var(f), Integer(17))),

App(Var(f), Integer(21))))),

Lambda(y, App(Lambda(g, Var(g)),

Lambda(x, Op(Var(y), ADD, Var(x))))))

After the front-end, this becomes represented as follows.

Note : we really do need

closures on the heap here —

the values 21 and 17

do not exist on the stack

at this point in the execution.

236

Can we make sense of this?

MK_CLOSURE(L3, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 : PUSH STACK_INT 21

LOOKUP STACK_LOCATION -2

APPLY

LOOKUP STACK_LOCATION -2

MK_CLOSURE(L1, 1)

APPLY

RETURN

L1 : PUSH STACK_INT 17

LOOKUP HEAP_LOCATION 1

APPLY

LOOKUP STACK_LOCATION -2

MK_CLOSURE(L2, 1)

APPLY

RETURN

L2 : PUSH STACK_INT 3

LOOKUP STACK_LOCATION -2

APPLY

PUSH STACK_INT 10

LOOKUP HEAP_LOCATION 1

APPLY

OPER ADD

RETURN

L3 : LOOKUP STACK_LOCATION -2

MK_CLOSURE(L5, 1)

MK_CLOSURE(L4, 0)

APPLY

RETURN

L4 : LOOKUP STACK_LOCATION -2

RETURN

L5 : LOOKUP HEAP_LOCATION 1

LOOKUP STACK_LOCATION -2

OPER ADD

RETURN

237

The Gap, illustrated

let fib (m :int) : int =

if m = 0

then 1

else if m = 1

then 1

else fib(m - 1) + fib (m - 2)

end

end

in fib (?) end

slang.byte –c –i4 fib.slang

Jargon VM code

fib.slang

MK_CLOSURE(fib, 0)

MK_CLOSURE(L0, 0)

APPLY

HALT

L0 : PUSH STACK_UNIT

UNARY READ

LOOKUP STACK_LOCATION -2

APPLY

RETURN

fib : LOOKUP STACK_LOCATION -2

PUSH STACK_INT 0

OPER EQI

TEST L1

PUSH STACK_INT 1

GOTO L2

L1 : LOOKUP STACK_LOCATION -2

PUSH STACK_INT 1

OPER EQI

TEST L3

PUSH STACK_INT 1

GOTO L4

L3 : LOOKUP STACK_LOCATION -2

PUSH STACK_INT 1

OPER SUB

LOOKUP STACK_LOCATION -1

APPLY

LOOKUP STACK_LOCATION -2

PUSH STACK_INT 2

OPER SUB

LOOKUP STACK_LOCATION -1

APPLY

OPER ADD

L4 :

L2 : RETURN

238

Taking stock

Interpreter 0

Interpreter 1

Interpreter 2

Interpreter 3

Jargon VM

Split stack into two, refactor

Linearise code

Low-level addressable stack

Starting from a direct implementation of Slang/L3 semantics,

we have DERIVED a Virtual Machine in a step-by-step manner.

The correctness of aach step is (more or less) easy to check.

Explicit stack via CPS+DFS

239

Remarks

1. The semantic GAP between a Slang/L3 program

and a low-level translation (say x86/Unix) has been

significantly reduced.

2. Implementing the Jargon VM at a lower-level of

abstraction (in C?, JVM bytecodes? X86/Unix? …)

looks like a relatively easy programming problem.

3. However, using a lower-level implementation (say

x86, exploiting fast registers) to generate very

efficient code is not so easy. See Part II Optimising

Compilers.

Verification of compilers is an active area of research.

See CompCert, CakeML, and DeepSpec.

240

We could implement a Jargon byte code interpreter …

...

...

void vsm_execute_instruction(vsm_state *state, bytecode instruction)

{

opcode code = instruction.code;

argument arg1 = instruction.arg1;

switch (code) {

case PUSH: { state->stack[state->sp++] = arg1; state->pc++; break; }

case POP : { state->sp--; state->pc++; break; }

case GOTO: { state->pc = arg1; break; }

case STACK_LOOKUP: {

state->stack[state->sp++] =

state->stack[state->fp + arg1];

state->pc++; break; }

...

...

}

}

...

...

• Generate compact byte code for

each Jargon instruction.

• Compiler writes byte codes to a file.

• Implement an interpreter in C or C++

for these byte codes.

• Execution is much faster than our

jargon.ml implementation.

• Or, we could generate assembly

code from Jargon instructions ….

241

Backend could target multiple platforms

Intermediate

code

x86/Linux code gen

ARM/Android code gen

…… …

Target?

Back end

x86/windows

x86/linux

ARM/android

Assembly code

x86/Windows code gen

One of the great benefits of Virtual Machines is their

portability. However, for more efficient code we may want to

compile to assembler. Lost portability can be regained

through the extra effort of implementing code generation for

every desired target platform.

Lectures 12 --- 16

Assorted Topics

1.Separate compilation, linking

2. Interface with OS

3.Stacks vs registers

4.Calling conventions

5.Generating assembler code

6.Simple optimisations

7.The runtime system (automatic memory

management, …)

8. Static links (for languages without nested

functions/procedures)

9. Implementing OOP with inheritance

10.Implementing exceptions

11.Compiling a compiler, “boot strapping”

243

Assembly and Linking

assembly

code file

assembler

assembly

code file

assembler

…

…

…

linker

object

code file

object

code file

single executable object code file

Operating System

Object code

libraries

From symbolic

names and

addresses to

numeric codes

and numeric

addresses

Name resolution,

create single

address space

by address

relocation

Link errors

244

The gcc manual (810 pages)

https://gcc.gnu.org/onlinedocs/gcc-5.3.0/gcc.pdf

245

Applications Binary Interface (ABI)

• C calling conventions used for systems calls

or calls to compiled C code.

• Register usage and stack frame layout

• How parameters are passed, results

returned

• Caller/callee responsibilities for placement

and cleanup

• Byte-level layout and semantics of object files.

• Executable and Linkable Format (ELF).

Formerly known as Extensible Linking

Format.

• Linking, loading, and name mangling

We will use x86/Unix as our running example.

Specifies many things, including the following.

Note: the conventions

are required for

portable interaction

with compiled C.

Your compiled

language does not

have to follow the

same conventions!

Object files

Must contain at least

• Program instructions

• Symbols being exported

• Symbols being imported

• Constants used in the program (such as strings)

Executable and Linkable Format (ELF) is a common

format for both linker input and output.

ELF details (1)

ELF details (2)

The (Static) Linker

What does a linker do?

• takes some object files as input, notes all undefined symbols.

• recursively searches libraries adding ELF files which

define such symbols until all names defined (“library search”).

• whinges if any symbol is undefined or multiply defined.

Then what?

• concatenates all code segments (forming the output

code segment).

• concatenates all data segments.

• performs relocations (updates code/data segments

at specified offsets.

Dynamic vs. Static linking

Static linking (compile time)

Problem: a simple “hello world” program may give a 10MB

executable if it refers to a big graphics or other library.

Dynamic linking (run time)

For shared libraries, the object files contain stubs, not code,

and the operating system loads and links the code on demand.

Pros and Cons of dynamic linking:

(+) Executables are smaller

(+) Bug fixes to libraries don’t require re-linking.

(-) Non-compatible changes to a library can wreck previously

working programs (“dependency hell”).

251

A “runtime system”

A library implementing functionality needed to run compiled

code on a given operating system. Normally tailored to the

language being compiled.

• Implements interface between OS and language.

• May implement memory management.

• May implement “foreign function” interface (say we want

to call compiled C code from Slang code, or vice versa).

• May include efficient implementations of primitive

operations defined in the compiled language.

• For some languages, the runtime system may perform

runtime type checking, method lookup, security checks,

and so on.

• …

252

Runtime system

Virtual Machine

Implementation

Includes runtime

system

Generated

code
Generated

code
Run-time system

Linker

Executable

Targeting a VM Targeting a platform

In either case, implementers of the compiler and

the runtime system must agree on many low-level details of

memory layout and data representation.

253

Typical (Low-Level) Memory Layout (UNIX)

Rough schematic of traditional

layout in (virtual) memory.

high

memory

low

memory

program instructions

Global vars and constants

Stack

Heap

The heap is used for

dynamically allocating

memory. Typically either

for very large objects or

for those objects that are

returned by functions/procedures

and must outlive

the associated activation record.

In languages like Java and ML,

the heap is managed

automatically (“garbage collection”)

Dealing with Virtual Machines

allows us to ignore some of

the low-level details….

254

Stack vs regsisters

V1

add

V2

V1 + V2

r7 : …

add r8 r3 r7

r3 : V2

r8 : V1

…

r7 : V1 + V2

r3 : V2

r8 : V1

…

Stack-oriented:

(+) argument locations is

implicit, so instructions

are smaller.

(---) Execution is slower

Register-oriented:

(+++) Execution MUCH faster

(-) argument location is

explicit, so instructions

are larger

255

Main dilemma : registers are fast, but are fixed in

number. And that number is rather small.

• Manipulating the stack involves RAM access, which can be

orders of magnitude slower than register access (the “von

Neumann Bottleneck”)

• Fast registers are (today) a scarce resource, shared by many

code fragments

• How can registers be used most effectively?

• Requires a careful examination of a program’s structure

• Analysis phase: building data structures (typically directed

graphs) that capture definition/use relationships

• Transformation phase : using this information to rewrite

code, attempting to most efficiently utilise registers

• Problem is NP-complete

• One of the central topics of Part II Optimising Compilers.

• Here we focus only on general issues : calling conventions and

register spilling

256

Caller/callee conventions

• Caller and callee code may use overlapping sets of registers

• An agreement is needed concerning use of registers

• Are some arguments passed in specific registers?

• Is the result returned in a specific register?

• If the caller and callee are both using a set of registers for

“scratch space” then caller or callee must save and restore

these registers so that the caller’s registers are not

obliterated by the callee.

• Standard calling conventions identify specific subsets of

registers as “caller saved” or “callee saved”

• Caller saved: if caller cares about the value in a register,

then must save it before making any call

• Callee saved: The caller can be assured that the callee

will leave the register intact (perhaps by saving and

restoring it)

257

Another C example.

X86, 64 bit, with gcc

int

callee(int, int,int,

int,int,int,int);

int caller(void)

{

int ret;

ret =

callee(1,2,3,4,5,6,7);

ret += 5;

return ret;

}

_caller:

pushq %rbp # save frame pointer

movq%rsp, %rbp # set new frame pointer

subq $16, %rsp # make room on stack

movl $7, (%rsp) # put 7th arg on stack

movl $1, %edi # put 1st arg on in edi

movl $2, %esi # put 2nd arg on in esi

movl $3, %edx # put 3rd arg on in edx

movl $4, %ecx # put 4th arg on in ecx

movl $5, %r8d # put 5th arg on in r8d

movl $6, %r9d # put 6th arg on in r9d

callq _callee #will put resut in eax

addl $5, %eax # add 5

addq $16, %rsp # adjust stack

popq %rbp # restore frame pointer

ret # pop return address, go there

258

Regsiter spilling

• What happens when all registers are in use?

• Could use the stack for scratch space …

• … or (1) move some register values to the stack, (2)

use the registers for computation, (3) restore the

registers to their original value

• This is called register spilling

259

A Crash Course in x86 assembler

• A CISC architecture

• There are 16, 32 and 64 bit versions

• 32 bit version :

• General purpose registers : EAX EBX ECX EDX

• Special purpose registers : ESI EDI EBP EIP ESP

• EBP : normally used as the frame pointer

• ESP : normally used as the stack pointer

• EDI : often used to pass (first) argument

• EIP : the code pointer

• Segment and flag registers that we will ignore …

• 64 bit version:

• Rename 32-bit registers with “R” (RAX, RBX, RCX, …)

• More general registers: R8 R9 R10 R11 R12 R13 R14 R15

Register

names can

indicate “width”

of a value.

rax : 64 bit version

eax : 32 bit version (or lower 32 bits of rax)

ax : 16 bit version (or lower 16 bits of eax)

al : lower 8 bits of ax

ah : upper 8 bits of ax

See https://en.wikibooks.org/wiki/X86_Assembly

movl $4, %eax // GAS (aka AT&T) notation

mov eax, 4 // Intel notation

The syntax of x86 assembler comes in several flavours.

Here are two examples of “put integer 4 into register eax”:

I will (mostly) use the GAS syntax, where a suffix is used

to indicate width of arguments:

• b (byte) = 8 bits

• w (word) = 16 bits

• l (long) = 32 bits

• q (quad) = 64 bits

For example, we have movb, movw movl, and movq.

261

Examples (in GAS notation)

movl $4, %eax # put 32 bit integer 4 in register eax

movw $4, %eax # put 16 bit integer 4 in lower 16 bits of eax

movb $4, %eax # put 8 bit integer 4 in lowest 8 bits of eax

movl %esp, %ebp # put the contents of esp into ebp

movl (%esp), %ebp # interpret contents of esp as a memory

address. Copy the value at that address

into register ebp

movl %esp, (%ebp) # interpret contents of ebp as a memory

address. Copy the value in esp to

that address.

movl %esp, 4(%ebp)# interpret contents of ebp as a memory

address. Add 4 to that address. Copy

the value in esp to this new address.

262

A few more examples

call label # push return address on stack and jump to label

ret # pop return address off stack and jump there

NOTE: managing other bits of the stack frame

such as stack and frame pointer must be done

explicitly

subl $4, %esp # subtract 4 from esp. That is, adjust the

stack pointer to make room for one 32-bit

(4 byte) value. (stack grows downward!)

Assume that we have implemented a procedure in C called

allocate that will manage heap memory. We will compile and

link this in with code generated by the slang compiler. At the x86

level, allocate will expect a header in edi and return a heap

pointer in eax.

Some Jargon VM instructions are “easy” to translate

GOTO loc jmp loc

POP addl $4, %esp // move stack pointer 1 word = 4 bytes

PUSH v subl $4, %esp // make room on top of stack

movl $i, (%esp) // where i is an integer representing v

FST movl (%esp), %edx //store "a" into edx

movl 4(%edx), %edx // load v1, 4 bytes, 1 word, after header

movl %edx, (%esp) // replace “a” with “v1” at top of stack

SND movl (%esp), %edx //store "a" into edx

movl 8(%edx), %edx // vload v2, 8 bytes, 2 words, after header

movl %edx, (%esp) // replace “a” with “v2” at top of stack

c

v1

: :

: :

FSTc

a

: :

: :

a : header

v1 a+1 :

a+2 : v2

sp sp

Remember: X86 is CISC, so RISC architectures may require more instructions …

264

… while others require more work

c
v1

: :

: :

v2

MK_PAIR

c

a

: :

: :

a : Header 3, PAIR

v1 a+1 :

a+2 : v2

movl $3, %edi // construct header in edi

shr $16, %edi, // … put size in upper 16 bits (shift right)

movw $PAIR, %di // … put type in lower 16 bits of edi

call allocate // input: header in ebi, output: “a” in eax

movl (%esp), %edx // move “v2” to the heap,

movl %edx, 8(%eax) // … using temporary register edx

addl $4, %esp // adjust stack pointer (pop “v2”)

movl (%esp), %edx // move “v1” to the heap

movl %edx, 4(%eax) // … using temporary register edx

movl %eax, (%esp) // copy value “a” to top of stack

One possible x86 (32 bit) implementation of MK_PAIR:

265

call function computed at runtime?

For things you don’t understand, just experiment!

OK, you need to pull an address out of a closure and call it. Hmm,

how does something similar get compiled from C?

_func:

pushq %rbp # save frame pointer

movq %rsp, %rbp # set frame pointer to stack pointer

subq $16, %rsp # make some room on stack

movl $17, %eax # put 17 in argument register eax

movq %rdi, -8(%rbp) # rdi contains the argument f

movl %eax, %edi # put 17 in register edi, so f will get it

callq *-8(%rbp) # WOW, a computed address for call!

addq $16, %rsp # restore stack pointer

popq %rbp # restore old frame pointer

ret # restore stack

int func (int (*f)(int)) { return (*f)(17); } /* pass a function pointer and apply it /*

X86,

64 bit

without

–O2

What about arithmetic?

Houston, we have a problem….

• It may not be obvious now, but if we want to have

automated memory management we need to be

able to distinguish between values (say integers)

and pointers at runtime.

• Have you ever noticed that integers in SML or

Ocaml are either 31 (or 63) bits rather than the

native 32 (or 64) bits?

• That is because these compilers use a the

least significant bit to distinguish integers (bit =

1) from pointers (bit = 0).

• OK, this works. But it may complicate every

arithmetic operation!

• This is another exercise left for you to ponder

…

267

New topic: Memory Management

• Many programming languages allow programmers to
(implicitly) allocate new storage dynamically, with no
need to worry about reclaiming space no longer used.

– New records, arrays, tuples, objects, closures, etc.

– Java, SML, OCaml, Python, JavaScript, Python,
Ruby, Go, Swift, SmallTalk, …

• Memory could easily be exhausted without some method
of reclaiming and recycling the storage that will no longer
be used.

– Often called “garbage collection”

– Is really “automated memory management” since it
deals with allocation, de-allocation, compaction, and
memory-related interactions with the OS.

268

Explicit (manual) memory management

• User library manages memory; programmer
decides when and where to allocate and de-
allocate
– void* malloc(long n)

– void free(void *addr)

– Library calls OS for more pages when necessary

– Advantage: Gives programmer a lot of control.

– Disadvantage: people too clever and make mistakes.
Getting it right can be costly. And don’t we want to
automate-away tedium?

– Advantage: With these procedures we can implement
memory management for “higher level” languages ;-)

269

Automation is based on an approximation : if data can be

reached from a root set, then it is not “garbage”

r1

stack

and

registers

r2

ROOT SET

-------------------- HEAP --

Type information required (pointer or not),
some kind of “tagging” needed.

270

… Identify Cells Reachable From Root Set…

r1

stack

r2

registers

271

… reclaim unreachable cells

r1

stack

r2

registers

272

But How? Two basic techniques,

and many variations

• Reference counting : Keep a reference count
with each object that represents the number of
pointers to it. Is garbage when count is 0.

• Tracing : find all objects reachable from root set.
Basically transitive close of pointer graph.

For a very interesting (non-examinable) treatment of this subject see

A Unified Theory of Garbage Collection.

David F. Bacon, Perry Cheng, V.T. Rajan.

OOPSLA 2004.

In that paper reference counting and tracing are presented as “dual”

approaches, and other techniques are hybrids of the two.

273

Reference Counting, basic idea:

• Keep track of the number of pointers to each object (the
reference count).

• When Object is created, set count to 1.

• Every time a new pointer to the object is created,
increment the count.

• Every time an existing pointer to an object is destroyed,
decrement the count

• When the reference count goes to 0, the object is
unreachable garbage

274

Reference counting can’t detect cycles!

r1

stack
r2

• Cons

• Space/time overhead to maintain count.

• Memory leakage when have cycles in data.

• Pros

• Incremental (no long pauses to collect…)

275

Mark and Sweep

• A two-phase algorithm

– Mark phase: Depth first traversal of object

graph from the roots to mark live data

– Sweep phase: iterate over entire heap,

adding the unmarked data back onto the free

list

276

Copying Collection

• Basic idea: use 2 heaps

– One used by program

– The other unused until GC time

• GC:

– Start at the roots & traverse the reachable data

– Copy reachable data from the active heap (from-

space) to the other heap (to-space)

– Dead objects are left behind in from space

– Heaps switch roles

277

Copying Collection

to-spacefrom-space

roots

278

Copying GC

• Pros
– Simple & collects cycles

– Run-time proportional to # live objects

– Automatic compaction eliminates fragmentation

• Cons
– Twice as much memory used as program requires

• Usually, we anticipate live data will only be a small fragment
of store

• Allocate until 70% full

• From-space = 70% heap; to-space = 30%

– Long GC pauses = bad for interactive, real-time apps

279

OBSERVATION: for a copying garbage

collector

• 80% to 98% new objects die very quickly.

• An object that has survived several collections has a bigger

chance to become a long-lived one.

• It’s a inefficient that long-lived objects be copied over and over.

Diagram from Andrew Appel’s Modern Compiler Implementation

280

IDEA: Generational garbage collection

Segregate objects into multiple areas by age, and collect areas

containing older objects less often than the younger ones.

Diagram from Andrew Appel’s Modern Compiler Implementation

281

Other issues…

– When do we promote objects from young generation to old
generation

• Usually after an object survives a collection, it will be
promoted

– Need to keep track of older objects pointing to newer ones!

– How big should the generations be?

• When do we collect the old generation?

• After several minor collections, we do a major collection

– Sometimes different GC algorithms are used for the new and
older generations.

• Why? Because the have different characteristics

• Copying collection for the new

– Less than 10% of the new data is usually live

– Copying collection cost is proportional to the live data

• Mark-sweep for the old

282

New topic : Simple optimisations.

Inline expansion

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = f(x) + g(x)

fun f(x) = x + 1
fun g(x) = x – 1
…
…
fun h(x) = (x+1) + (x-1)

inline f and g

(+) Avoid building activation

records at runtime

(+) May allow further

optimisations

(-) May lead to “code bloat”

(apply only to functions

with “small” bodies?)

Question: if we inline all

occurrences of a function,

can we delete its definition from

the code?

What if it is needed at link time?

Be careful with variable scope

let val x = 1

fun g(y) = x + y

fun h(x) = g(x) + 1

in

h(17)

end

let val x = 1

fun g(y) = x + y

fun h(x) = x + y + 1

in

h(17)

end

Inline g in h

let val x = 1

fun g(y) = x + y

fun h(z) = x + z + 1

in

h(17)

end

NO

YES

What kind of care might be needed will

depend on the representation level of the

Intermediate code involved.

284

(b) Constant propagation, constant folding

David Gries :

“Never put off till

run-time what you can do

at compile-time.”

How about this?

Replace

x * 0

with

0

OOPS, not if x has type

float!

NAN*0 = NAN,

But be careful

Note : opportunities

are often exposed

by inline expansion!

let x = 2
let y = x – 1
let z = y * 17

let x = 2
let y = 2 – 1
let z = y * 17

let x = 2
let y = 1
let z = y * 17

let x = 2
let y = 1
let z = 1 * 17

let x = 2
let y = 1
let z = 17

Propagate

constants and

evaluate simple

expressions at

compile-time

285

(c) peephole optimisation

Communications of the ACM,

July 1965

Eliminate!

Results for syntax-directed code generation.

286

peephole optimisation

… code sequence …

Sweep a window over the code

sequence looking for instances of simple code

patterns that can be rewritten to better code …

(might be combined with constant folding, etc,

and employ multiple passes)

Examples

-- eliminate useless combinations (push 0; pop)

-- introduce machine-specific instructions

-- improve control flow. For example: rewrite

“GOTO L1 … L1: GOTO L2”

to

“GOTO L2 … L1 : GOTO L2”)

gcc example.

-O<m> turns on optimisation to level m

int h(int n) { return (0 < n) ? n : 101 ; }

int g(int n) { return 12 * h(n + 17); }

g.c

gcc –O2 –S –c g.c

_g:

.cfi_startproc

pushq %rbp

movq %rsp, %rbp

addl $17, %edi

imull $12, %edi, %ecx

testl %edi, %edi

movl $1212, %eax

cmovgl %ecx, %eax

popq %rbp

ret

.cfi_endproc

g.s (fragment)

Wait. What happened to

the call to h???

GNU AS (GAS) Syntax

x86, 64 bit

gcc example (-O<m> turns on optimisation)

int h(int n) { return (0 < n) ? n : 101 ; }

int g(int n) { return 12 * h(n + 17); }

g.c

The compiler must have done something similar to this:

int g(int n) { return 12 * h(n + 17); }



int g(int n) { int t := n+ 17; return 12 * h(t); }



int g(int n) { int t := n+ 17; return 12 *((0 < t) ? t : 101); }



int g(int n) { int t := n+ 17; return (0 < t) ? 12 * t : 1212 ; }

…

New topic : static links on the call stack.

• Many textbooks on compilers treat only languages with

first-order functions --- that is, functions cannot be passes

as an argument or returned as a result. In this case, we

can avoid allocating environments on the heap since all

values associated with free variables will be somewhere

on the stack!

• But how do we find these values? We optimise stack

search by following a chain of static links. Static links are

added to every stack frame and points to the stack frame

of the last invocation of the defining function.

• One other thing: most languages take multiple arguments

for a function/procedure call.

Terminology: Caller and Callee

fun f (x, y) = e1

…

fun g(w, v) =

w + f(v, v)

For this invocation of

the function f, we say

that g is the caller

while f is the callee

Recursive functions can play

both roles at the same time …

291

Nesting depth

fun b(z) = e

fun g(x1) =

fun h(x2) =

fun f(x3) = e3(x1, x2, x3, b, g h, f)

in

e2(x1, x2, b, g, h, f)

end

in

e1(x1, b, g, h)

end

…

b(g(17))

…

Pseudo-code

292

Nesting depth

fun b(z) = e

fun g(x1) =

fun h(x2) =

fun f(x3) = e3(x1, x2, x3, b, g h, f)

in

e2(x1, x2, b, g, h, f)

end

in

e1(x1, b, g, h)

end

…

b(g(17))

…

code in big box is at nesting depth k

nesting depth k + 1

nesting depth k + 1

nesting depth k + 2

nesting depth k + 3

Function g is the definer of h. Functions g and b must

share a definer defined at depth k-1

293

Stack with static links and variable number of

arguments

sp

FP-saved

RA

stack frame for

callee defined

at nesting

depth i <= k + 1

stack frame for caller

defined at nesting depth

k used to evaluate code

at depth k + 1.

args

for

callee

fp

SL{i – 1} The static link points

down to the closest

frame of definer

at nesting

depth i - 1

SL{k - 1}

294

caller and callee at same nesting depth k

call f 0

cp

Code

FREEsp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

caller’s
frame

SL{k – 1}

SL{k – 1}

SL{k – 1}

caller at depth k and callee at depth i < k

call f (k - i)

cp

Code

FREEsp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

SL{k - 1}

SL{i - 1}

SL{k - 1}

p := !(fp + 2);
for c = 1 to k – i
{

p := !(p + 2);
}
SL{i-1} := p;

296

caller at depth k and callee at depth k + 1

call f (-1)

cp

Code

FREEsp

fp

j : call f

f : …….. cp

Code

sp

fp

j : call f

f : ……..

FREE

j+1

SL{k - 1} SL{k - 1}

FP-saved

FP-saved

Access to argument values at static

distance 0

arg 0 j sp

fp

FREE

ra

sp

fp

FREE

ra

V

Vfp - j

SL SL

Access to argument values at static

distance d, 0 < d

arg d j sp

fp

FREE

ra

sp

fp

FREE

ra

V

SL SL

p := !(fp + 2);
for c = 1 to d
{

p := !(p + 2);
}
v := !(p – j);

299

New Topic:

OOP Objects (single inheritance)
let start := 10

class Vehicle extends Object {
var position := start
method move(int x) = {position := position + x}

}
class Car extends Vehicle {

var passengers := 0
method await(v : Vehicle) =

if (v.position < position)
then v.move(position – v.position)
else self.move(10)

}
class Truck extends Vehicle {

method move(int x) =
if x <= 55 then position := position +x

}
var t := new Truck
var c := new Car
var v : Vehicle := c

in
c.passengers := 2;
c.move(60);
v.move(70);
c.await(t)

end

method override

subtyping allows a

Truck or Car to be viewed and

used as a Vehicle

300

Object Implementation?

– how do we access object fields?
• both inherited fields and fields for the current

object?

– how do we access method code?
• if the current class does not define a particular

method, where do we go to get the inherited
method code?

• how do we handle method override?

– How do we implement subtyping (“object
polymorphism”)?

• If B is derived from A, then need to be able to
treat a pointer to a B-object as if it were an A-
object.

301

Another OO Feature

• Protection mechanisms

– to encapsulate local state within an object,
Java has “private” “protected” and “public”
qualifiers

• private methods/fields can’t be called/used outside
of the class in which they are defined

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking
and so on), the compiler maintains this
information in the symbol table for each class
and enforces visibility rules.

302

Object representation

class A {

public:

int a1, a2;

virtial void m1(int i) {

a1 = i;

}

virtual void m2(int i) {

a2 = a1 + i;

}

}

C++

object data
a1

a2

m1_A

m2_A

vtable for class A

An A object

NB: a compiler typically generates methods with an extra argument

representing the object (self) and used to access object data.

303

Inheritance (“pointer polymorphism”)

object data

m1_A

m2_A vtable for class B

a1

a2

b1

m3_B

class B : public A {

public:

int b1;

virtual void m3(void) {

b1 = a1 + a2;

}

}

a B object

Note that a pointer to a B object can

be treated as if it were a pointer to an A object!

304

Method overriding

object data

m1_A_A

m2_A_C

vtable for class C

a1

a2

c1

m3_C_C

class C : public A {

public:

int c1;

virtual void m3(void) {

b1 = a1 + a2;

}

virtual void m2(int i) {

a2 = c1 + i;

}

}

declared defined

a C object

305

Static vs. Dynamic

• which method to invoke on overloaded

polymorphic types?

class C *c = ...;

class A *a = c;

a->m2(3);

???

m2_A_A(a, 3); static

m2_A_C(a, 3); dynamic

306

Dynamic dispatch implemented

with vtables

A pointer to a class C object can be treated

as a pointer to a class A object

a1

a2

b1

m1_A_A

m2_A_C

m3_C_C

*(a->vtable[1])(a, 3);

class C *c = ...;

class A *a = c;

a->m2(3);

New Topic : Exceptions (informal description)

e handle f raise e

If expression e evaluates

“normally” to value v,

then v is the result of the

entire expression.

Otherwise, an exceptional

value v’ is “raised” in the

evaluation of e, then

result is (f v’)

Evaluate expression e to

value v, and then raise v

as an exceptional value,

which can only be

“handled”.

Implementation of exceptions

may require a lot of language-specific

consideration and care. Exceptions

can interact in powerful and unexpected

ways with other language features.

Think of C++ and class destructors,

for example.

Viewed from the call stack

Call stack just

before evaluating

code for

e handle f

handle

frame

Push a special

frame for the

handle

. . .

. . .

handle

frame

current

frame

. . .

. . .

“raise v” is

encountered

while evaluating

a function body

associated with

top-most frame

frame

for f

v

“Unwind” call stack.

Depending on language,

this may involve some

“clean up” to free resources.

Possible pseudo-code implementation

e handle f

let fun _h27 () =

build special “handle frame”

save address of f in frame;

… code for e …

return value of e

in _h27 () end

raise e … code for e …

save v, the value of e;

unwind stack until first

fp found pointing at a handle frame;

Replace handle frame with frame

for call to (extracted) f using

v as argument.

See 2019

Paper 4

Question 4

310

New topic : Bootstrapping a compiler

• Compilers compiling themselves!

• Read Chapter 13 Of

• Basics of Compiler Design

• by Torben Mogensen
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/

http://mythologian.net/ouroboros-symbol-of-infinity/

Bootstrapping. We need some notation . . .

app

A

A

mch

A

inter

B

An application

called app written

in language A

An interpreter or

VM for language A

Written in language B

A machine called

mch running

language

A natively.

hello

x86

x86

M1

JBC

jvm

x86

hello

JBC

x86

M1

Simple Examples

Tombstones

C

trans
A B

This is an application called trans

that translates programs in language

A into programs in language B, and it is

written in language C.

Ahead-of-time compilation

JBC

jvm

x86

Java JBC

JBC

javac
Hello

Java

x86

M1

Hello

JBC JBC x86

JBC

aot

JBC

jvm

x86

x86

M1

Hello

x86

x86

M1

jvm

C++ C++ x86

x86

gcc

x86

M1

Thanks to David Greaves

for the example.

Of course translators can be translated

C

trans
A B B

foo.B
D E

A

foo.A
D E

Translator foo.B is produced

as output from trans when

given foo.A as input.

Our seemingly impossible task

L

comp.L
L B

We have just invented a really great

new language L (in fact we claim that

“L is far superior to C++”). To prove how

great L is we write a compiler

for L in L (of course!). This

compiler produces machine code B

for a widely used instruction set

(say B = x86).

There are many many ways we could go about this task.

The following slides simply sketch out one plausible route

to fame and fortune.

B

comp.B
L B

Furthermore, we want to compile our

compiler so that it can run

on a machine running B.

Our compiler is written in L!

How can we compiler our compiler?

?

Step 1

Write a small interpreter (VM) for

a small language of byte codes

MBC

zoom

B

B

M1

C++ B

B

gcc

B

M1

MBC

zoom

C++

MBC = My Byte Codes

The zoom machine!

Step 2

Pick a small subset S of L and

write a translator from S to MBC

B

gcc
C++ BC++

comp_1.cpp
S MBC

Write comp_1.cpp by hand. (It sure would be nice if we

could hide the fact that this is written is C++.)

Compiler comp_1.B is produced

as output from gcc when comp_1.cpp is given as input.

B

comp_1.B
S MBC

Step 3

Write a compiler for L in S

S

comp_2.S
L B

Write a compiler comp_2.S for the full language L, but written only

in the sub-language S.

Compile comp_2.S using comp_1.B to produce comp_2.mbc

B

comp_1.B

S MBC MBC

comp_2.mbc
L B

Step 4

Write a compiler for L in L, and then compile it!

L

comp.L
L B

Rewrite/extend compiler

comp_2.S to produce

comp.L using the full

power of language L.

MBC

comp_2.mbc
L B B

comp.B
L B

MBC

zoom

B

B

M1

We have achieved

our goal!

C++

S MBCcomp_1.cpp

B

C++ Bgcc

S

L Bcomp_2.S

B

S MBCcomp_1.B MBC

L B
comp_2.mbc B

L B

L

L Bcomp.L

Putting it all together

We wrote these compilers

and the MBC VM.

MBC

zoom

B

B

M1

B

M1
B

M1

1

2

3

4

5

6

comp.B

Step 5 : Cover our tracks and leave the world

mystified and amazed!

L

comp.L

L B

MBC

comp_2.mbc

L B

1. Use gcc to compile the zoom interpreter

2. Use zoom to run mr-e with input comp.L to output the

compiler comp.B. MAGIC!

MBC

zoom

C++

Our L compiler download site contains only three components:

Our instructions:

Shhhh! Don’t tell

anyone that

we wrote the first

compiler in C++

comp_2.mbc is a just file of bytes.

We give it the mysterious name

such as mr-e

Another example (Mogensen, Page 285)

Solving a different problem.

You have:

(1) An ML compiler on ARM. Who knows where it came from.

(2) An ML compiler written in ML, generating x86 code.

You want:

An ML compiler generating x86 and running on an x86 platform.

